Articles | Volume 19, issue 3
https://doi.org/10.5194/cp-19-681-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-681-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Indian Ocean variability changes in the Paleoclimate Modelling Intercomparison Project
Dept. Geography, University College London, London, United Kingdom
Kaustubh Thirumalai
Dept. Geosciences, University of Arizona, Tucson, Arizona, USA
Edward Grindrod
Dept. Geography, University College London, London, United Kingdom
Jonathan Barnsley
Dept. Geography, University College London, London, United Kingdom
Related authors
Anni Zhao, Chris Brierley, Venni Arra, Xiaoxu Shi, and Yongyun Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3140, https://doi.org/10.5194/egusphere-2025-3140, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The North Atlantic Oscillation has large impacts on the European climate, whose future behaviour remains uncertain. We assess the NAO response in three past experiments (midHolocene, lig127k, lgm) and an abrupt quadrupled CO2 scenario (abrupt4xCO2). Our results show that NAO weakens (enhances) in response to cooling (warming), while it is not sensitive to orbital configurations. The associated teleconnections change consistently with the theory and are sensitive to the change in NAO amplitude.
Mara Y. McPartland, Tomas Lovato, Charles D. Koven, Jamie D. Wilson, Briony Turner, Colleen M. Petrik, José Licón-Saláiz, Fang Li, Fanny Lhardy, Jaclyn Clement Kinney, Michio Kawamiya, Birgit Hassler, Nathan P. Gillett, Cheikh Modou Noreyni Fall, Christopher Danek, Chris M. Brierley, Ana Bastos, and Oliver Andrews
EGUsphere, https://doi.org/10.5194/egusphere-2025-3246, https://doi.org/10.5194/egusphere-2025-3246, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Coupled Model Intercomparison Project (CMIP) is an international consortium of climate modeling groups that produce coordinated experiments in order to evaluate human influence on the climate and test knowledge of Earth systems. This paper describes the data requested for Earth systems research in CMIP7. We detail the request for model output of the carbon cycle, the flows of energy among the atmosphere, land and the oceans, and interactions between these and the global climate.
Anni Zhao, Ran Feng, Chris M. Brierley, Jian Zhang, and Yongyun Hu
Clim. Past, 20, 1195–1211, https://doi.org/10.5194/cp-20-1195-2024, https://doi.org/10.5194/cp-20-1195-2024, 2024
Short summary
Short summary
We analyse simulations with idealised aerosol scenarios to examine the importance of aerosol forcing on mPWP precipitation and how aerosol uncertainty could explain the data–model mismatch. We find further warming, a narrower and stronger ITCZ, and monsoon domain rainfall change after removal of industrial emissions. Aerosols have more impacts on tropical precipitation than the mPWP boundary conditions. This highlights the importance of prescribed aerosol scenarios in simulating mPWP climate.
Tom Keel, Chris Brierley, and Tamsin Edwards
Geosci. Model Dev., 17, 1229–1247, https://doi.org/10.5194/gmd-17-1229-2024, https://doi.org/10.5194/gmd-17-1229-2024, 2024
Short summary
Short summary
Jet streams are an important control on surface weather as their speed and shape can modify the properties of weather systems. Establishing trends in the operation of jet streams may provide some indication of the future of weather in a warming world. Despite this, it has not been easy to establish trends, as many methods have been used to characterise them in data. We introduce a tool containing various implementations of jet stream statistics and algorithms that works in a standardised manner.
Zhiyi Jiang, Chris Brierley, David Thornalley, and Sophie Sax
Clim. Past, 19, 107–121, https://doi.org/10.5194/cp-19-107-2023, https://doi.org/10.5194/cp-19-107-2023, 2023
Short summary
Short summary
This work looks at a series of model simulations of two past warm climates. We focus on the deep overturning circulation in the Atlantic Ocean. We show that there are no robust changes in the overall strength of the circulation. We also show that the circulation hardly plays a role in changes in the surface climate across the globe.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Anni Zhao, Chris M. Brierley, Zhiyi Jiang, Rachel Eyles, Damián Oyarzún, and Jose Gomez-Dans
Geosci. Model Dev., 15, 2475–2488, https://doi.org/10.5194/gmd-15-2475-2022, https://doi.org/10.5194/gmd-15-2475-2022, 2022
Short summary
Short summary
We describe the way that our group have chosen to perform our recent analyses of the Palaeoclimate Modelling Intercomparison Project ensemble simulations. We document the approach used to obtain and curate the simulations, process those outputs via the Climate Variability Diagnostics Package, and then continue through to compute ensemble-wide statistics and create figures. We also provide interim data from all steps, the codes used and the ability for users to perform their own analyses.
Maryam Ilyas, Douglas Nychka, Chris Brierley, and Serge Guillas
Atmos. Meas. Tech., 14, 7103–7121, https://doi.org/10.5194/amt-14-7103-2021, https://doi.org/10.5194/amt-14-7103-2021, 2021
Short summary
Short summary
Instrumental temperature records are fundamental to climate science. There are spatial gaps in the distribution of these measurements across the globe. This lack of spatial coverage introduces coverage error. In this research, a methodology is developed and used to quantify the coverage errors. It results in a data product that, for the first time, provides a full description of both the spatial coverage uncertainties along with the uncertainties in the modeling of these spatial gaps.
