Articles | Volume 19, issue 11
https://doi.org/10.5194/cp-19-2237-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-2237-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Precipitation reconstructions for Paris based on the observations by Louis Morin, 1665–1713 CE
Thomas Pliemon
CORRESPONDING AUTHOR
Department of Astrophysics and Geophysics, Institute of Physics, University of Graz, 8010 Graz, Austria
Ulrich Foelsche
Department of Astrophysics and Geophysics, Institute of Physics, University of Graz, 8010 Graz, Austria
Wegener Center for Climate and Global Change (WEGC), University of Graz, 8010 Graz, Austria
Christian Rohr
Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
Institute of History, Section of Economic, Social Environmental History (WSU), University of Bern, 3012 Bern, Switzerland
Christian Pfister
Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
Related authors
Christian Pfister, Stefan Brönnimann, Laurent Litzenburger, Peter Thejll, Andres Altwegg, Rudolf Brázdil, Andrea Kiss, Erich Landsteiner, Fredrik Charpentier Ljungqvist, and Thomas Pliemon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3242, https://doi.org/10.5194/egusphere-2025-3242, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Narrative historical records of wine production in Central Europe date back to 1200. A study of taxes paid to authorities in the French-Luxembourg Moselle region, Germany, and the Swiss Plateau over the last few centuries shows that wine yields provide indirect indications of summer temperatures when the impact of heavy frosts is taken into account. This enables climate reconstructions based on tree rings to be refined and confirmed. Occasionally, poor harvests gave rise to witch hunts.
Christian Pfister, Stefan Brönnimann, Andres Altwegg, Rudolf Brázdil, Laurent Litzenburger, Daniele Lorusso, and Thomas Pliemon
Clim. Past, 20, 1387–1399, https://doi.org/10.5194/cp-20-1387-2024, https://doi.org/10.5194/cp-20-1387-2024, 2024
Short summary
Short summary
This bottle of Riesling from the traditional Bassermann Jordan winery in Deidesheim (Germany) is a relic of the premium wine harvested in 1811. It was named “Comet Wine” after the bright comet that year. The study shows that wine quality can be used to infer summer weather conditions over the past 600 years. After rainy summers with cold winds, wines turned sour, while long periods of high pressure led to excellent qualities. Since 1990, only good wines have been produced due to rapid warming.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 18, 1685–1707, https://doi.org/10.5194/cp-18-1685-2022, https://doi.org/10.5194/cp-18-1685-2022, 2022
Short summary
Short summary
We have digitized and analyzed meteorological variables (temperature, direction of the movement of the clouds, and cloud cover), which were noted by Louis Morin in the period 1665–1713 in Paris. This time period is characterized by cold winters and autumns and moderate springs and summers. A low frequency of westerlies in the winter months leads to a cooling. Morin's measurements seem to be trustworthy. Only cloud cover in quantitative terms should be taken with caution.
Christian Pfister, Stefan Brönnimann, Laurent Litzenburger, Peter Thejll, Andres Altwegg, Rudolf Brázdil, Andrea Kiss, Erich Landsteiner, Fredrik Charpentier Ljungqvist, and Thomas Pliemon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3242, https://doi.org/10.5194/egusphere-2025-3242, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Narrative historical records of wine production in Central Europe date back to 1200. A study of taxes paid to authorities in the French-Luxembourg Moselle region, Germany, and the Swiss Plateau over the last few centuries shows that wine yields provide indirect indications of summer temperatures when the impact of heavy frosts is taken into account. This enables climate reconstructions based on tree rings to be refined and confirmed. Occasionally, poor harvests gave rise to witch hunts.
Bahareh Rahimi and Ulrich Foelsche
Atmos. Meas. Tech., 18, 2481–2507, https://doi.org/10.5194/amt-18-2481-2025, https://doi.org/10.5194/amt-18-2481-2025, 2025
Short summary
Short summary
The study investigates using Global Navigation Satellite System Radio Occultation (GNSS-RO) to analyze the vertical structure of humidity in atmospheric rivers (ARs). Specific humidity and integrated water vapor from the COSMIC Data Analysis and Archive Center (CDAAC) and the Wegener Center (WEGC) are compared with the Special Sensor Microwave Imager/Sounder (SSMIS), showing that GNSS-RO adds vertically resolved data. Despite a slight low bias, combining GNSS-RO and SSMIS improves AR analysis.
