Articles | Volume 19, issue 1
https://doi.org/10.5194/cp-19-87-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-87-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulations of the Holocene climate in Europe using an interactive downscaling within the iLOVECLIM model (version 1.1)
Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway
Didier M. Roche
Faculty of Science, Cluster Earth and Climate, Vrije Universiteit
Amsterdam, Amsterdam, the Netherlands
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Ralph Fyfe
School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
Aurélien Quiquet
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Hans Renssen
Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway
Related authors
No articles found.
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul J. Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Clim. Past, 21, 1443–1463, https://doi.org/10.5194/cp-21-1443-2025, https://doi.org/10.5194/cp-21-1443-2025, 2025
Short summary
Short summary
This study analyses transient simulations of the last deglaciation performed by six climate models to understand the processes driving high-southern-latitude temperature changes. We find that atmospheric CO2 and AMOC (Atlantic Meridional Overturning Circulation) changes are the primary drivers of the warming and cooling during the middle stage of the deglaciation. The analysis highlights the model's sensitivity of CO2 and AMOC to meltwater and the meltwater history of temperature changes at high southern latitudes.
Louise Abot, Aurélien Quiquet, and Claire Waelbroeck
Clim. Past, 21, 1123–1142, https://doi.org/10.5194/cp-21-1123-2025, https://doi.org/10.5194/cp-21-1123-2025, 2025
Short summary
Short summary
This modeling study examines how the Northern Hemisphere ice sheets interact with oceans during the last glacial period. Amplified melting beneath the ice shelves results in increased freshwater release, cooling the Northern Hemisphere and slowing ocean circulation. Freshwater release and localized ocean cooling dampen ice discharges, showing complex feedback at the interface. This study emphasizes the need for additional modeling studies to clarify the role of the ocean in past abrupt events.
Thibaut Caley, Niclas Rieger, Martin Werner, Claire Waelbroeck, Héloïse Barathieu, Tamara Happé, and Didier M. Roche
EGUsphere, https://doi.org/10.5194/egusphere-2025-2459, https://doi.org/10.5194/egusphere-2025-2459, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Density of seawater is a critical property that controls ocean dynamics. We developed the use of the δ18Oc of planktonic foraminifera as a surface paleodensity proxy for the whole ocean using Bayesian regression models calibrated to annual surface density. We reconstructed annual surface density during the last glacial maximum and late Holocene time periods. These results will be used to evaluate numerical climate models in their ability to simulate past ocean surface density.
Maxence Menthon, Pepijn Bakker, Aurélien Quiquet, Didier M. Roche, and Ronja Reese
EGUsphere, https://doi.org/10.5194/egusphere-2025-777, https://doi.org/10.5194/egusphere-2025-777, 2025
Short summary
Short summary
The ice-ocean interaction is a large source of uncertainty in future projections of the Antarctic ice sheet. Here we implement a basal ice shelf melt module (PICO) in a ice sheet model (GRISLI) and test six simple statistical methods to calibrate this module. We show that calculating the mean absolute error of bins best fits the observational datasets under multiple conditions. We also assess the impact of the module implementation and calibration choice on future projections until 2300.
Yurui Zhang, Hans Renssen, Heikki Seppä, Zhen Li, and Xingrui Li
Clim. Past, 21, 67–77, https://doi.org/10.5194/cp-21-67-2025, https://doi.org/10.5194/cp-21-67-2025, 2025
Short summary
Short summary
The upper and lower atmospheres interact. The polar regions, with high-speed, cyclonically rotating winds, provide a window through which upper winds affect surface weather and climate variability. By analysing climate model results, we found that ice sheets induced anomalous upward wave propagation and stretched the rotating winds towards North America, increasing the likelihood of cold-air outbreaks at the mid-latitudes. This accounts for the enhanced winter cooling at these latitudes.
Thi-Khanh-Dieu Hoang, Aurélien Quiquet, Christophe Dumas, Andreas Born, and Didier M. Roche
Clim. Past, 21, 27–51, https://doi.org/10.5194/cp-21-27-2025, https://doi.org/10.5194/cp-21-27-2025, 2025
Short summary
Short summary
To improve the simulation of surface mass balance (SMB) that influences the advance–retreat of ice sheets, we run a snow model, the BErgen Snow SImulator (BESSI), with transient climate forcing obtained from an Earth system model, iLOVECLIM, over Greenland and Antarctica during the Last Interglacial (LIG; 130–116 ka). Compared to the simple existing SMB scheme of iLOVECLIM, BESSI gives more details about SMB processes with higher physics constraints while maintaining a low computational cost.
Aurélien Quiquet and Didier M. Roche
Clim. Past, 20, 1365–1385, https://doi.org/10.5194/cp-20-1365-2024, https://doi.org/10.5194/cp-20-1365-2024, 2024
Short summary
Short summary
In this work, we use the same experimental protocol to simulate the last two glacial terminations with a coupled ice sheet–climate model. Major differences among the two terminations are that the ice sheets retreat earlier and the Atlantic oceanic circulation is more prone to collapse during the penultimate termination. However, for both terminations the pattern of ice retreat is similar, and this retreat is primarily explained by orbital forcing changes and greenhouse gas concentration changes.
Thomas Extier, Thibaut Caley, and Didier M. Roche
Geosci. Model Dev., 17, 2117–2139, https://doi.org/10.5194/gmd-17-2117-2024, https://doi.org/10.5194/gmd-17-2117-2024, 2024
Short summary
Short summary
Stable water isotopes are used to infer changes in the hydrological cycle for different time periods in climatic archive and climate models. We present the implementation of the δ2H and δ17O water isotopes in the coupled climate model iLOVECLIM and calculate the d- and 17O-excess. Results of a simulation under preindustrial conditions show that the model correctly reproduces the water isotope distribution in the atmosphere and ocean in comparison to data and other global circulation models.