Alexander Koch, Chris Brierley, and Simon L. Lewis
Biogeosciences, 18, 2627–2647, https://doi.org/10.5194/bg-18-2627-2021, https://doi.org/10.5194/bg-18-2627-2021, 2021
Short summary
Short summary
Estimates of large-scale tree planting and forest restoration as a carbon sequestration tool typically miss a crucial aspect: the Earth system response to the increased land carbon sink from new vegetation. We assess the impact of tropical forest restoration using an Earth system model under a scenario that limits warming to 2 °C. Almost two-thirds of the carbon impact of forest restoration is offset by negative carbon cycle feedbacks, suggesting a more modest benefit than in previous studies.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Simon Opie, Richard G. Taylor, Chris M. Brierley, Mohammad Shamsudduha, and Mark O. Cuthbert
Earth Syst. Dynam., 11, 775–791, https://doi.org/10.5194/esd-11-775-2020, https://doi.org/10.5194/esd-11-775-2020, 2020
Short summary
Short summary
Knowledge of the relationship between climate and groundwater is limited and typically undermined by the scale, duration and accessibility of observations. Using monthly satellite measurements newly compiled over 14 years in the tropics and sub-tropics, we show that the imprint of precipitation history on groundwater, i.e. hydraulic memory, is longer in drylands than humid environments with important implications for the understanding and management of groundwater resources under climate change.
Anni Zhao, Chris Brierley, Venni Arra, Xiaoxu Shi, and Yongyun Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3140, https://doi.org/10.5194/egusphere-2025-3140, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The North Atlantic Oscillation has large impacts on the European climate, whose future behaviour remains uncertain. We assess the NAO response in three past experiments (midHolocene, lig127k, lgm) and an abrupt quadrupled CO2 scenario (abrupt4xCO2). Our results show that NAO weakens (enhances) in response to cooling (warming), while it is not sensitive to orbital configurations. The associated teleconnections change consistently with the theory and are sensitive to the change in NAO amplitude.
Mara Y. McPartland, Tomas Lovato, Charles D. Koven, Jamie D. Wilson, Briony Turner, Colleen M. Petrik, José Licón-Saláiz, Fang Li, Fanny Lhardy, Jaclyn Clement Kinney, Michio Kawamiya, Birgit Hassler, Nathan P. Gillett, Cheikh Modou Noreyni Fall, Christopher Danek, Chris M. Brierley, Ana Bastos, and Oliver Andrews
EGUsphere, https://doi.org/10.5194/egusphere-2025-3246, https://doi.org/10.5194/egusphere-2025-3246, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Coupled Model Intercomparison Project (CMIP) is an international consortium of climate modeling groups that produce coordinated experiments in order to evaluate human influence on the climate and test knowledge of Earth systems. This paper describes the data requested for Earth systems research in CMIP7. We detail the request for model output of the carbon cycle, the flows of energy among the atmosphere, land and the oceans, and interactions between these and the global climate.
Anni Zhao, Ran Feng, Chris M. Brierley, Jian Zhang, and Yongyun Hu
Clim. Past, 20, 1195–1211, https://doi.org/10.5194/cp-20-1195-2024, https://doi.org/10.5194/cp-20-1195-2024, 2024
Short summary
Short summary
We analyse simulations with idealised aerosol scenarios to examine the importance of aerosol forcing on mPWP precipitation and how aerosol uncertainty could explain the data–model mismatch. We find further warming, a narrower and stronger ITCZ, and monsoon domain rainfall change after removal of industrial emissions. Aerosols have more impacts on tropical precipitation than the mPWP boundary conditions. This highlights the importance of prescribed aerosol scenarios in simulating mPWP climate.
Tom Keel, Chris Brierley, and Tamsin Edwards
Geosci. Model Dev., 17, 1229–1247, https://doi.org/10.5194/gmd-17-1229-2024, https://doi.org/10.5194/gmd-17-1229-2024, 2024
Short summary
Short summary
Jet streams are an important control on surface weather as their speed and shape can modify the properties of weather systems. Establishing trends in the operation of jet streams may provide some indication of the future of weather in a warming world. Despite this, it has not been easy to establish trends, as many methods have been used to characterise them in data. We introduce a tool containing various implementations of jet stream statistics and algorithms that works in a standardised manner.
Zhiyi Jiang, Chris Brierley, David Thornalley, and Sophie Sax
Clim. Past, 19, 107–121, https://doi.org/10.5194/cp-19-107-2023, https://doi.org/10.5194/cp-19-107-2023, 2023
Short summary
Short summary
This work looks at a series of model simulations of two past warm climates. We focus on the deep overturning circulation in the Atlantic Ocean. We show that there are no robust changes in the overall strength of the circulation. We also show that the circulation hardly plays a role in changes in the surface climate across the globe.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Anni Zhao, Chris M. Brierley, Zhiyi Jiang, Rachel Eyles, Damián Oyarzún, and Jose Gomez-Dans
Geosci. Model Dev., 15, 2475–2488, https://doi.org/10.5194/gmd-15-2475-2022, https://doi.org/10.5194/gmd-15-2475-2022, 2022
Short summary
Short summary
We describe the way that our group have chosen to perform our recent analyses of the Palaeoclimate Modelling Intercomparison Project ensemble simulations. We document the approach used to obtain and curate the simulations, process those outputs via the Climate Variability Diagnostics Package, and then continue through to compute ensemble-wide statistics and create figures. We also provide interim data from all steps, the codes used and the ability for users to perform their own analyses.
Maryam Ilyas, Douglas Nychka, Chris Brierley, and Serge Guillas
Atmos. Meas. Tech., 14, 7103–7121, https://doi.org/10.5194/amt-14-7103-2021, https://doi.org/10.5194/amt-14-7103-2021, 2021
Short summary
Short summary
Instrumental temperature records are fundamental to climate science. There are spatial gaps in the distribution of these measurements across the globe. This lack of spatial coverage introduces coverage error. In this research, a methodology is developed and used to quantify the coverage errors. It results in a data product that, for the first time, provides a full description of both the spatial coverage uncertainties along with the uncertainties in the modeling of these spatial gaps.