Christian Pfister, Stefan Brönnimann, Andres Altwegg, Rudolf Brázdil, Laurent Litzenburger, Daniele Lorusso, and Thomas Pliemon
Clim. Past, 20, 1387–1399, https://doi.org/10.5194/cp-20-1387-2024, https://doi.org/10.5194/cp-20-1387-2024, 2024
Short summary
Short summary
This bottle of Riesling from the traditional Bassermann Jordan winery in Deidesheim (Germany) is a relic of the premium wine harvested in 1811. It was named “Comet Wine” after the bright comet that year. The study shows that wine quality can be used to infer summer weather conditions over the past 600 years. After rainy summers with cold winds, wines turned sour, while long periods of high pressure led to excellent qualities. Since 1990, only good wines have been produced due to rapid warming.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Jan Esper, Heli Huhtamaa, Lotta Leijonhufvud, Christian Pfister, Andrea Seim, Martin Karl Skoglund, and Peter Thejll
Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, https://doi.org/10.5194/cp-19-2463-2023, 2023
Short summary
Short summary
We study the climate signal in long harvest series from across Europe between the 16th and 18th centuries. The climate–harvest yield relationship is found to be relatively weak but regionally consistent and similar in strength and sign to modern climate–harvest yield relationships. The strongest climate–harvest yield patterns are a significant summer soil moisture signal in Sweden, a winter temperature and precipitation signal in Switzerland, and spring temperature signals in Spain.
Rudolf Brázdil, Petr Dobrovolný, Christian Pfister, Katrin Kleemann, Kateřina Chromá, Péter Szabó, and Piotr Olinski
Clim. Past, 19, 1863–1890, https://doi.org/10.5194/cp-19-1863-2023, https://doi.org/10.5194/cp-19-1863-2023, 2023
Short summary
Short summary
The Thirty Years' War (from 1618 to 1648 CE), an armed military conflict in Europe, brought extensive devastation to Europe. The paper analyses annual and seasonal temperature, precipitation, and drought patterns, as well as severe weather extremes, based particularly on documentary data, during this event in central Europe to demonstrate their broad impacts on human society and human responses in coincidence with weather and climate during this period of hardship.
Duncan Pappert, Mariano Barriendos, Yuri Brugnara, Noemi Imfeld, Sylvie Jourdain, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 18, 2545–2565, https://doi.org/10.5194/cp-18-2545-2022, https://doi.org/10.5194/cp-18-2545-2022, 2022
Short summary
Short summary
We present daily temperature and sea level pressure fields for Europe for the severe winter 1788/1789 based on historical meteorological measurements and an analogue reconstruction approach. The resulting reconstruction skilfully reproduces temperature and pressure variations over central and western Europe. We find intense blocking systems over northern Europe and several abrupt, strong cold air outbreaks, demonstrating that quantitative weather reconstruction of past extremes is possible.
Chantal Camenisch, Fernando Jaume-Santero, Sam White, Qing Pei, Ralf Hand, Christian Rohr, and Stefan Brönnimann
Clim. Past, 18, 2449–2462, https://doi.org/10.5194/cp-18-2449-2022, https://doi.org/10.5194/cp-18-2449-2022, 2022
Short summary
Short summary
We present a novel approach to assimilate climate information contained in chronicles and annals from the 15th century to generate climate reconstructions of the Burgundian Low Countries, taking into account uncertainties associated with the descriptions of narrative sources. Our study aims to be a first step towards a more quantitative use of available information contained in historical texts, showing how Bayesian inference can help the climate community with this endeavor.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 18, 1685–1707, https://doi.org/10.5194/cp-18-1685-2022, https://doi.org/10.5194/cp-18-1685-2022, 2022
Short summary
Short summary
We have digitized and analyzed meteorological variables (temperature, direction of the movement of the clouds, and cloud cover), which were noted by Louis Morin in the period 1665–1713 in Paris. This time period is characterized by cold winters and autumns and moderate springs and summers. A low frequency of westerlies in the winter months leads to a cooling. Morin's measurements seem to be trustworthy. Only cloud cover in quantitative terms should be taken with caution.