Victor van Aalderen, Sylvie Charbit, Christophe Dumas, and Aurélien Quiquet
Clim. Past, 20, 187–209, https://doi.org/10.5194/cp-20-187-2024, https://doi.org/10.5194/cp-20-187-2024, 2024
Short summary
Short summary
We present idealized numerical experiments to test the main mechanisms that triggered the deglaciation of the past Eurasian ice sheet. Simulations were performed with the GRISLI2.0 ice sheet model. The results indicate that the Eurasian ice sheet was primarily driven by surface melting, due to increased atmospheric temperatures. Basal melting below the ice shelves is only a significant driver if ocean temperatures increase by nearly 10 °C, in contrast with the findings of previous studies.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Esmeralda Cruz-Silva, Sandy P. Harrison, I. Colin Prentice, Elena Marinova, Patrick J. Bartlein, Hans Renssen, and Yurui Zhang
Clim. Past, 19, 2093–2108, https://doi.org/10.5194/cp-19-2093-2023, https://doi.org/10.5194/cp-19-2093-2023, 2023
Short summary
Short summary
We examined 71 pollen records (12.3 ka to present) in the eastern Mediterranean, reconstructing climate changes. Over 9000 years, winters gradually warmed due to orbital factors. Summer temperatures peaked at 4.5–5 ka, likely declining because of ice sheets. Moisture increased post-11 kyr, remaining high from 10–6 kyr before a slow decrease. Climate models face challenges in replicating moisture transport.
Gustav Strandberg, Jie Chen, Ralph Fyfe, Erik Kjellström, Johan Lindström, Anneli Poska, Qiong Zhang, and Marie-José Gaillard
Clim. Past, 19, 1507–1530, https://doi.org/10.5194/cp-19-1507-2023, https://doi.org/10.5194/cp-19-1507-2023, 2023
Short summary
Short summary
The impact of land use and land cover change (LULCC) on the climate around 2500 years ago is studied using reconstructions and models. The results suggest that LULCC impacted the climate in parts of Europe. Reconstructed LULCC shows up to 1.5 °C higher temperature in parts of Europe in some seasons. This relatively strong response implies that anthropogenic LULCC that had occurred by the late prehistoric period may have already affected the European climate by 2500 years ago.
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023, https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary
Short summary
The last deglaciation is a period of large warming from 21 000 to 9000 years ago, concomitant with ice sheet melting. Here, we evaluate the impact of different ice sheet reconstructions and different processes linked to their changes. Changes in bathymetry and coastlines, although not often accounted for, cannot be neglected. Ice sheet melt results in freshwater into the ocean with large effects on ocean circulation, but the timing cannot explain the observed abrupt climate changes.
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
Pepijn Bakker, Hugues Goosse, and Didier M. Roche
Clim. Past, 18, 2523–2544, https://doi.org/10.5194/cp-18-2523-2022, https://doi.org/10.5194/cp-18-2523-2022, 2022
Short summary
Short summary
Natural climate variability plays an important role in the discussion of past and future climate change. Here we study centennial temperature variability and the role of large-scale ocean circulation variability using different climate models, geological reconstructions and temperature observations. Unfortunately, uncertainties in models and geological reconstructions are such that more research is needed before we can describe the characteristics of natural centennial temperature variability.
Huan Li, Hans Renssen, and Didier M. Roche
Clim. Past, 18, 2303–2319, https://doi.org/10.5194/cp-18-2303-2022, https://doi.org/10.5194/cp-18-2303-2022, 2022
Short summary
Short summary
In past warm periods, the Sahara region was covered by vegetation. In this paper we study transitions from this
greenstate to the desert state we find today. For this purpose, we have used a global climate model coupled to a vegetation model to perform transient simulations. We analyzed the model results to assess the effect of vegetation shifts on the abruptness of the transition. We find that the vegetation feedback was more efficient during the last interglacial than during the Holocene.
Esther Githumbi, Ralph Fyfe, Marie-Jose Gaillard, Anna-Kari Trondman, Florence Mazier, Anne-Birgitte Nielsen, Anneli Poska, Shinya Sugita, Jessie Woodbridge, Julien Azuara, Angelica Feurdean, Roxana Grindean, Vincent Lebreton, Laurent Marquer, Nathalie Nebout-Combourieu, Miglė Stančikaitė, Ioan Tanţău, Spassimir Tonkov, Lyudmila Shumilovskikh, and LandClimII data contributors
Earth Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, https://doi.org/10.5194/essd-14-1581-2022, 2022
Short summary
Short summary
Reconstruction of past land cover is necessary for the study of past climate–land cover interactions and the evaluation of climate models and land-use scenarios. We used 1128 available pollen records from across Europe covering the last 11 700 years in the REVEALS model to calculate percentage cover and associated standard errors for 31 taxa, 12 plant functional types and 3 land-cover types. REVEALS results are reliant on the quality of the input datasets.
Aurélien Quiquet, Didier M. Roche, Christophe Dumas, Nathaëlle Bouttes, and Fanny Lhardy
Clim. Past, 17, 2179–2199, https://doi.org/10.5194/cp-17-2179-2021, https://doi.org/10.5194/cp-17-2179-2021, 2021
Short summary
Short summary
In this paper we discuss results obtained with a set of coupled ice-sheet–climate model experiments for the last 26 kyrs. The model displays a large sensitivity of the oceanic circulation to the amount of the freshwater flux resulting from ice sheet melting. Ice sheet geometry changes alone are not enough to lead to abrupt climate events, and rapid warming at high latitudes is here only reported during abrupt oceanic circulation recoveries that occurred when accounting for freshwater flux.