Alexander Koch, Chris Brierley, and Simon L. Lewis
Biogeosciences, 18, 2627–2647, https://doi.org/10.5194/bg-18-2627-2021, https://doi.org/10.5194/bg-18-2627-2021, 2021
Short summary
Short summary
Estimates of large-scale tree planting and forest restoration as a carbon sequestration tool typically miss a crucial aspect: the Earth system response to the increased land carbon sink from new vegetation. We assess the impact of tropical forest restoration using an Earth system model under a scenario that limits warming to 2 °C. Almost two-thirds of the carbon impact of forest restoration is offset by negative carbon cycle feedbacks, suggesting a more modest benefit than in previous studies.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Simon Opie, Richard G. Taylor, Chris M. Brierley, Mohammad Shamsudduha, and Mark O. Cuthbert
Earth Syst. Dynam., 11, 775–791, https://doi.org/10.5194/esd-11-775-2020, https://doi.org/10.5194/esd-11-775-2020, 2020
Short summary
Short summary
Knowledge of the relationship between climate and groundwater is limited and typically undermined by the scale, duration and accessibility of observations. Using monthly satellite measurements newly compiled over 14 years in the tropics and sub-tropics, we show that the imprint of precipitation history on groundwater, i.e. hydraulic memory, is longer in drylands than humid environments with important implications for the understanding and management of groundwater resources under climate change.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Cited articles
Abram, N. J., Gagan, M. K., Liu, Z., Hantoro, W. S., McCulloch, M. T., and
Suwargadi, B. W.: Seasonal characteristics of the Indian Ocean Dipole during
the Holocene epoch, Nature, 445, 299–302, https://doi.org/10.1038/nature05477, 2007. a, b, c
Abram, N. J., Wright, N. M., Ellis, B., Dixon, B. C., Wurtzel, J. B., England,
M. H., Ummenhofer, C. C., Philibosian, B., Cahyarini, S. Y., Yu, T.-L., Shen,
C.-C., Cheng, H., Edwards, R. L., and Heslop, D.: Coupling of Indo-Pacific
climate variability over the last millennium, Nature, 579, 385–392,
https://doi.org/10.1038/s41586-020-2084-4, 2020b. a, b, c
Ashok, K., Guan, Z., and Yamagata, T.: Impact of the Indian Ocean dipole on the
relationship between the Indian monsoon rainfall and ENSO, Geophys.
Res. Lett., 28, 4499–4502, https://doi.org/10.1029/2001GL013294, 2001. a
Ashok, K., Guan, Z., and Yamagata, T.: A look at the relationship between the
ENSO and the Indian Ocean dipole, J. Meteorol. Soc.
Jpn. Ser. II, 81, 41–56, https://doi.org/10.2151/jmsj.81.41, 2003. a, b
Bartlein, P. J. and Shafer, S. L.: Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): impact and strategies for data analysis, Geosci. Model Dev., 12, 3889–3913, https://doi.org/10.5194/gmd-12-3889-2019, 2019. a
Behera, S. K. and Yamagata, T.: Subtropical SST dipole events in the southern
Indian Ocean, Geophys. Res. Lett., 28, 327–330,
https://doi.org/10.1029/2000GL011451, 2001. a
Behera, S. K., Luo, J. J., Masson, S., Rao, S. A., Sakuma, H., and Yamagata,
T.: A CGCM study on the interaction between IOD and ENSO, J.
Climate, 19, 1688–1705, https://doi.org/10.1175/JCLI3797.1, 2006. a
Berger, A. and Loutre, M.-F.: Insolation values for the climate of the last 10
million years, Quaternary Sci. Rev., 10, 297–317,
https://doi.org/10.1016/0277-3791(91)90033-q, 1991. a
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, https://doi.org/10.5194/cp-3-261-2007, 2007. a
Brierley, C.: pmip4/IndianOceanVariability: v1.1 (v1.1), Zenodo [data set], https://doi.org/10.5281/zenodo.7636502, 2023. a
Brierley, C. and Wainer, I.: Inter-annual variability in the tropical Atlantic from the Last Glacial Maximum into future climate projections simulated by CMIP5/PMIP3, Clim. Past, 14, 1377–1390, https://doi.org/10.5194/cp-14-1377-2018, 2018. a
Brierley, C. M., Zhao, A., Harrison, S. P., Braconnot, P., Williams, C. J. R., Thornalley, D. J. R., Shi, X., Peterschmitt, J.-Y., Ohgaito, R., Kaufman, D. S., Kageyama, M., Hargreaves, J. C., Erb, M. P., Emile-Geay, J., D'Agostino, R., Chandan, D., Carré, M., Bartlein, P. J., Zheng, W., Zhang, Z., Zhang, Q., Yang, H., Volodin, E. M., Tomas, R. A., Routson, C., Peltier, W. R., Otto-Bliesner, B., Morozova, P. A., McKay, N. P., Lohmann, G., Legrande, A. N., Guo, C., Cao, J., Brady, E., Annan, J. D., and Abe-Ouchi, A.: Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations, Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, 2020. a, b, c, d, e, f, g
Brown, J., Lynch, A. H., and Marshall, A. G.: Variability of the Indian Ocean
Dipole in coupled model paleoclimate simulations, J. Geophys.