Duncan Pappert, Yuri Brugnara, Sylvie Jourdain, Aleksandra Pospieszyńska, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 17, 2361–2379, https://doi.org/10.5194/cp-17-2361-2021, https://doi.org/10.5194/cp-17-2361-2021, 2021
Short summary
Short summary
This paper presents temperature and pressure measurements from the 37 stations of the late 18th century network of the Societas Meteorologica Palatina, in addition to providing an inventory of the available observations, most of which have been digitised. The quality of the recovered series is relatively good, as demonstrated by two case studies. Early instrumental data such as these will help to explore past climate and weather extremes in Europe in greater detail.
Martin Stangl and Ulrich Foelsche
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-117, https://doi.org/10.5194/cp-2021-117, 2021
Manuscript not accepted for further review
Short summary
Short summary
We selected the Maunder Minimum (1645–1715), an astrophysically defined section of the Little Ice Age, and compared the historical data from the Grand Duchy of Transylvania with those from Germany, Austria and Switzerland. For a larger period (1500–1950), we examined on a decadal basis the extent to which an influence on the climate through long-term fluctuations in solar activity, as was inferred from isotope reconstructions from ice cores, can be seen.
Esmail Ghaemi, Ulrich Foelsche, Alexander Kann, and Jürgen Fuchsberger
Hydrol. Earth Syst. Sci., 25, 4335–4356, https://doi.org/10.5194/hess-25-4335-2021, https://doi.org/10.5194/hess-25-4335-2021, 2021
Short summary
Short summary
We assess an operational merged gauge–radar precipitation product over a period of 12 years, using gridded precipitation fields from a dense gauge network (WegenerNet) in southeastern Austria. We analyze annual data, seasonal data, and extremes using different metrics. We identify individual events using a simple threshold based on the interval between two consecutive events and evaluate the events' characteristics in both datasets.
Clara Hohmann, Gottfried Kirchengast, Sungmin O, Wolfgang Rieger, and Ulrich Foelsche
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-453, https://doi.org/10.5194/hess-2020-453, 2020
Manuscript not accepted for further review
Short summary
Short summary
Heavy precipitation events are still feeding with a large uncertainty into hydrological models. Based on the highly dense station network WegenerNet (one station per 2 km2) we analyzed the sensitivity of runoff simulations to different rain network densities and interpolation methods in small catchments. We find, and quantify relevant characteristics, that runoff curves especially from
short-duration convective rainfall events are strongly influenced by gauge station density and distribution.
Cited articles
Auer, I., Böhm, R., and Schöner, W.: Austrian Long-term Climate 1767–2000: Multiple Instrumental Climate Time Series from Central Europe, in: vol. 25, Zentralanstalt für Meteorologie und Geodynamik, Wien, ISBN 1016-6254, 2001. a
Auer, I., Böhm, R., Jurković, A., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Brunetti, M., Nanni, T., Maugeri, M., Briffa, K., Jones, P., Efthymiadis, D., Mestre, O., Moisselin, J.-M., Begert, M., Brazdil, R., Bochnicek, O., Cegnar, T., Gajić-Čapka, M., Zaninović, K., Majstorović, v., Szalai, S., Szentimrey, T., and Mercalli, L.: A new instrumental precipitation dataset for the greater alpine region for the period 1800–2002, Int. J. Climatol., 25, 139–166, https://doi.org/10.1002/joc.1135, 2005. a