Fanny Lhardy, Nathaëlle Bouttes, Didier M. Roche, Xavier Crosta, Claire Waelbroeck, and Didier Paillard
Clim. Past, 17, 1139–1159, https://doi.org/10.5194/cp-17-1139-2021, https://doi.org/10.5194/cp-17-1139-2021, 2021
Short summary
Short summary
Climate models struggle to simulate a LGM ocean circulation in agreement with paleotracer data. Using a set of simulations, we test the impact of boundary conditions and other modelling choices. Model–data comparisons of sea-surface temperatures and sea-ice cover support an overall cold Southern Ocean, with implications on the AMOC strength. Changes in implemented boundary conditions are not sufficient to simulate a shallower AMOC; other mechanisms to better represent convection are required.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Peter Aartsma, Johan Asplund, Arvid Odland, Stefanie Reinhardt, and Hans Renssen
Biogeosciences, 18, 1577–1599, https://doi.org/10.5194/bg-18-1577-2021, https://doi.org/10.5194/bg-18-1577-2021, 2021
Short summary
Short summary
In the literature, it is generally assumed that alpine lichen heaths keep their direct environment cool due to their relatively high albedo. However, we reveal that the soil temperature and soil heat flux are higher below lichens than below shrubs during the growing season, despite a lower net radiation for lichens. We also show that the differences in microclimatic conditions between these two vegetation types are more pronounced during warm and sunny days than during cold and cloudy days.
Aurélien Quiquet and Christophe Dumas
The Cryosphere, 15, 1015–1030, https://doi.org/10.5194/tc-15-1015-2021, https://doi.org/10.5194/tc-15-1015-2021, 2021
Short summary
Short summary
We present here the GRISLI-LSCE contribution to the Ice Sheet Model Intercomparison Project for CMIP6 for Greenland. The project aims to quantify the ice sheet contribution to global sea level rise for the next century. We show an important spread in the simulated Greenland ice loss in the future depending on the climate forcing used. Mass loss is primarily driven by atmospheric warming, while oceanic forcing contributes to a relatively smaller uncertainty in our simulations.
Aurélien Quiquet and Christophe Dumas
The Cryosphere, 15, 1031–1052, https://doi.org/10.5194/tc-15-1031-2021, https://doi.org/10.5194/tc-15-1031-2021, 2021
Short summary
Short summary
We present here the GRISLI-LSCE contribution to the Ice Sheet Model Intercomparison Project for CMIP6 for Antarctica. The project aims to quantify the ice sheet contribution to global sea level rise for the next century. We show that increased precipitation in the future in some cases mitigates this contribution, with positive to negative values in 2100 depending of the climate forcing used. Sub-shelf-basal-melt uncertainties induce large differences in simulated grounding-line retreats.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Cited articles
Arthur, F., Roche, D., Fyfe, R., Quiquet, A., and Renssen, H.: Replication data for: Simulations of the Holocene climate in Europe using an interactive downscaling within the iLOVECLIM model (version 1.1), University of South-Eastern Norway [data set], https://doi.org/10.23642/usn.19354082.v2, 2022.
Bader, J., Jungclaus, J., Krivova, N., Lorenz, S., Maycock, A., Raddatz, T.,
Schmidt, H., Toohey, M., Wu, C. J., and Claussen, M.: Global temperature
modes shed light on the Holocene temperature conundrum, Nat. Commun., 11,
4726, https://doi.org/10.1038/s41467-020-18478-6, 2020.
Bartlein, P. J., Harrison, S., Brewer, S., Connor, S., Davis, B., Gajewski,
K., Guiot, J., Harrison-Prentice, T., Henderson, A., and Peyron, O.:
Pollen-based continental climate reconstructions at 6 and 21 ka: a global
synthesis, Clim. Dynam., 37, 775–802, https://doi.org/10.1007/s00382-010-0904-1, 2011.
Berger, A. L.: Long-term variations of daily insolation and Quaternary
climatic changes, J. Atmos. Sci., 35, 2362–2367,
https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2, 1978.
Bjune, A. E., Bakke, J., Nesje, A., and Birks, H. J. B.: Holocene mean July
temperature and winter precipitation in western Norway inferred from
palynological and glaciological lake-sediment proxies, Holocene, 15,
177–189, https://doi.org/10.1191/0959683605hl798rp, 2005.
Bonfils, C., de Noblet, N., Guiot, J., and Bartlein, P.: Some Mechanisms of
mid-Holocene climate change in Europe, inferred from comparing PMIP models
to data, Clim. Dynam., 23, 79–98, https://doi.org/10.1007/s00382-004-0425-x, 2004.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt,
J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt,
C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti,
O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao,
Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last
Glacial Maximum – Part 1: experiments and large-scale features, Clim. Past,
3, 261–277, https://doi.org/10.5194/cp-3-261-2007, 2007.
Brayshaw, D. J., Rambeau, C. M. C., and Smith, S. J.: Changes in the
Mediterranean climate during the Holocene: insights from global and regional
climate modelling, Holocene, 21, 15–31, https://doi.org/10.1177/0959683610377528, 2011.
Brewer, S., Guiot, J., and Torre, F.: Mid-Holocene climate change in Europe:
a data-model comparison, Clim. Past, 3, 499–512, https://doi.org/10.5194/cp-3-499-2007, 2007.
Brierley, C. M., Zhao, A., Harrison, S. P., Braconnot, P., Williams, C. J.