Res.-Atmos., 114, D11105, https://doi.org/10.1029/2008JD010346, 2009. a, b
Brown, J. R., Brierley, C. M., An, S.-I., Guarino, M.-V., Stevenson, S., Williams, C. J. R., Zhang, Q., Zhao, A., Abe-Ouchi, A., Braconnot, P., Brady, E. C., Chandan, D., D'Agostino, R., Guo, C., LeGrande, A. N., Lohmann, G., Morozova, P. A., Ohgaito, R., O'ishi, R., Otto-Bliesner, B. L., Peltier, W. R., Shi, X., Sime, L., Volodin, E. M., Zhang, Z., and Zheng, W.: Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models, Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, 2020. a, b, c, d
Cai, W., Santoso, A., Wang, G., Weller, E., Wu, L., Ashok, K., Masumoto, Y.,
and Yamagata, T.: Increased frequency of extreme Indian Ocean Dipole events
due to greenhouse warming, Nature, 510, 254–258, https://doi.org/10.1038/nature13327,
2014. a
Cai, W., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J.-S., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Taschetto, A. S., Timmermann, A., Wu, L., Yeh, S.-W., Wang, G., Ng, B., Jia, F., Yang, Y., Ying, J., Zheng, X.-T., Bayr, T., Brown, J. R., Capotondi, A., Cobb, K. M., Gan, B., Geng, T., Ham, Y.-G., Jin, F.-F., Jo, H.-S., Li, X., Lin, X., McGregor, S., Park, J.-H., Stein, K., Yang, K., Zhang, L., and Zhong, W.:
Changing El Niño–Southern Oscillation in a warming climate, Nature
Reviews Earth & Environment, 2, 628–644, https://doi.org/10.1038/s43017-021-00199-z,
2021a. a
Cai, W., Yang, K., Wu, L., Huang, G., Santoso, A., Ng, B., Wang, G., and
Yamagata, T.: Opposite response of strong and moderate positive Indian Ocean
Dipole to global warming, Nat. Clim. Change, 11, 27–32,
https://doi.org/10.1038/s41558-020-00943-1, 2021b. a, b, c
Cassou, C., Cherchi, A., Kosaka, Y., Corti, S., Engelbrecht, F., Lee, J.-Y.,
Maycock, A., McGregor, S., Morgenstern, O., Nnamchi, H. C., Rivera, J., Trewin, B.,
and Phillips, A.: Modes of Variability, in: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by:
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger,
S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K.,
Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O.,
Yu, R., and Zhou, B., book section Annex IV, Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA,
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_AnnexIV.pdf (last access: 13 February 2023),
2021. a, b
Cherchi, A., Terray, P., Ratna, S. B., Sankar, S., Sooraj, K., and Behera, S.:
Indian ocean dipole influence on Indian summer monsoon and ENSO: a
review, Indian Summer Monsoon Variability, El-Nino Teleconnections and Beyond, 157–182,
https://doi.org/10.1016/b978-0-12-822402-1.00011-9, 2021. a
Collins, M., An, S. I., Cai, W. J., Ganachaud, A., Guilyardi, E., Jin, F. F., Jochum, M., Lengaigne, M., Power, S., Timmermann, A., Vecchi, G., and Wittenberg, A.: The impact of
global warming on the tropical Pacific Ocean and El Niño, Nat.
Geosci., 3, 391–397, https://doi.org/10.1038/ngeo868, 2010. a
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T.,
Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G.,
Shongwe, M., Tebaldi, C., Weaver, A., and Wehner, M.: Long-term climate
change: projections, commitments and irreversibility, in: Climate Change
2013-The Physical Science Basis: Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P., Cambridge
University Press, 1029–1136, https://doi.org/10.1017/CBO9781107415324.024, 2013. a
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J.,
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P.,
Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman,
P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri,
M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L.,
Woodruff, S. D., and Worley, S. J.: The twentieth century reanalysis project,
Q. J. Roy. Meteor. Soc., 137, 1–28,
https://doi.org/10.1002/qj.776, 2011. a, b, c
Cowan, T., Cai, W., Ng, B., and England, M.: The response of the Indian Ocean
dipole asymmetry to anthropogenic aerosols and greenhouse gases, J.
Climate, 28, 2564–2583, https://doi.org/10.1175/JCLI-D-14-00661.1, 2015. a, b
D'Agostino, R., Bader, J., Bordoni, S., Ferreira, D., and Jungclaus, J.: Northern Hemisphere Monsoon Response to Mid-Holocene Orbital Forcing and Greenhouse Gas-Induced Global Warming, Geophys. Res. Lett., 46, 1591–1601, https://doi.org/10.1029/2018GL081589, 2019. a
Di Nezio, P. N., Timmermann, A., Tierney, J. E., Jin, F.-F., Otto-Bliesner, B.,
Rosenbloom, N., Mapes, B., Neale, R., Ivanovic, R. F., and Montenegro, A.:
The climate response of the Indo-Pacific warm pool to glacial sea level,
Paleoceanography, 31, 866–894, https://doi.org/10.1002/2015PA002890, 2016. a, b
DiNezio, P. N., Tierney, J. E., Otto-Bliesner, B. L., Timmermann, A.,
Bhattacharya, T., Rosenbloom, N., and Brady, E.: Glacial changes in tropical
climate amplified by the Indian Ocean, Science Advances, 4, eaat9658,
https://doi.org/10.1126/sciadv.aat9658, 2018. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016a. a
Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones, C., Anav, A., Andrews, O., Cionni, I., Davin, E. L., Deser, C., Ehbrecht, C., Friedlingstein, P., Gleckler, P., Gottschaldt, K.-D., Hagemann, S., Juckes, M., Kindermann, S., Krasting, J., Kunert, D., Levine, R., Loew, A., Mäkelä, J., Martin, G., Mason, E., Phillips, A. S., Read, S., Rio, C., Roehrig, R., Senftleben, D., Sterl, A., van Ulft, L. H., Walton, J., Wang, S., and Williams, K. D.: ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP, Geosci. Model Dev., 9, 1747–1802, https://doi.org/10.5194/gmd-9-1747-2016, 2016b. a
Eyring, V., Gillett, N. P., Achuta Rao, K. M., Barimalala, R.,
Barreiro Parrillo, M., Bellouin, N., Cassou, C., Durack, P. J., Kosaka, Y.,
McGregor, S., Min, S., Morgenstern, O., and Sun, Y.: Human Influence on the
Climate System, in: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V.,
Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen,
Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and
Zhou, B., chap. 3, Cambridge University Press, Cambridge, United
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_03.pdf (last access: 13 February 2023),
2021. a
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W.,
Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., Rummukainen, M.,
AchutaRao, K., Anav, A., Andrews, T., Baehr, J., Bindoff, N. L.,
Bodas-Salcedo, A., Catto, J., Chambers, D., Chang, P., Dai, A., Deser, C.,
Doblas-Reyes, F., Durack, P. J., Eby, M., de Elia, R., Fichefet, T., Forster,
P., Frame, D., Fyfe, J., Gbobaniyi, E., Gillett, N., González-Rouco, J. F.,
Goodess, C., Griffies, S., Hall, A., Harrison, S., Hense, A., Hunke, E.,
Ilyina, T., Ivanova, D., Johnson, G., Kageyama, M., Kharin, V., Klein, S. A.,
Knight, J., Knutti, R., Landerer, F., Lee, T., Li, H., Mahowald, N., Mears,
C., Meehl, G., Morice, C., Msadek, R., Myhre, G., Neelin, J. D., Painter, J.,
Pavlova, T., Perlwitz, J., Peterschmitt, J.-Y., Räisänen, J., Rauser, F.,
Reid, J., Rodwell, M., Santer, B., Scaife, A. A., Schulz, J., Scinocca, J.,
Sexton, D., Shindell, D., Shiogama, H., Sillmann, J., Simmons, A., Sperber,
K., Stephenson, D., Stevens, B., Stott, P., Sutton, R., Thorne, P. W., van
Oldenborgh, G. J., Vecchi, G., Webb, M., Williams, K., Woollings, T., Xie,
S.-P., and Zhang, J.: Evaluation of climate models, in: Climate change 2013:
the physical science basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P., 741–866, Cambridge
University Press, https://doi.org/10.1017/CBO9781107415324.020, 2013. a
Ford, H. L., Ravelo, A. C., and Polissar, P. J.: Reduced El
Niño–Southern Oscillation during the Last Glacial Maximum, Science,
347, 255–258, https://doi.org/10.1126/science.1258437, 2015. a
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R. B., Lowe, J. A., Johns, T. C., and Williams, K. D.: A new method for diagnosing radiative forcing and climate sensitivity, Geophys. Res. Lett., 31, L03205,
https://doi.org/10.1029/2003gl018747, 2004. a
Gulev, S. K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues, C. M.,
Gerland, S., Gong, D., Kaufman, D. S., Nnamchi, H. C., Quaas, J., Rivera,
J. A., Sathyendranath, S., Smith, S. L., Trewin, B., von Shuckmann, K., and
Vose, R. S.: Changing State of the Climate System, in: Climate Change 2021:
The Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger,
S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K.,
Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O.,
Yu, R., and Zhou, B., chap. 2, Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA,
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_02.pdf (last access: 13 February 2023),
2021. a, b
Guo, F., Liu, Q., Yang, J., and Fan, L.: Three types of Indian Ocean basin
modes, Clim. Dynam., 51, 4357–4370, https://doi.org/10.1007/s00382-017-3676-z,
2018. a
Halder, S., Parekh, A., Chowdary, J. S., Gnanaseelan, C., and Kulkarni, A.:
Assessment of CMIP6 models' skill for tropical Indian Ocean sea surface
temperature variability, Int. J. Climatol., 41,
2568–2588, https://doi.org/10.1002/joc.6975, 2021. a
Heede, U. K., Fedorov, A. V., and Burls, N. J.: A stronger versus weaker
Walker: understanding model differences in fast and slow tropical Pacific
responses to global warming, Clim. Dynam., 57, 2505–2522,
https://doi.org/10.1007/s00382-021-05818-5, 2021. a
Hrudya, P., Varikoden, H., and Vishnu, R.: A review on the Indian summer
monsoon rainfall, variability and its association with ENSO and IOD,
Meteorol. Atmos. Phys., 133, 1–14,
https://doi.org/10.1007/s00703-020-00734-5, 2021. a
Hu, K., Huang, G., Zheng, X.-T., Xie, S.-P., Qu, X., Du, Y., and Liu, L.:
Interdecadal variations in ENSO influences on northwest Pacific–East
Asian early summertime climate simulated in CMIP5 models, J.
Climate, 27, 5982–5998, https://doi.org/10.1175/JCLI-D-13-00268.1, 2014. a, b
Huang, G., Hu, K., Qu, X., Tao, W., Yao, S., Zhao, G., and Jiang, W.: A review
about Indian Ocean basin mode and its impacts on East Asian summer
climate, Chin. J. Atmos. Sci, 40, 121–130,
https://doi.org/10.3878/j.issn.1006-9895.1505.15143, 2016. a, b, c, d
Huang, Z., Zhang, W., Liu, C., and Stuecker, M. F.: Extreme Indian Ocean dipole
events associated with El Niño and Madden–Julian oscillation, Clim.