Brönnimann, S., Allan, R., Ashcroft, L., Baer, S., Barriendos, M., Brázdil, R., Brugnara, Y., Brunet, M., Brunetti, M., Chimani, B., Cornes, R., Domínguez-Castro, F., Filipiak, J., Founda, D., Herrera, R. G., Gergis, J., Grab, S., Hannak, L., Huhtamaa, H., Jacobsen, K. S., Jones, P., Jourdain, S., Kiss, A., Lin, K. E., Lorrey, A., Lundstad, E., Luterbacher, J., Mauelshagen, F., Maugeri, M., Maughan, N., Moberg, A., Neukom, R., Nicholson, S., Noone, S., Nordli, Ø., Ólafsdóttir, K. B., Pearce, P. R., Pfister, L., Pribyl, K., Przybylak, R., Pudmenzky, C., Rasol, D., Reichenbach, D., Řezníčková, L., Rodrigo, F. S., Rohr, C., Skrynyk, O., Slonosky, V., Thorne, P., Valente, M. A., Vaquero, J. M., Westcottt, N. E., Williamson, F., and Wyszyński, P.: Unlocking pre-1850 instrumental meterologoical records: a global inventory, B. Am. Meteorol. Soc., 100, ES389–ES413, 2019. a
Bradley, R. S. and Jones, P. D.: `Little Ice Age' summer temperature variations: their nature and relevance to recent global warming trends, Holocene, 3, 367–376, https://doi.org/10.1177/095968369300300409, 1993. a
Brázdil, R., Dobrovolny, P., Trnka, M., Büntgen, U., Řezníčková, L., Kotyza, O., Valasek, H., and Stepanek, P.: Documentary and instrumental-based drought indices for the Czech Lands back to AD 1501, Clim. Res., 70, 103–117, https://doi.org/10.3354/cr01380, 2016. a
Brázdil, R., Kiss, A., Luterbacher, J., Nash, D. J., and Řezníčková, L.: Documentary data and the study of past droughts: a global state of the art, Clim. Past, 14, 1915–1960, https://doi.org/10.5194/cp-14-1915-2018, 2018. a
Brumme, B.: Klimadaten 1683–1774 von Mitteldeutschland und Berlin nach einer Bearbeitung der Beobachtungs-Tagebücher der Familie KIRCH (Teil 1), MS thesis, Meteorologisches Institut der Universität Bonn, Bonn, 1978. a
Camuffo, D.: Analysis of the series of precipitation at Padova, Italy, Climatic Change, 6, 57–77, https://doi.org/10.1007/BF00141668, 1984. a
Camuffo, D.: Evidence from the archives of societies: early instrumental observations, in: The Palgrave Handbook of Climate History, Chap. 7, edited by: White, S., Pfister, C., and Mauelshagen, F., Palgrave Macmillan, London, 83–92, ISBN 978-1-137-43019-9, 2018. a
Camuffo, D. and Jones, P.: Improved Understanding of Past Climatic Variability from Early Daily European Instrumental Sources, in: vol. 53, Springer, ISBN 1-4020-0556-3, https://doi.org/10.1023/A:1014902904197, 2002. a
Camuffo, D., Becherini, F., and della Valle, A.: The Beccari series of precipitation in Bologna, Italy, from 1723 to 1765, Climatic Change, 155, 359–376, https://doi.org/10.1007/s10584-019-02482-x, 2019. a, b
Camuffo, D., Becherini, F., and della Valle, A.: How the rain-gauge threshold affects the precipitation frequency and amount, Climatic Change, 170, 1573–1480, https://doi.org/10.1007/s10584-021-03283-x, 2022a. a
Camuffo, D., Becherini, F., della Valle, A., and Zanini, V.: A comparison between different methods to fill gaps in early precipitation series, Environ. Earth Sci., 81, 345, https://doi.org/10.1007/s12665-022-10467-w, 2022b. a, b, c
Cleary, D. M., Wynn, J. G., Ionita, M., Forray, F. L., and Onac, B. P.: Evidence of long-term NAO influence on East-Central Europe winter precipitation from a guano-derived δ15N record, Sci. Rep., 7, 14095, https://doi.org/10.1038/s41598-017-14488-5, 2017. a
Cornes, R. C., Jones, P. D., Briffa, K. R., and Osborn, T. J.: A daily series of mean sea-level pressure for Paris, 1670–2007, Int. J. Climatol., 32, 1135–1150, https://doi.org/10.1002/joc.2349, 2012. a