R., Thornalley, D. J. R., Shi, X., Peterschmitt, J.-Y., Ohgaito, R., Kaufman, D. S., Kageyama, M., Hargreaves, J. C., Erb, M. P., Emile-Geay, J., D'Agostino, R., Chandan, D., Carré, M., Bartlein, P. J., Zheng, W.,
Zhang, Z., Zhang, Q., Yang, H., Volodin, E. M., Tomas, R. A., Routson, C.,
Peltier, W. R., Otto-Bliesner, B., Morozova, P. A., McKay, N. P., Lohmann, G., Legrande, A. N., Guo, C., Cao, J., Brady, E., Annan, J. D., and Abe-Ouchi, A.: Large-scale features and evaluation of the
PMIP4-CMIP6 mid-Holocene simulations, Clim. Past, 16, 1847–1872,
https://doi.org/10.5194/cp-16-1847-2020, 2020.
Briner, J. P., McKay, N. P., Axford, Y., Bennike, O., Bradley, R. S., de
Vernal, A., Fisher, D., Francus, P., Fréchette, B., Gajewski, K.,
Jennings, A., Kaufman, D. S., Miller, G., Rouston, C., and Wagner, B.:
Holocene climate change in Arctic Canada and Greenland, Quaternary Sci.
Rev., 147, 340–364, https://doi.org/10.1016/j.quascirev.2016.02.010, 2016.
Brovkin, V., Ganapolski, A., and Svirezhev, Y.: A continuous climate-vegetation classification for use in climate-biosphere studies,
Ecol. Model., 101, 251–261, https://doi.org/10.1016/S0304-3800(97)00049-5, 1997.
Castro, C. L., Pielke Sr., R. A., and Leoncini, G.: Dynamical downscaling:
Assessment of value retained and added using the Regional Atmospheric
Modelling System (RAMS), J. Geophys. Res., 110, D05108,
https://doi.org/10.1029/2004JD004721, 2005.
Cheddadi, R. and Khater, C.: Climate change since the last glacial period in Lebanon and the persistence of Mediterranean species, Quaternary Sci. Rev., 150, 146–157, https://doi.org/10.1016/j.quascirev.2016.08.010, 2016.
Cheddadi, R., Yu, G., Guiot, J., Harrison, S., and Prentice, I.: The climate
of Europe 6000 years ago, Clim. Dynam., 13, 1–9, https://doi.org/10.1007/s003820050148, 1996.
Chevalier, M., Davis, B. A. S., Heiri, O., Seppä, H., Chase, B. M.,
Gajewski, K., Lacourse, T., Telford, R. J., Finsinger, W., Guiot, J.,
Kühl, N., Maezumi, S. Y., Tipton, J. R., Carter, V. A., Brussel, T.,
Phelps, L. N., Dawson, A., Zanon, M., Vallé, F., Nolan, C., Mauri, A.,
de Vernal, A., Izumi, K., Holmström, L., Marsicek, J., Goring, S., Sommer, P. S., Chaput, M., and Kupriyanov, D.: Pollen-based climate
reconstruction techniques for late Quaternary studies, Earth Sci. Rev., 210,
103384, https://doi.org/10.1016/j.earscirev.2020.103384, 2020.
Claussen, M., Mysak, L. A., Weaver, A. J., Crucifix, M., Fichefet, T., Loutre, M.-F., Weber, S. L., Alcamo, J., Alexeev, V. A., Berger, A., Calov,
R., Ganopolski, A., Goosse, H., Lohmann, G., Lunkeit, F., Mokhov, I. I.,
Petoukhov, V., Stone, P., and Wang, Z.: Earth system models of intermediate
complexity: closing the gap in the spectrum of climate system models, Clim.
Dynam., 18, 579–586, https://doi.org/10.1007/s00382-001-0200-1, 2002.
Crowley, T. J.: Causes of climate change over the past 1000 years, Science, 289, 270–277, https://doi.org/10.1126/science.289.5477.270, 2000.
Davis, B., Brewer, S., Stevenson, A., and Guiot, J.: The temperature of
Europe during the Holocene reconstructed from pollen data, Quaternary Sci.
Rev., 22, 1701–1716, https://doi.org/10.1016/S0277-3791(03)00173-2, 2003.
Davis, B. A. S.: The Pollen-Climate Methods Intercomparison Project (PC-MIP),
workshop report, Past Global Changes Magazine,
https://doi.org/10.22498/pages.25.3.161, 2017.
Driesschaert, E., Fichefet, T., Goosse, H., Huybrechts, P., Janssens, I.,
Mouchet, A., Munhoven, G., Brovkin, V., and Weber, S. L.: Modelling the
influence of the Greenland ice sheet melting on the Atlantic meridional
overturning circulation during the next millennia, Geophys. Res. Lett., 34,
L10707, https://doi.org/10.1029/2007GL029516, 2007.
Fallah, B., Sahar, S., and Ulrich, C.: Westerly jet stream and past millennium climate change in Arid Central Asia simulated by COSMO-CLM model,
Theor. Appl. Climatol., 124, 1079–1088, https://doi.org/10.1007/s00704-015-1479-x, 2016.
Feser, F., Rocker, B., von Storch, H., Winterfeldt, J., and Zahn, M.:
Regional Climate Models add Value to Global Model Data: A Review and Selected Examples, B. Am. Meteorol. Soc., 92, 1181–1192, 2011.
Finné, M., Woodbridge, J., Labuhn, I., and Roberts, C. N.: Holocene
hydro-climatic variability in the Mediterranean: A synthetic multi-proxy
reconstruction, Holocene, 29, 847–863, https://doi.org/10.1177/0959683619826634, 2019.
Fischer, N. and Jungclaus, J. H.: Evolution of the seasonal temperature
cycle in a transient Holocene simulation: orbital forcing and sea-ice, Clim.
Past, 7, 1139–1148, https://doi.org/10.5194/cp-7-1139-2011, 2011.