Dynam., 59, 1953–1968,
https://doi.org/10.1007/s00382-022-06190-8, 2022. a
Hui, C. and Zheng, X.-T.: Uncertainty in Indian Ocean Dipole response to global
warming: the role of internal variability, Clim. Dynam., 51, 3597–3611,
https://doi.org/10.1007/s00382-018-4098-2, 2018. a, b
Iwakiri, T. and Watanabe, M.: Strengthening of the Indian Ocean Dipole with
increasing seasonal cycle in the mid-Holocene, Geophys. Res. Lett.,
46, 8320–8328, https://doi.org/10.1029/2019GL083088, 2019. a, b
Jones, T. R., Roberts, W. H., Steig, E. J., Cuffey, K., Markle, B., and White,
J.: Southern Hemisphere climate variability forced by Northern Hemisphere
ice-sheet topography, Nature, 554, 351–355, https://doi.org/10.1038/nature24669, 2018. a, b
Kageyama, M., Albani, S., Braconnot, P., Harrison, S. P., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Marti, O., Peltier, W. R., Peterschmitt, J.-Y., Roche, D. M., Tarasov, L., Zhang, X., Brady, E. C., Haywood, A. M., LeGrande, A. N., Lunt, D. J., Mahowald, N. M., Mikolajewicz, U., Nisancioglu, K. H., Otto-Bliesner, B. L., Renssen, H., Tomas, R. A., Zhang, Q., Abe-Ouchi, A., Bartlein, P. J., Cao, J., Li, Q., Lohmann, G., Ohgaito, R., Shi, X., Volodin, E., Yoshida, K., Zhang, X., and Zheng, W.: The PMIP4 contribution to CMIP6 – Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments, Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, 2017. a, b, c
Kageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus, J. H., Otto-Bliesner, B. L., Peterschmitt, J.-Y., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Brierley, C., Crucifix, M., Dolan, A., Fernandez-Donado, L., Fischer, H., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Lunt, D. J., Mahowald, N. M., Peltier, W. R., Phipps, S. J., Roche, D. M., Schmidt, G. A., Tarasov, L., Valdes, P. J., Zhang, Q., and Zhou, T.: The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan, Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, 2018. a, b
Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., and Zhu, J.: The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations, Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, 2021. a, b
Kajtar, J. B., Santoso, A., England, M. H., and Cai, W.: Tropical climate
variability: interactions across the Pacific, Indian, and Atlantic Oceans,
Clim. Dynam., 48, 2173–2190, https://doi.org/10.1007/s00382-016-3199-z, 2017. a, b, c
Leduc, G., Vidal, L., Cartapanis, O., and Bard, E.: Modes of eastern equatorial
Pacific thermocline variability: Implications for ENSO dynamics over the
last glacial period, Paleoceanography, 24, PA3202,
https://doi.org/10.1029/2008PA001701, 2009. a
Lee, S.-Y., Chiang, J. C., and Chang, P.: Tropical Pacific response to
continental ice sheet topography, Clim. Dynam., 44, 2429–2446,
https://doi.org/10.1007/s00382-014-2162-0, 2015. a
Li, Z., Lin, X., and Cai, W.: Realism of modelled Indian summer monsoon
correlation with the tropical Indo-Pacific affects projected monsoon
changes, Sci. Rep.-UK, 7, 1–7, https://doi.org/10.1038/s41598-017-05225-z, 2017. a, b
Liu, L., Xie, S.-P., Zheng, X.-T., Li, T., Du, Y., Huang, G., and Yu, W.-D.:
Indian Ocean variability in the CMIP5 multi-model ensemble: the zonal
dipole mode, Clim. Dynam., 43, 1715–1730,
https://doi.org/10.1007/s00382-013-2000-9, 2014. a, b
Liu, S., Yuan, C., jia Luo, J., Ma, X., Zhou, X., and Yamagata, T.: Weakening
of the Indian Ocean Dipole in the mid-Holocene due to the mean oceanic
climatology change, arXiv [preprint], https://doi.org/10.31223/X5VS9H, 2023. a, b
Liu, X., Liu, Z., Clemens, S., Prell, W., and Kutzbach, J.: A coupled model
study of glacial Asian monsoon variability and Indian ocean dipole,
J. Meteorol. Soc. Jpn. Ser. II, 85, 1–10,
https://doi.org/10.2151/jmsj.85.1, 2007. a, b
Lu, Z., Liu, Z., and Zhu, J.: Abrupt intensification of ENSO forced by
deglacial ice-sheet retreat in CCSM3, Clim. Dynam., 46, 1877–1891,
https://doi.org/10.1007/s00382-015-2681-3, 2016. a
Marathe, S., Terray, P., and Karumuri, A.: Tropical Indian Ocean and ENSO
relationships in a changed climate, Clim. Dynam., 56, 3255–3276,
https://doi.org/10.1007/s00382-021-05641-y, 2021. a, b, c
McKenna, S., Santoso, A., Gupta, A. S., Taschetto, A. S., and Cai, W.: Indian
Ocean Dipole in CMIP5 and CMIP6: characteristics, biases, and links to
ENSO, Sci. Rep.-UK, 10, 1–13, https://doi.org/10.1038/s41598-020-68268-9,
2020. a, b, c
Ng, B., Cai, W., and Walsh, K.: The role of the SST-thermocline relationship in
Indian Ocean Dipole skewness and its response to global warming, Sci.