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P.: An ensemble version of the E-OBS temperature and precipitation datasets, J. Geophy. Res.-Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018. a, b
Dobrovolný, P., Brázdil, R., Trnka, M., Kotyza, O., and Valášek, H.: Precipitation reconstruction for the Czech Lands, AD 1501–2010, Int. J. Climatol., 35, 1–14, https://doi.org/10.1002/joc.3957, 2015. a
Etien, N., Daux, V., Masson-Delmotte, V., Mestre, O., Stievenard, M., Guillemin, M. T., Boettger, T., Breda, N., Haupt, M., and Perraud, P. P.: Summer maximum temperature in northern France over the past century: instrumental data versus multiple proxies (tree-ring isotopes, grape harvest dates and forest fires), Climatic Change, 94, 429–456, https://doi.org/10.1007/s10584-008-9516-8, 2009. a, b
Gimmi, U., Luterbacher, J., Pfister, C., and Wanner, H.: A method to reconstruct long precipitation series using systematic descriptive observations in weather diaries: the example of the precipitation series for Bern, Switzerland (1760–2003), Theor. Appl. Climatol., 87, 185–199, https://doi.org/10.1007/s00704-005-0193-5, 2007. a, b, c, d
Harvey-Fishenden, A. and Macdonald, N.: Evaluating the utility of qualitative personal diaries in precipitation reconstruction in the eighteenth and nineteenth centuries, Clim. Past, 17, 133–149, https://doi.org/10.5194/cp-17-133-2021, 2021. a, b
Hawkins, E., Burt, S., McCarthy, M., Murphy, C., Ross, C., Baldock, M., Brazier, J., Hersee, G., Huntley, J., Meats, R., O'Grady, J., Scrimgeour, I., and Silk, T.: Millions of historical monthly rainfall observations taken in the UK and Ireland rescued by citizen scientists, Geosci. Data J., 10, 246–261, https://doi.org/10.1002/gdj3.157, 2023. a
Labuhn, I., Daux, V., Girardclos, O., Stievenard, M., Pierre, M., and Masson-Delmotte, V.: French summer droughts since 1326 CE: a reconstruction based on tree ring cellulose δ18O, Clim. Past, 12, 1101–1117, https://doi.org/10.5194/cp-12-1101-2016, 2016a. a, b, c
Labuhn, I., Daux, V., Girardclos, O., Stievenard, M., Pierre, M., and Masson-Delmotte, V.: France 670 Year Tree-Ring δ180 Data and SPEI Drought Reconstruction, Tech. rep., NOAA, https://doi.org/10.25921/2n61-ta84, 2016b. a, b
Labuhn, I.., Daux, V., Girardclos, O., Stievenard, M., Pierre, M., Masson-Delmotte, V.: NOAA/WDS Paleoclimatology – France 670 Year Tree-Ring δ18O Data and SPEI Drought Reconstruction, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/2n61-ta84, 2016c. a
Lean, J. L., Beer, J., and Bradley, R. S.: Reconstruction of solar irradiance since 1610: implications for climate change, Geophys. Res. Lett., 22, 3195–3198, 1995. a
Lundstad, E., Brugnara, Y., Pappert, D., Kopp, J., Samakinwa, E., Hürzeler, A., Andersson, A., Chimani, B., Cornes, R., Demarée, G., Filipiak, J., Gates, L., Ives, G. L., Jones, J. M., Jourdain, S., Kiss, A., Nicholson, S. E., Przybylak, R., Jones, P., Rousseau, D., Tinz, B., Rodrigo, F. S., Grab, S., Domínguez-Castro, F., Slonosky, V., Cooper, J., Brunet, M., and Brönnimann, S.: The global historical climate database HCLIM, Sci. Data, 10, 44, https://doi.org/10.1038/s41597-022-01919-w, 2023. a
Luterbacher, J., Xoplaki, E., Dietrich, D., Jones, P., Davies, T., Portis, D., Gonzalez-Rouco, J., von Storch, H., Gyalistras, D., Casty, C., and Wanner, H.: Extending North Atlantic Oscillation reconstructions back to 1500, Atmos. Sci. Lett., 2, 114–124, https://doi.org/10.1006/asle.2001.0044, 2001. a