Furlanetto, G., Ravazzi, C., Pini, R., Vallè, F., Brunetti, M., Comolli,
R., Novellino, M. D., Garozzo, L., and Maggi, V.: Holocene vegetation history and quantitative climate reconstructions in a high-elevation oceanic district of the Italian Alps. Evidence for a middle to late Holocene precipitation increase, Quaternary Sci. Rev., 200, 212–236, https://doi.org/10.1016/J.Quascirev.2018.10.001, 2018.
Gómez-Navarro, J. J., Montávez, J. P., Jerez, S., Jiménez-Guerrero, P., Lorente-Plazas, R., González-Rouco, J. F., and
Zorita, E.: A regional climate simulation over the Iberian Peninsula for the
last millennium, Clim. Past, 7, 451–472, https://doi.org/10.5194/cp-7-451-2011, 2011.
Gómez-Navarro, J. J., Montávez, J. P., Wagner, S., and Zorita, E.: A
regional climate palaeosimulation for Europe in the period 1500–1990 –
Part 1: Model validation, Clim. Past, 9, 1667–1682, https://doi.org/10.5194/cp-9-1667-2013, 2013.
Gómez-Navarro, J. J., Bothe, O., Wagner, S., Zorita, E., Werner, J. P.,
Luterbacher, J., Raible, C. C., and Montávez, J. P.: A regional climate
palaeosimulation for Europe in the period 1500–1990 – Part 2: Shortcomings
and strengths of models and reconstructions, Clim. Past, 11, 1077–1095,
https://doi.org/10.5194/cp-11-1077-2015, 2015.
Goosse, H. and Fichefet, T.: Importance of ice-ocean interactions for the
global ocean circulation: A model study, J. Geophys. Res., 104, 23337– 23355, https://doi.org/10.1029/1999JC900215, 1999.
Goosse, H., Crowley, T., Zorita, E., Ammann, C., Renssen, H., and Driesschaert, E.: Modelling the climate of the last millennium: What causes
the differences between simulations?, Geophys. Res. Lett., 32, L06710,
https://doi.org/10.1029/2005GL022368, 2005a.
Goosse, H., Renssen, H., Timmermann, A., and Bradley, R. S.: Internal and
forced climate variability during the last millennium: a model-data
comparison using ensemble simulations, Quaternary Sci. Rev., 24, 1345–1360,
https://doi.org/10.1016/j.quascirev.2004.12.009, 2005b.
Goosse, H., Brovkin, V., Fichefet, T., Haarsma, R., Huybrechts, P., Jongma,
J., Mouchet, A., Selten, F., Barriat, P.-Y., Campin, J.-M., Deleersnijder,
E., Driesschaert, E., Goelzer, H., Janssens, I., Loutre, M.-F., Morales
Maqueda, M. A., Opsteegh, T., Mathieu, P.-P., Munhoven, G., Pettersson, E.
J., Renssen, H., Roche, D. M., Schaeffer, M., Tartinville, B., Timmermann,
A., and Weber, S. L.: Description of the Earth system model of intermediate
complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603–633,
https://doi.org/10.5194/gmd-3-603-2010, 2010.
Guiot, J. and Kaniewski, D.: The Mediterranean Basin and Southern Europe in
a warmer world: what can we learn from the past?, Front. Earth Sci., 3, 28,
https://doi.org/10.3389/feart.2015.00028, 2015.
Haarsma, R. J., Selten, F. M., Opsteegh, J. D., Lenterink, G., and Liu, Q.:
ECBILT: A coupled atmosphere ocean sea-ice model for climate predictability
studies, KNMI technical report, the Netherlands,
https://cdn.knmi.nl/system/data_center_publications/files/000/066/085/original/techrap.pdf?1495620503
(last access: 25 October 2022), 1997.
Harrison, S. P., Yu, G., and Tarasov, P.: Late Quaternary lake-level record
from northern Eurasia, Quatern. Res., 45, 138–159, https://doi.org/10.1006/qres.1996.0016, 1996.
Harrison, S. P., Bartlein, P., Izumi, K., Li, G., Annan, J., Hargreaves, J.,
Braconnot, P., and Kageyama, M.: Evaluation of CMIP5 palaeo-simulations to
improve climate projections, Nat. Clim. Change, 5, 735–743,
https://doi.org/10.1038/nclimate2649, 2015.
Hofer, D., Raible, C. C., Dehnert, A., and Kuhlemann, J.: The impact of
different glacial boundary conditions on atmospheric dynamics and precipitation in the North Atlantic region, Clim. Past, 8, 935–949,
https://doi.org/10.5194/cp-8-935-2012, 2012.
IPSL: LUDUS Framework, https://forge.ipsl.jussieu.fr/ludus, last access: 22 December 2021.
Jacob, D., Bärring, L., Christensen, O. B., Christensen, J. H.,
de Castro, M., Déqué, M., Giorgi, F., Hagemann, S., Hirschi, M.,
Jones, R., Kjellström, E., Lenderink, G., Rockel, B., Sánchez, E.,
Schär, C., Seneviratne, S. I., Somot, S., Van Ulden, A., and van den urk, B.: An inter-comparison of regional climate models for Europe: model performance in present-day climate, Climatic Change, 81, 31–52,
https://doi.org/10.1007/s10584-006-9213-4, 2007.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G.,
Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., and Yiuou, P.: EURO-CORDEX: new high-resolution climate change projections for European
impact research, Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Jiang, D., Sui, Y., Lang, X., and Tian, Z.: Last glacial maximum and mid-Holocene thermal growing season simulations, J. Geophys. Res.-Atmos., 123, 11466–11478, https://doi.org/10.1029/2018JD028605, 2018.
