Articles | Volume 19, issue 7
https://doi.org/10.5194/cp-19-1531-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/cp-19-1531-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The challenge of comparing pollen-based quantitative vegetation reconstructions with outputs from vegetation models – a European perspective
Anne Dallmeyer
CORRESPONDING AUTHOR
Max Planck Institute for Meteorology, Bundesstrasse 53, 20146
Hamburg, Germany
Anneli Poska
Department of Geology, Tallinn University of Technology, Ehitajate
tee 5, 19086 Tallinn, Estonia
Department of Physical Geography and Ecosystem Science, Lund
University, Sölvegatan 12, 223 62 Lund, Sweden
Laurent Marquer
Department of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
Andrea Seim
Department of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, 79106 Freiburg, Germany
Marie-José Gaillard
Department of Biology and Environmental Science, Linnaeus University, Barlastgatan 11, 39182 Kalmar, Sweden
Related authors
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, and Ulrike Herzschuh
EGUsphere, https://doi.org/10.5194/egusphere-2024-1862, https://doi.org/10.5194/egusphere-2024-1862, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We present a global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21,000 years, which are suitable for the evaluation of Earth System Model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic areas and Tibetan Plateau during the Last Glacial Maximum and early deglaciation, as well as in North Africa and the Mediterranean regions during the Holocene.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1908 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global mean.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Manuel Chevalier, Anne Dallmeyer, Nils Weitzel, Chenzhi Li, Jean-Philippe Baudouin, Ulrike Herzschuh, Xianyong Cao, and Andreas Hense
Clim. Past, 19, 1043–1060, https://doi.org/10.5194/cp-19-1043-2023, https://doi.org/10.5194/cp-19-1043-2023, 2023
Short summary
Short summary
Data–data and data–model vegetation comparisons are commonly based on comparing single vegetation estimates. While this approach generates good results on average, reducing pollen assemblages to single single plant functional type (PFT) or biome estimates can oversimplify the vegetation signal. We propose using a multivariate metric, the Earth mover's distance (EMD), to include more details about the vegetation structure when performing such comparisons.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, Michael Sigl, Matthew Toohey, and Ulrike Herzschuh
Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, https://doi.org/10.5194/cp-17-2481-2021, 2021
Short summary
Short summary
Using the comprehensive Earth system model, MPI-ESM1.2, we explore the global Holocene vegetation changes and interpret them in terms of the Holocene climate change. The model results reveal that most of the Holocene vegetation transitions seen outside the high northern latitudes can be attributed to modifications in the intensity of the global summer monsoons.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, and Timothy Shanahan
Clim. Past, 16, 117–140, https://doi.org/10.5194/cp-16-117-2020, https://doi.org/10.5194/cp-16-117-2020, 2020
Short summary
Short summary
We analyse the end of the African humid period (AHP) in a transient Holocene simulation performed with the comprehensive Earth system model MPI-ESM1.2. The model reproduces the time-transgressive end of the AHP evident in proxy data and indicates that changes in moisture can be attributed to the retreat of the summer monsoon and to changes in the extratropical troughs. The spatially varying impact of these systems imposes regionally different responses to the Holocene insolation change.
Anne Dallmeyer, Martin Claussen, and Victor Brovkin
Clim. Past, 15, 335–366, https://doi.org/10.5194/cp-15-335-2019, https://doi.org/10.5194/cp-15-335-2019, 2019
Short summary
Short summary
A simple but powerful method for the biomisation of plant functional type distributions is introduced and tested for six different dynamic global vegetation models based on pre-industrial and palaeo-simulations. The method facilitates the direct comparison between vegetation distributions simulated by different Earth system models and between model results and the pollen-based biome reconstructions. It is therefore a powerful tool for the evaluation of Earth system models.
Anne Dallmeyer, Martin Claussen, Jian Ni, Xianyong Cao, Yongbo Wang, Nils Fischer, Madlene Pfeiffer, Liya Jin, Vyacheslav Khon, Sebastian Wagner, Kerstin Haberkorn, and Ulrike Herzschuh
Clim. Past, 13, 107–134, https://doi.org/10.5194/cp-13-107-2017, https://doi.org/10.5194/cp-13-107-2017, 2017
Short summary
Short summary
The vegetation distribution in eastern Asia is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate–vegetation relationship is lacking. To assess the Holocene vegetation change, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient climate simulations.