Rep.-UK, 4, 1–6, https://doi.org/10.1038/srep06034, 2014. a
Ogata, T., Xie, S.-P., Lan, J., and Zheng, X.: Importance of ocean dynamics for
the skewness of the Indian Ocean dipole mode, J. Climate, 26,
2145–2159, https://doi.org/10.1175/jcli-d-11-00615.1, 2013. a
Otto-Bliesner, B. L., Braconnot, P., Harrison, S. P., Lunt, D. J., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Capron, E., Carlson, A. E., Dutton, A., Fischer, H., Goelzer, H., Govin, A., Haywood, A., Joos, F., LeGrande, A. N., Lipscomb, W. H., Lohmann, G., Mahowald, N., Nehrbass-Ahles, C., Pausata, F. S. R., Peterschmitt, J.-Y., Phipps, S. J., Renssen, H., and Zhang, Q.: The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations, Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, 2017. a, b, c, d
Otto-Bliesner, B. L., Brady, E. C., Zhao, A., Brierley, C. M., Axford, Y., Capron, E., Govin, A., Hoffman, J. S., Isaacs, E., Kageyama, M., Scussolini, P., Tzedakis, P. C., Williams, C. J. R., Wolff, E., Abe-Ouchi, A., Braconnot, P., Ramos Buarque, S., Cao, J., de Vernal, A., Guarino, M. V., Guo, C., LeGrande, A. N., Lohmann, G., Meissner, K. J., Menviel, L., Morozova, P. A., Nisancioglu, K. H., O'ishi, R., Salas y Mélia, D., Shi, X., Sicard, M., Sime, L., Stepanek, C., Tomas, R., Volodin, E., Yeung, N. K. H., Zhang, Q., Zhang, Z., and Zheng, W.: Large-scale features of Last Interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4), Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, 2021. a, b, c
Perez-Sanz, A., Li, G., González-Sampériz, P., and Harrison, S. P.: Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations, Clim. Past, 10, 551–568, https://doi.org/10.5194/cp-10-551-2014, 2014. a
Phillips, A. S., Deser, C., and Fasullo, J.: Evaluating modes of variability in
climate models, Eos T. Am. Geophys. Un., 95, 453–455,
https://doi.org/10.1002/2014EO490002, 2014. a
Power, S. B. and Delage, F. P.: El Niño–Southern Oscillation and
associated climatic conditions around the world during the latter half of the
twenty-first century, J. Climate, 31, 6189–6207,
https://doi.org/10.1175/JCLI-D-18-0138.1, 2018. a
Qu, X. and Huang, G.: Impacts of tropical Indian Ocean SST on the meridional
displacement of East Asian jet in boreal summer, Int. J.
Climatol., 32, 2073–2080, https://doi.org/10.1002/joc.2378, 2012. a
Rayner, N., Parker, D. E., Horton, E., Folland, C. K., Alexander, L. V.,
Rowell, D., Kent, E. C., and Kaplan, A.: Global analyses of sea surface
temperature, sea ice, and night marine air temperature since the late
nineteenth century, J. Geophys. Res.-Atmos., 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003. a, b
Rehfeld, K., Hébert, R., Lora, J. M., Lofverstrom, M., and Brierley, C. M.: Variability of surface climate in simulations of past and future, Earth Syst. Dynam., 11, 447–468, https://doi.org/10.5194/esd-11-447-2020, 2020. a, b
Saji, N., Goswami, B. N., Vinayachandran, P., and Yamagata, T.: A dipole mode
in the tropical Indian Ocean, Nature, 401, 360–363, https://doi.org/10.1038/43854,
1999. a, b, c, d
Schott, F. A., Xie, S.-P., and McCreary Jr, J. P.: Indian Ocean circulation and
climate variability, Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245,
2009. a, b, c
Slivinski, L. C., Gilbert P. Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Giese, B., S., McColl, C., Allan, R., Yin, X., Vose, R., Titchner, H., Kennedy, J., Spencer, L. J., Ashcroft, L., Brönnimann, S., Brunet, M., Camuffo, D., Cornes, R., Cram, T. A., Crouthamel, R., Domínguez-Castro, F., Freeman, J. E., Gergis, J., Hawkins, E., Philip D. Jones, P. D., Jourdain, S., Kaplan, A., Kubota, H., Le Blancq, F., Lee, T.-C., Lorrey, A., Luterbacher, J., Maugeri, M., Mock, C. J., Moore, G. W. K., Przybylak, R., Pudmenzky, C., Reason, C., Slonosky, V. C., Smith, C. A., Tinz, B., Trewin, B., Valente, M. A., Wang, X. L., Wilkinson, C., Wood, K., and Wyszyński, P.:
Towards a more reliable historical reanalysis: Improvements for version 3 of
the Twentieth Century Reanalysis system, Q. J. Roy.
Meteor. Soc., 145, 2876–2908, https://doi.org/10.1002/qj.3598, 2019. a, b
Slivinski, L., Compo, G., Whitaker, J., and Sardeshmukh, P.: NOAA-CIRES Twentieth Century Reanalysis (V3), Physical Sciences Laboratory, https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html, last access: 13 February 2023. a
Stevenson, S., Wittenberg, A. T., Fasullo, J., Coats, S., and Otto-Bliesner,
B.: Understanding diverse model projections of future extreme El Niño,
J. Climate, 34, 449–464, https://doi.org/10.1175/jcli-d-19-0969.1, 2021. a
Stuecker, M. F., Timmermann, A., Jin, F.-F., Chikamoto, Y., Zhang, W.,
Wittenberg, A. T., Widiasih, E., and Zhao, S.: Revisiting ENSO/Indian Ocean
dipole phase relationships, Geophys. Res. Lett., 44, 2481–2492,
https://doi.org/10.1002/2016GL072308, 2017. a, b
Tao, W., Huang, G., Hu, K., Qu, X., Wen, G., and Gong, H.: Interdecadal
modulation of ENSO teleconnections to the Indian Ocean Basin Mode and their
relationship under global warming in CMIP5 models, Int. J.
Climatol., 35, 391–407, https://doi.org/10.1002/joc.3987, 2015. a, b, c, d
Tao, W., Huang, G., Hu, K., Gong, H., Wen, G., and Liu, L.: A study of biases
in simulation of the Indian Ocean basin mode and its capacitor effect in
CMIP3/CMIP5 models, Clim. Dynam., 46, 205–226,
https://doi.org/10.1007/s00382-015-2579-0, 2016. a, b, c
Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., and Poulsen,
C. J.: Glacial cooling and climate sensitivity revisited, Nature, 584,
569–573, https://doi.org/10.1038/s41586-020-2617-x, 2020. a, b
Trenberth, K. E.: The definition of El Niño, B. Am.