Jones, P., Osborn, T., and Briffa, K.: The evolution of climate over the
last millennium, Science, 292, 662–667, https://doi.org/10.1126/science.1059126, 2001.
Kitover, D. C., Van Balen, R., Roche, D. M., Vandenberghe, J., and Renssen,
H.: Advancement toward coupling of the VAMPER permafrost model within the
Earth system model iLOVECLIM (version 1.0): description and validation,
Geosci. Model Dev., 8, 1445–1460, https://doi.org/10.5194/gmd-8-1445-2015, 2015.
Kuhnt, T., Schmiedl, G., Ehrmann, W., Hamann, Y., and Andersen, N.: Stable
isotopic composition of Holocene benthic foraminifers from the Eastern
Mediterranean Sea: Past changes in productivity and deep water oxygenation,
Palaeogeogr. Palaeocl., 268, 105–113, https://doi.org/10.1016/J.PALAEO.2008.07.010, 2008.
Latombe, G., Burke, A., Vrac, M., Levavasseur, G., Dumas, C., Kageyama, M.,
and Ramstein, G.: Comparison of spatial downscaling methods of general
circulation model results to study climate variability during the Last
Glacial Maximum, Geosci. Model Dev., 11, 2563–2579,
https://doi.org/10.5194/gmd-11-2563-2018, 2018.
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L., Timmermann, A., Smith, R. S., Lohmann, G., Zheng, W., and Timm, O. E.: The Holocene temperature conundrum, P. Natl. Acad. Sci. USA, 111, E3501–E3505,
https://doi.org/10.1073/pnas.1407229111, 2014.
Liu Z, Otto-Bliesner, B. L., Clark, P. U., Lynch-Stieglitz, J., and Russell,
J. M.: SynTRACE-21: Synthesis of Transient Climate Evolution of the last
21,000 years, PAGES Mag., 29, 13–15, https://doi.org/10.22498/pages.29.1.13, 2021.
Lorenz, D. J., Nieto-Lugilde, D., Blois, J. L., Fitzpatrick, M. C., and
Williams, J. W.: Downscaled and debiased climate simulations for North
America from 21,000 years ago to 2100 AD, Sci. Data, 3, 1–19,
https://doi.org/10.1038/sdata.2016.48, 2016.
Ludwig, P., Schaffernicht, E. J., Shao, Y., and Pinto, J. G.: Regional
atmospheric circulation over Europe during the Last Glacial Maximum and its
links to precipitation, J. Geophys. Res.-Atmos., 121, 2130– 2145,
https://doi.org/10.1002/2015JD024444, 2016.
Ludwig, P., Gómez-Navarro, J. J., Pinto, J. G., Raible, C. C., Wagner,
S., and Zorita, E.: Perspectives of regional paleoclimate modelling, Ann. N. Y. Acad. Sci., 1436, 54–69, https://doi.org/10.1111/nyas.13865, 2019.
Magny, M., Combourieu-Nebout, N., de Beaulieu, J. L., Bout-Roumazeilles, V.,
Colombaroli, D., Desprat, S., Francke, A., Joannin, S., Ortu, E., Peyron,
O., Revel, M., Sadori, L., Siani, G., Sicre, M. A., Samartin, S., Simonneau,
A., Tinner, W., Vannière, B., Wagner, B., Zanchetta, G., Anselmetti, F.,
Brugiapaglia, E., Chapron, E., Debret, M., Desmet, M., Didier, J., Essallami, L., Galop, D., Gilli, A., Haas, J. N., Kallel, N., Millet, L., Stock, A., Turon, J. L., and Wirth, S.: North–south palaeohydrological contrasts in the central Mediterranean during the Holocene: tentative synthesis and working hypotheses, Clim. Past, 9, 2043–2071, https://doi.org/10.5194/cp-9-2043-2013, 2013.
Masson, V., Cheddadi, R., Braconnot, P., Joussaume, S., Texier, D., and
participants, P. M. I. P.: Mid-Holocene climate in Europe: what can we infer
from PMIP model data?, Clim. Dynam., 15, 163–182, https://doi.org/10.1007/s003820050275, 1999.
Mauri, A., Davis, B. A. S., Collins, P. M., and Kaplan, J. O.: The influence
of atmospheric circulation on the mid-Holocene climate of Europe: a
data–model comparison, Clim. Past, 10, 1925–1938, https://doi.org/10.5194/cp-10-1925-2014, 2014.
Mauri, A., Davis, B., Collins, P., and Kaplan, J.: The climate of Europe
during the Holocene: a gridded pollen-based reconstruction and its
multi-proxy evaluation, Quaternary Sci. Rev., 112, 109–127, 2015.
Murphy, J.: An evaluation of statistical and dynamical techniques for
downscaling local climate, J. Climate, 12, 2256–2284,
https://doi.org/10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2, 1999.
Olsson, J., Berggren, K., Olofsson, M., and Viklander, M.: Applying climate
model precipitation scenarios for urban hydrological assessment: a case
study in Kalmar City, Sweden, Atmos. Res., 92, 364–375,
https://doi.org/10.1016/j.atmosres.2009.01.015, 2009.
Opsteegh, J. D., Haarsma, R. J., Selten, F. M., and Kattenberg, A.: ECBILT:
a dynamic alternative to mixed boundary conditions in ocean models, Tellus A, 50, 348–367, https://doi.org/10.1034/j.1600-0870.1998.t01-1-00007.x, 1998.
Otto-Bliesner, B. L., Brady, E. C., Tomas, R., Levis, S., and Kothavala, Z.:
Last Glacial Maximum and Holocene climate in CCSM3, J. Climate, 19, 2526–2544, 2006.