Luterbacher, J., Schmutz, C., Gyalistras, D., Xoplaki, E., and Wanner, H.: Climatic Research Unit, University of East Anglia – Luterbacher NAO Reconstructions Back to 1500, University of East Anglia [data set], https://crudata.uea.ac.uk/cru/data/paleo/naojurg/ (last access: 31 August 2023), 2002. a
Manley, G.: Snowfall In Britain Over The Past 300 Years, Weather, 24, 428–437, https://doi.org/10.1002/j.1477-8696.1969.tb03117.x, 1969. a
Mann, M. E., Bradley, R. S., and Hughes, M. K.: Global-scale temperature patterns and climate forcing over the past six centuries, Nature, 392, 779–787, https://doi.org/10.1038/33859, 1998. a
Martinez-Villalobos, C. and Neelin, J.: Why do precipitation intensities tend to follow gamma distributions?, J. Atmos. Sci., 76, 3611–3631, https://doi.org/10.1175/JAS-D-18-0343.1, 2019. a
Müller-Plath, G., Lüdecke, H.-J., and Lüning, S.: Long-distance air pressure differences correlate with European rain, Sci. Rep., 12, 10191, https://doi.org/10.1038/s41598-022-14028-w, 2022. a
Murphy, C., Broderick, C., Burt, T. P., Curley, M., Duffy, C., Hall, J., Harrigan, S., Matthews, T. K. R., Macdonald, N., McCarthy, G., McCarthy, M. P., Mullan, D., Noone, S., Osborn, T. J., Ryan, C., Sweeney, J., Thorne, P. W., Walsh, S., and Wilby, R. L.: A 305-year continuous monthly rainfall series for the island of Ireland, 1711–2016, Clim.e Past, 14, 413–440, https://doi.org/10.5194/cp-14-413-2018, 2018. a
Murphy, C., Wilby, R. L., Matthews, T. K. R., Thorne, P., Broderick, C., Fealy, R., Hall, J., Harrigan, S., Jones, P., McCarthy, G., MacDonald, N., Noone, S., and Ryan, C.: Multi-century trends to wetter winters and drier summers in the England and Wales precipitation series explained by observational and sampling bias in early records, Int. J. Climatol., 40, 610–619, https://doi.org/10.1002/joc.6208, 2020. a
Pauling, A., Luterbacher, J., Casty, C., and Wanner, H.: Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation, Clim. Dynam., 26, 387–405, https://doi.org/10.1007/s00382-005-0090-8, 2006. a
Pfister, C. and Bareiss, W.: The climate in Paris between 1675 and 1715 according to the Meteorological Journal of Louis Morin, in: Climatic Trends and Anomalies in Europe 1675–1715: High Resolution Spatio-temporal Reconstructions from Direct Meteorological Observations and Proxy Data: Methods and Results, edited by: Frenzel, B., Pfister, C., and Gläser, B., Gustav Fischer Verlag, Stuttgart, Jena, New York, 151–171, ISBN 10:3437307746, ISBN 13:9783437307744, 1994. a, b, c, d, e, f, g, h, i
Pfister, C., Brázdil, R., and Glaser, R. (Eds.): Climatic Variability in Sixteenth-Century Europe and Its Social Dimension, in: 1st Edn., Springer, Dordrecht, ISBN 978-0-7923-5934-0, https://doi.org/10.1007/978-94-015-9259-8, 1999. a
Pliemon, T., Foelsche, U., Rohr, C., and Pfister, C.: Subdaily meteorological measurements of temperature, direction of the movement of the clouds, and cloud cover in the Late Maunder Minimum by Louis Morin in Paris, Clim. Past, 18, 1685–1707, https://doi.org/10.5194/cp-18-1685-2022, 2022. a, b, c, d, e, f, g, h, i, j, k
Pliemon, T., Foelsche, U., Rohr, C., and Pfister, C.: Early Humidity Measurements by Louis Morin in Paris between 1701 and 1711 – Data and Metadata, Climate, 11, 156, https://doi.org/10.3390/cli11070156, 2023a. a
Pliemon, T., Foelsche, U., Rohr, C., and Pfister, C.: Precipitation reconstructions for Paris based on the observations by Louis Morin, 1665–1713 CE, Zenodo [data set], https://doi.org/10.5281/zenodo.7404635, 2023b. a