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, and Ulrike Herzschuh
EGUsphere, https://doi.org/10.5194/egusphere-2024-1862, https://doi.org/10.5194/egusphere-2024-1862, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We present a global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21,000 years, which are suitable for the evaluation of Earth System Model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic areas and Tibetan Plateau during the Last Glacial Maximum and early deglaciation, as well as in North Africa and the Mediterranean regions during the Holocene.
Andria Dawson, John W. Williams, Marie-José Gaillard, Simon J. Goring, Behnaz Pirzamanbein, Johan Lindstrom, R. Scott Anderson, Andrea Brunelle, David Foster, Konrad Gajewski, Dan G. Gavin, Terri Lacourse, Thomas A. Minckley, Wyatt Oswald, Bryan Shuman, and Cathy Whitlock
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-6, https://doi.org/10.5194/cp-2024-6, 2024
Revised manuscript under review for CP
Short summary
Short summary
Holocene vegetation-atmosphere interactions provide insight into intensifying land use impacts and the Holocene Conundrum- a mismatch between data- and model- inferred temperature. Using pollen records and statistical modeling, we reconstruct Holocene land cover for North America. We determine patterns and magnitudes of land cover changes across scales. We attribute land cover changes to ecological, climatic, and human drivers. These reconstructions provide benchmarks for Earth System Models.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Jan Esper, Heli Huhtamaa, Lotta Leijonhufvud, Christian Pfister, Andrea Seim, Martin Karl Skoglund, and Peter Thejll
Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, https://doi.org/10.5194/cp-19-2463-2023, 2023
Short summary
Short summary
We study the climate signal in long harvest series from across Europe between the 16th and 18th centuries. The climate–harvest yield relationship is found to be relatively weak but regionally consistent and similar in strength and sign to modern climate–harvest yield relationships. The strongest climate–harvest yield patterns are a significant summer soil moisture signal in Sweden, a winter temperature and precipitation signal in Switzerland, and spring temperature signals in Spain.
Gustav Strandberg, Jie Chen, Ralph Fyfe, Erik Kjellström, Johan Lindström, Anneli Poska, Qiong Zhang, and Marie-José Gaillard
Clim. Past, 19, 1507–1530, https://doi.org/10.5194/cp-19-1507-2023, https://doi.org/10.5194/cp-19-1507-2023, 2023
Short summary
Short summary
The impact of land use and land cover change (LULCC) on the climate around 2500 years ago is studied using reconstructions and models. The results suggest that LULCC impacted the climate in parts of Europe. Reconstructed LULCC shows up to 1.5 °C higher temperature in parts of Europe in some seasons. This relatively strong response implies that anthropogenic LULCC that had occurred by the late prehistoric period may have already affected the European climate by 2500 years ago.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1908 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global mean.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Manuel Chevalier, Anne Dallmeyer, Nils Weitzel, Chenzhi Li, Jean-Philippe Baudouin, Ulrike Herzschuh, Xianyong Cao, and Andreas Hense
Clim. Past, 19, 1043–1060, https://doi.org/10.5194/cp-19-1043-2023, https://doi.org/10.5194/cp-19-1043-2023, 2023
Short summary
Short summary
Data–data and data–model vegetation comparisons are commonly based on comparing single vegetation estimates. While this approach generates good results on average, reducing pollen assemblages to single single plant functional type (PFT) or biome estimates can oversimplify the vegetation signal. We propose using a multivariate metric, the Earth mover's distance (EMD), to include more details about the vegetation structure when performing such comparisons.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Esther Githumbi, Ralph Fyfe, Marie-Jose Gaillard, Anna-Kari Trondman, Florence Mazier, Anne-Birgitte Nielsen, Anneli Poska, Shinya Sugita, Jessie Woodbridge, Julien Azuara, Angelica Feurdean, Roxana Grindean, Vincent Lebreton, Laurent Marquer, Nathalie Nebout-Combourieu, Miglė Stančikaitė, Ioan Tanţău, Spassimir Tonkov, Lyudmila Shumilovskikh, and LandClimII data contributors
Earth Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, https://doi.org/10.5194/essd-14-1581-2022, 2022
Short summary
Short summary
Reconstruction of past land cover is necessary for the study of past climate–land cover interactions and the evaluation of climate models and land-use scenarios. We used 1128 available pollen records from across Europe covering the last 11 700 years in the REVEALS model to calculate percentage cover and associated standard errors for 31 taxa, 12 plant functional types and 3 land-cover types. REVEALS results are reliant on the quality of the input datasets.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, Michael Sigl, Matthew Toohey, and Ulrike Herzschuh
Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, https://doi.org/10.5194/cp-17-2481-2021, 2021
Short summary
Short summary
Using the comprehensive Earth system model, MPI-ESM1.2, we explore the global Holocene vegetation changes and interpret them in terms of the Holocene climate change. The model results reveal that most of the Holocene vegetation transitions seen outside the high northern latitudes can be attributed to modifications in the intensity of the global summer monsoons.