Peyron, O., Combourieu-Nebout, N., Brayshaw, D., Goring, S., Andrieu-Ponel,
V., Desprat, S., Fletcher, W., Gambin, B., Ioakim, C., Joannin, S., Kotthoff, U., Kouli, K., Montade, V., Pross, J., Sadori, L., and Magny, M.: Precipitation changes in the Mediterranean basin during the Holocene from
terrestrial and marine pollen records: a model–data comparison, Clim. Past,
13, 249–265, https://doi.org/10.5194/cp-13-249-2017, 2017.
Quiquet, A., Roche, D. M., Dumas, C., and Paillard, D.: Online dynamical
downscaling of temperature and precipitation within the iLOVECLIM model
(version 1.1), Geosci. Model Dev., 11, 453–466, https://doi.org/10.5194/gmd-11-453-2018, 2018.
Raible, C. C., Bärenbold, O., and Gómez-Navarro, J. J.: Drought
indices revisited–improving and testing of drought indices in a simulation
of the last two millennia for Europe, Tellus A, 69, 1296226,
https://doi.org/10.1080/16000870.2017.1296226, 2017.
Raynaud, D., Barnola, J.-M., Chappellaz, J., Blunier, T., Indermuhle, A.,
and Stauffer, B.: The ice record of greenhouse gases: a view in the context
of future changes, Quaternary Sci. Rev., 19, 9–17,
https://doi.org/10.1016/S0277-3791(99)00082-7, 2000.
Renssen, H. and Osborn, T. J.: Investigating Holocene climate variability:
data-model comparisons, PAGES News, 11, 32–33, 2003.
Renssen, H., Isarin, R., Jacob, D. J., Podzun, R., and Vandenberghe, J.:
Simulation of the Younger Dryas climate in Europe using a regional climate
model nested in an AGCM: preliminary results, Global Planet. Change, 30, 41–57, https://doi.org/10.1016/S0921-8181(01)00076-5, 2001.
Renssen, H., Goosse, H., Fichefet, T., Brovkin, V., Driesschaert, E., and
Wolk, F.: Simulating the Holocene climate evolution at northern high
latitudes using a coupled atmosphere sea ice-ocean-vegetation model, Clim.
Dynam., 24, 23–43, https://doi.org/10.1007/s00382-004-0485-y, 2005a.
Renssen, H., Goosse, H., and Fichefet, T.: Contrasting trends in North
Atlantic deep-water formation in the Labrador and Nordic Seas during the
Holocene, Geophys. Res. Lett., 32, L08711, https://doi.org/10.1029/2005GL022462, 2005b.
Renssen, H., Seppä, H., Heiri, O., Roche, D. M., Goosse, H., and Fichefet, T.: The spatial and temporal complexity of the Holocene thermal
maximum, Nat. Geosci., 2, 411–414, https://doi.org/10.1038/ngeo513, 2009.
Roberts, N., Brayshaw, D., Kuzucuoğlu, C., Perez, R., and Sadori, L.:
The mid-Holocene climatic transition in the Mediterranean: Causes and
consequences, Holocene, 21, 3–13, https://doi.org/10.1177/0959683610388058, 2011.
Roche, D. M., Dokken, T. M., Goosse, H., Renssen, H., and Weber, S. L.:
Climate of the Last Glacial Maximum: sensitivity studies and model-data
comparison with the LOVECLIM coupled model, Clim. Past, 3, 205–224,
https://doi.org/10.5194/cp-3-205-2007, 2007.
Roche, D. M., Dumas, C., Bügelmayer, M., Charbit, S., and Ritz, C.:
Adding a dynamical cryosphere to iLOVECLIM (version 1.0): coupling with the
GRISLI ice-sheet model, Geosci. Model Dev., 7, 1377–1394,
https://doi.org/10.5194/gmd-7-1377-2014, 2014.
Russo, E. and Cubasch, U.: Mid-to-late Holocene temperature evolution and
atmospheric dynamics over Europe in regional model simulations, Clim. Past,
12, 1645–1662, https://doi.org/10.5194/cp-12-1645-2016, 2016.
Russo, E., Fallah, B., Ludwig, P., Karremann, M., and Raible, C. C.: The
long-standing dilemma of European summer temperatures at the mid-Holocene
and other considerations on learning from the past for the future using a
regional climate model, Clim. Past, 18, 895–909,
https://doi.org/10.5194/cp-18-895-2022, 2022.
Sadori, L., Giraudi, C. Masi, A., Magny, M., Ortu, E., Zanchetta, G., and
Izdebski, A.: Climate, environment, and society in southern Italy during the
last 2000 years. A review of the environmental, historical and
archaeological evidence, Quaternary Sci. Rev., 136, 173–188,
https://doi.org/10.1016/j.quascirev.2015.09.020, 2016.
Schaeffer, M., Selten, F. M., Opsteegh, J. D., and Goosse, H.: Intrinsic limits to predictability of abrupt regional climate change in IPCC SRES scenarios, Geophys. Res. Lett., 29, 14-1–14-4, https://doi.org/10.1029/2002GL015254, 2002.
Schaeffer, M., Selten, F., Goosse, H., and Opsteegh, T.: On the influence of
location of high-latitude ocean deep convection and Arctic sea-ice on climate change projections, J. Climate, 17, 4316–4329, https://doi.org/10.1175/3174.1, 2004.
Schilt, A., Baumgartner, M., Schwander, J., Buiron, D., Capron, E., Chappellaz, J., Loulergue, L., Schüpbach, S., Spahni, R., Fischer, H.,
and Stocker, T. F.: Atmospheric nitrous oxide during the last 140,000 years,
Earth Planet. Sc. Lett., 300, 33–43, https://doi.org/10.1016/j.epsl.2010.09.027, 2010.