Rinne, K., Loader, N., Switsur, V., and Waterhouse, J.: 400-year May–August precipitation reconstruction for Southern England using oxygen isotopes in tree rings, Quaternary Sci. Rev., 60, 13–25, https://doi.org/10.1016/j.quascirev.2012.10.048, 2013. a
Rohr, C.: Measuring the frequency and intensity of floods of the Traun River (Upper Austria), 1441–1574, Hydrolog. Sci. J., 51, 834–847, https://doi.org/10.1623/hysj.51.5.834, 2006. a
Rohr, C.: Floods of the Upper Danube River and its tributaries and their impact on urban economies (c. 1350–1600): the examples of the towns of Krems/Stein and Wels (Austria), Environ. Hist., 19, 133–148, https://doi.org/10.3197/096734013X13642082568534, 2013. a
Slonosky, V.: Paris Monthly Precipitation 1688–2004, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2010-020, NOAA/NCDC Paleoclimatology Program, Boulder, CO, USA [data set], https://catalog.data.gov/dataset/noaa-wds-paleoclimatology-slonosky-2002-paris-monthly (last access: 31 August 2023), 2010. a
Slonosky, V. C., Bauden, F., and Waller, R.: Les Observations Du Temps Au XVIIIe Siècle. Galland, Morin, De La Hire Et Le Climat Du “Petit Âge Glaciaire”, in: Antoine Galland (1646–1715) et son Journal: Actes du colloque international organise a l’Universite de Liege (16–18 fevrier 2015) a l'occasion du tricentenaire de sa mort, edited by: Bauden, F. and Waller, R., Peeters Publishers, 497–518, https://doi.org/10.2307/j.ctv1q26m6v.26, 2020. a, b
Strangeways, I.: A history of rain gauges, Weather, 65, 133–138, https://doi.org/10.1002/wea.548, 2010. a, b, c
Thom, H.: A note on the gamma distribution, Mon. Weather Rev., 86, 117–122, https://doi.org/10.1175/1520-0493(1958)086<0117:ANOTGD>2.0.CO;2, 1958. a
Veale, L., Endfield, G., and Bowen, J.: The `Great Snow' of winter 1614/1615 in England, Weather, 73, 3–9, https://doi.org/10.1002/wea.3198, 2018. a
Wheeler, D. and Suarez-Dominguez, J.: Climatic reconstructions for the northeast Atlantic region AD 1685–1700: a new source of evidence from naval logbooks, Holocene, 16, 39–49, https://doi.org/10.1191/0959683606hl894ra, 2006. a
Wheeler, D., Garcia-Herrera, R., Wilkinson, C. W., and Ward, C.: Atmospheric circulation and storminess derived from Royal Navy logbooks, 1685 to 1750, Climatic Change, 101, 257–280, https://doi.org/10.1007/s10584-009-9732-x, 2010. a
White, S., Pfister, C., and Mauelshagen, F.: The Palgrave Handbook of Climate History, Basingstoke, ISBN 978-1-1-137-43019-9, https://doi.org/10.1057/978-1-137-43020-5, 2018. a
Wigley, T. M. L., Lough, J. M., and Jones, P. D.: Spatial patterns of precipitation in England and Wales and a revised, homogeneous England and Wales precipitation series, J. Climatol., 4, 1–25, https://doi.org/10.1002/joc.3370040102, 1984. a
World Meteorological Organization: WMO Guidelines on the Calculation of Climate Normals, WMO-No. 1203, Geneva, https://library.wmo.int/idurl/4/55797 (last access: 2 November 2023), 2017. a
Short summary
Louis Morin consistently recorded precipitation intensity and duration between 1665 and 1713. We use these records to reconstruct precipitation totals. This reconstruction is validated by several methods and then presented using precipitation indexes. What is exceptional about this dataset is the availability of a sub-daily resolution and the low number of missing data points over the entire observation period.
Louis Morin consistently recorded precipitation intensity and duration between 1665 and 1713. We...