Articles | Volume 19, issue 3
https://doi.org/10.5194/cp-19-681-2023
https://doi.org/10.5194/cp-19-681-2023
Research article
 | 
27 Mar 2023
Research article |  | 27 Mar 2023

Indian Ocean variability changes in the Paleoclimate Modelling Intercomparison Project

Chris Brierley, Kaustubh Thirumalai, Edward Grindrod, and Jonathan Barnsley

Related authors

jsmetrics v0.2.0: a Python package for metrics and algorithms used to identify or characterise atmospheric jet streams
Tom Keel, Chris Brierley, and Tamsin Edwards
Geosci. Model Dev., 17, 1229–1247, https://doi.org/10.5194/gmd-17-1229-2024,https://doi.org/10.5194/gmd-17-1229-2024, 2024
Short summary
Aerosol uncertainties in tropical precipitation changes for the mid-Pliocene Warm Period
Anni Zhao, Ran Feng, Chris M. Brierley, Jian Zhang, and Yongyun Hu
EGUsphere, https://doi.org/10.5194/egusphere-2023-2702,https://doi.org/10.5194/egusphere-2023-2702, 2023
Short summary
No changes in overall AMOC strength in interglacial PMIP4 time slices
Zhiyi Jiang, Chris Brierley, David Thornalley, and Sophie Sax
Clim. Past, 19, 107–121, https://doi.org/10.5194/cp-19-107-2023,https://doi.org/10.5194/cp-19-107-2023, 2023
Short summary
Calendar effects on surface air temperature and precipitation based on model-ensemble equilibrium and transient simulations from PMIP4 and PACMEDY
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022,https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Analysing the PMIP4-CMIP6 collection: a workflow and tool (pmip_p2fvar_analyzer v1)
Anni Zhao, Chris M. Brierley, Zhiyi Jiang, Rachel Eyles, Damián Oyarzún, and Jose Gomez-Dans
Geosci. Model Dev., 15, 2475–2488, https://doi.org/10.5194/gmd-15-2475-2022,https://doi.org/10.5194/gmd-15-2475-2022, 2022
Short summary

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Holocene
Simulating dust emissions and secondary organic aerosol formation over northern Africa during the mid-Holocene Green Sahara period
Putian Zhou, Zhengyao Lu, Jukka-Pekka Keskinen, Qiong Zhang, Juha Lento, Jianpu Bian, Twan van Noije, Philippe Le Sager, Veli-Matti Kerminen, Markku Kulmala, Michael Boy, and Risto Makkonen
Clim. Past, 19, 2445–2462, https://doi.org/10.5194/cp-19-2445-2023,https://doi.org/10.5194/cp-19-2445-2023, 2023
Short summary
Quantifying effects of Earth orbital parameters and greenhouse gases on mid-Holocene climate
Yibo Kang and Haijun Yang
Clim. Past, 19, 2013–2026, https://doi.org/10.5194/cp-19-2013-2023,https://doi.org/10.5194/cp-19-2013-2023, 2023
Short summary
Contribution of lakes in sustaining the Sahara greening during the mid-Holocene
Yuheng Li, Kanon Kino, Alexandre Cauquoin, and Taikan Oki
Clim. Past, 19, 1891–1904, https://doi.org/10.5194/cp-19-1891-2023,https://doi.org/10.5194/cp-19-1891-2023, 2023
Short summary
Did the Bronze Age deforestation of Europe affect its climate? A regional climate model study using pollen-based land cover reconstructions
Gustav Strandberg, Jie Chen, Ralph Fyfe, Erik Kjellström, Johan Lindström, Anneli Poska, Qiong Zhang, and Marie-José Gaillard
Clim. Past, 19, 1507–1530, https://doi.org/10.5194/cp-19-1507-2023,https://doi.org/10.5194/cp-19-1507-2023, 2023
Short summary
CHELSA-TraCE21k – high-resolution (1 km) downscaled transient temperature and precipitation data since the Last Glacial Maximum
Dirk Nikolaus Karger, Michael P. Nobis, Signe Normand, Catherine H. Graham, and Niklaus E. Zimmermann
Clim. Past, 19, 439–456, https://doi.org/10.5194/cp-19-439-2023,https://doi.org/10.5194/cp-19-439-2023, 2023
Short summary

Cited articles

Abram, N. J., Gagan, M. K., Liu, Z., Hantoro, W. S., McCulloch, M. T., and Suwargadi, B. W.: Seasonal characteristics of the Indian Ocean Dipole during the Holocene epoch, Nature, 445, 299–302, https://doi.org/10.1038/nature05477, 2007. a, b, c
Abram, N. J., Hargreaves, J. A., Wright, N. M., Thirumalai, K., Ummenhofer, C. C., and England, M. H.: Palaeoclimate perspectives on the Indian Ocean dipole, Quaternary Sci. Rev., 237, 106302, https://doi.org/10.1016/j.quascirev.2020.106302, 2020a. a, b, c, d, e, f, g
Abram, N. J., Wright, N. M., Ellis, B., Dixon, B. C., Wurtzel, J. B., England, M. H., Ummenhofer, C. C., Philibosian, B., Cahyarini, S. Y., Yu, T.-L., Shen, C.-C., Cheng, H., Edwards, R. L., and Heslop, D.: Coupling of Indo-Pacific climate variability over the last millennium, Nature, 579, 385–392, https://doi.org/10.1038/s41586-020-2084-4, 2020b. a, b, c
Ashok, K., Guan, Z., and Yamagata, T.: Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO, Geophys. Res. Lett., 28, 4499–4502, https://doi.org/10.1029/2001GL013294, 2001. a
Ashok, K., Guan, Z., and Yamagata, T.: A look at the relationship between the ENSO and the Indian Ocean dipole, J. Meteorol. Soc. Jpn. Ser. II, 81, 41–56, https://doi.org/10.2151/jmsj.81.41, 2003. a, b
Download
Short summary
Year-to-year variations in the weather conditions over the Indian Ocean have important consequences for the substantial fraction of the Earth's population that live near it. This work looks at how these variations respond to climate change – both past and future. The models rarely agree, suggesting a weak, uncertain response to climate change.