Schmidt, G. A., Shindell, D. T., Miller, R. L., Mann, M. E., and Rind, D.:
General circulation modelling of Holocene climate variability, Quaternary
Sci. Rev., 23, 2167–2181, https://doi.org/10.1016/j.quascirev.2004.08.005, 2004.
Seppä, H. and Birks, H. J. B.: July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line
area: pollen-based climate reconstructions, Holocene, 11, 527–539,
https://doi.org/10.1191/095968301680223486, 2001.
Stoner, A. M. K., Hayhoe, K., Yang, X. and Wuebbles, D. J.: An asynchronous
regional regression model for statistical downscaling of daily climate
variables, Int. J. Climatol., 33, 2473–2494, https://doi.org/10.1002/joc.3603, 2013.
Strandberg, G., Brandefelt, J., Kjellstrom, E., and Smith, B.: High-resolution regional simulation of last glacial maximum climate in Europe, Tellus A, 63, 107–125, https://doi.org/10.1111/j.1600-0870.2010.00485.x, 2011.
Tarasov, P. E., Guiot, J., Cheddadi, R., Andreev, A. A., Bezusko, L. G., Blyakharchuk, T. A., Dorofeyuk, N. I., Filimonova, L. V., Volkova, V. S., and Zernitskaya, V. P.: Climate in northern Eurasia 6000 years ago reconstructed from pollen data, Earth Planet. Sc. Lett., 171, 635–645,
https://doi.org/10.1016/S0012-821X(99)00171-5, 1999.
Timm, O., Timmermann, A., Abe-Ouchi, A., Saito, F., and Segawa, T.: On the
definition of seasons in paleoclimate simulations with orbital forcing,
Paleoceanography, 23, PA2221, https://doi.org/10.1029/2007PA001461, 2008.
Timmermann, A., Justino, F., Jin, F. F., and Goosse, H.: Surface temperature
control in the North and tropical Pacific during the last glacial maximum, Clim. Dynam., 23, 353–370, https://doi.org/10.1007/s00382-004-0434-9, 2004.
UCL: LOVECLIM, Université catholique de Louvain [code], http://www.elic.ucl.ac.be/modx/elic/index.php?id=289, last access: 22 December 2021.
Velasquez, P., Kaplan, J. O., Messmer, M., Ludwig, P., and Raible, C. C.:
The role of land cover in the climate of glacial Europe, Clim. Past, 17,
1161–1180, https://doi.org/10.5194/cp-17-1161-2021, 2021.
Vrac, M., Marbaix, P., Paillard, D., and Naveau, P.: Non-linear statistical
downscaling of present and LGM precipitation and temperatures over Europe,
Clim. Past, 3, 669–682, https://doi.org/10.5194/cp-3-669-2007, 2007.
Wang, J., Swati, F. N. U., Stein, M. L., and Kotamarthi, V. R.: Model
performance in spatiotemporal patterns of precipitation: New methods for
identifying value added by a regional climate model, J. Geophys. Res.-Atmos., 120, 1239– 1259, https://doi.org/10.1002/2014JD022434, 2015.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U.,
Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker,
T. F., Tarasov, P. E., Wagner, M., and Widmann, M.: Mid- to late Holocene
climate change – an overview, Quaternary Sci. Rev., 27, 1791–1828,
https://doi.org/10.1016/j.quascirev.2008.06.013, 2008.
Willems, P. and Vrac, M.: Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change, J. Hydrol., 402, 193–205, https://doi.org/10.1016/j.jhydrol.2011.02.030, 2011.
Williams, C. J. R., Guarino, M.-V., Capron, E., Malmierca-Vallet, I., Singarayer, J. S., Sime, L. C., Lunt, D. J., and Valdes, P. J.: CMIP6/PMIP4
simulations of the mid-Holocene and Last Interglacial using HadGEM3:
comparison to the pre-industrial era, previous model versions and proxy
data, Clim. Past, 16, 1429–1450, https://doi.org/10.5194/cp-16-1429-2020, 2020.
Wu, H., Guiot, J., Brewer, S., and Guo, Z.: Climatic changes in Eurasia and
Africa at the last glacial maximum and mid-Holocene: Reconstruction from
pollen data using inverse vegetation modelling, Clim. Dynam., 29), 211–229, https://doi.org/10.1007/s00382-007-0231-3, 2007.
Yokoyama, Y., Lambeck, K., De Deckker, P, Johnston, P., and Fifield, L. K.:
Timing of the Last Glacial Maximum from observed sea-level minima, Nature, 406, 713–716, https://doi.org/10.1038/35021035, 2000.
Zhang, Y., Renssen, H., and Seppä, H.: Effects of melting ice sheets and
orbital forcing on the early Holocene warming in the extratropical Northern
Hemisphere, Clim. Past, 12, 1119–1135, https://doi.org/10.5194/cp-12-1119-2016, 2016.
Zorita, E., González-Rouco, J. F., von Storch, H., Montávez, J. P.,
and Valero, F.: Natural and anthropogenic modes of surface temperature variations in the last thousand years, Geophys. Res. Lett., 32, 755–762,
https://doi.org/10.1029/2004GL021563, 2005.
Short summary
This paper simulates transcient Holocene climate in Europe by applying an interactive downscaling to the standard version of the iLOVECLIM model. The results show that downscaling presents a higher spatial variability in better agreement with proxy-based reconstructions as compared to the standard model, particularly in the Alps, the Scandes, and the Mediterranean. Our downscaling scheme is numerically cheap, which can perform kilometric multi-millennial simulations suitable for future studies.
This paper simulates transcient Holocene climate in Europe by applying an interactive...