Meteorol. Soc., 78, 2771–2778,
https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2, 1997. a
Ullman, D. J., LeGrande, A. N., Carlson, A. E., Anslow, F. S., and Licciardi, J. M.: Assessing the impact of Laurentide Ice Sheet topography on glacial climate, Clim. Past, 10, 487–507, https://doi.org/10.5194/cp-10-487-2014, 2014. a
Vecchi, G. A. and Soden, B. J.: Global warming and the weakening of the
tropical circulation, J. Climate, 20, 4316–4340,
https://doi.org/10.1175/JCLI4258.1, 2007. a
Wainwright, C. M., Finney, D. L., Kilavi, M., Black, E., and Marsham, J. H.:
Extreme rainfall in East Africa, October 2019–January 2020 and context
under future climate change, Weather, 76, 26–31,
https://doi.org/10.1002/wea.3824, 2021. a
Wang, C.: Three-ocean interactions and climate variability: a review and
perspective, Clim. Dynam., 53, 5119–5136,
https://doi.org/10.1007/s00382-019-04930-x, 2019. a, b
Wang, G. and Cai, W.: Two-year consecutive concurrences of positive Indian
Ocean Dipole and Central Pacific El Niño preconditioned the 2019/2020
Australian “black summer” bushfires, Geosci. Lett., 7, 1–9,
https://doi.org/10.1186/s40562-020-00168-2, 2020. a, b
Wang, G., Cai, W., and Santoso, A.: Simulated thermocline tilt over the
tropical Indian Ocean and its influence on future sea surface temperature
variability, Geophys. Res. Lett., 48, e2020GL091902,
https://doi.org/10.1029/2020GL091902, 2021. a
Wang, H., Murtugudde, R., and Kumar, A.: Evolution of Indian Ocean dipole and
its forcing mechanisms in the absence of ENSO, Clim. Dynam., 47,
2481–2500, https://doi.org/10.1007/s00382-016-2977-y, 2016. a
Waskom, M. L.: Seaborn: statistical data visualization, Journal of Open Source Software, 6, 3021, https://doi.org/10.21105/joss.03021, 2021. a
Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R.: Coupled
ocean–atmosphere dynamics in the Indian Ocean during 1997–98, Nature,
401, 356–360, https://doi.org/10.1038/43848, 1999. a, b
Wyrtki, K.: Some thoughts about the west Pacific warm pool, in: Proceedings
of the western pacific international meeting and workshop on TOGA COARE,
ORSTOM/Nouméa New Caledonia, 99–109, https://horizon.documentation.ird.fr/exl-doc/pleins_textes/doc34-08/30199.pdf
(last access: 13 February 2023), 1989. a
Xu, X., Wang, L., and Yu, W.: The unique mean seasonal cycle in the Indian
Ocean anchors its various air-sea coupled modes across the basin, Sci.
Rep.-UK, 11, 1–8, https://doi.org/10.1038/s41598-021-84936-w, 2021. a, b, c, d
Yeung, N. K.-H., Menviel, L., Meissner, K. J., Taschetto, A. S., Ziehn, T., and Chamberlain, M.: Land–sea temperature contrasts at the Last Interglacial and their impact on the hydrological cycle, Clim. Past, 17, 869–885, https://doi.org/10.5194/cp-17-869-2021, 2021. a
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of higher climate sensitivity in CMIP6 models, Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020. a, b
Zhang, L., Wang, G., Newman, M., and Han, W.: Interannual to decadal
variability of tropical Indian Ocean sea surface temperature: Pacific
influence versus local internal variability, J. Climate, 34,
2669–2684, https://doi.org/10.1175/jcli-d-20-0807.1, 2021. a
Zhang, Y., Li, J., Zhao, S., Zheng, F., Feng, J., Li, Y., and Xu, Y.: Indian
Ocean tripole mode and its associated atmospheric and oceanic processes,
Clim. Dynam., 55, 1367–1383, https://doi.org/10.1007/s00382-020-05331-1, 2020. a
Zhao, A., Brierley, C. M., Jiang, Z., Eyles, R., Oyarzún, D., and Gomez-Dans, J.: Analysing the PMIP4-CMIP6 collection: a workflow and tool (pmip_p2fvar_analyzer v1), Geosci. Model Dev., 15, 2475–2488, https://doi.org/10.5194/gmd-15-2475-2022, 2022.
a, b, c
Zheng, X.-T.: Indo-pacific climate modes in warming climate: consensus and
uncertainty across model projections, Current Climate Change Reports, 5,
308–321, https://doi.org/10.1007/s40641-019-00152-9, 2019. a
Zheng, X.-T., Xie, S.-P., and Liu, Q.: Response of the Indian Ocean basin
mode and its capacitor effect to global warming, J. Climate, 24,
6146–6164, https://doi.org/10.1175/2011JCLI4169.1, 2011. a, b
Zheng, X.-T., Xie, S.-P., Du, Y., Liu, L., Huang, G., and Liu, Q.: Indian Ocean
dipole response to global warming in the CMIP5 multimodel ensemble, J.
Climate, 26, 6067–6080, https://doi.org/10.1175/JCLI-D-12-00638.1, 2013. a, b, c, d
Zheng, X.-T., Lu, J., and Hui, C.: Response of seasonal phase locking of
Indian Ocean Dipole to global warming, Clim. Dynam., 57, 2737–2751,
https://doi.org/10.1007/s00382-021-05834-5, 2021. a
Ziegler, M., Tuenter, E., and Lourens, L. J.: The precession phase of the
boreal summer monsoon as viewed from the eastern Mediterranean (ODP Site
968), Quaternary Sci. Rev., 29, 1481–1490,
https://doi.org/10.1016/j.quascirev.2010.03.011, 2010. a
Short summary
Year-to-year variations in the weather conditions over the Indian Ocean have important consequences for the substantial fraction of the Earth's population that live near it. This work looks at how these variations respond to climate change – both past and future. The models rarely agree, suggesting a weak, uncertain response to climate change.
Year-to-year variations in the weather conditions over the Indian Ocean have important...