Angelica Feurdean, Boris Vannière, Walter Finsinger, Dan Warren, Simon C. Connor, Matthew Forrest, Johan Liakka, Andrei Panait, Christian Werner, Maja Andrič, Premysl Bobek, Vachel A. Carter, Basil Davis, Andrei-Cosmin Diaconu, Elisabeth Dietze, Ingo Feeser, Gabriela Florescu, Mariusz Gałka, Thomas Giesecke, Susanne Jahns, Eva Jamrichová, Katarzyna Kajukało, Jed Kaplan, Monika Karpińska-Kołaczek, Piotr Kołaczek, Petr Kuneš, Dimitry Kupriyanov, Mariusz Lamentowicz, Carsten Lemmen, Enikö K. Magyari, Katarzyna Marcisz, Elena Marinova, Aidin Niamir, Elena Novenko, Milena Obremska, Anna Pędziszewska, Mirjam Pfeiffer, Anneli Poska, Manfred Rösch, Michal Słowiński, Miglė Stančikaitė, Marta Szal, Joanna Święta-Musznicka, Ioan Tanţău, Martin Theuerkauf, Spassimir Tonkov, Orsolya Valkó, Jüri Vassiljev, Siim Veski, Ildiko Vincze, Agnieszka Wacnik, Julian Wiethold, and Thomas Hickler
Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, https://doi.org/10.5194/bg-17-1213-2020, 2020
Short summary
Short summary
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation composition and provides a test on how vegetation and climate interact to determine fire hazard. An important implication of this test is that percentage of tree cover can be used as a predictor of the probability of fire occurrence. Biomass burned is highest at ~ 45 % tree cover in temperate forests and at ~ 60–65 % tree cover in needleleaf-dominated forests.
Sandy P. Harrison, Marie-José Gaillard, Benjamin D. Stocker, Marc Vander Linden, Kees Klein Goldewijk, Oliver Boles, Pascale Braconnot, Andria Dawson, Etienne Fluet-Chouinard, Jed O. Kaplan, Thomas Kastner, Francesco S. R. Pausata, Erick Robinson, Nicki J. Whitehouse, Marco Madella, and Kathleen D. Morrison
Geosci. Model Dev., 13, 805–824, https://doi.org/10.5194/gmd-13-805-2020, https://doi.org/10.5194/gmd-13-805-2020, 2020
Short summary
Short summary
The Past Global Changes LandCover6k initiative will use archaeological records to refine scenarios of land use and land cover change through the Holocene to reduce the uncertainties about the impacts of human-induced changes before widespread industrialization. We describe how archaeological data are used to map land use change and how the maps can be evaluated using independent palaeoenvironmental data. We propose simulations to test land use and land cover change impacts on past climates.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, and Timothy Shanahan
Clim. Past, 16, 117–140, https://doi.org/10.5194/cp-16-117-2020, https://doi.org/10.5194/cp-16-117-2020, 2020
Short summary
Short summary
We analyse the end of the African humid period (AHP) in a transient Holocene simulation performed with the comprehensive Earth system model MPI-ESM1.2. The model reproduces the time-transgressive end of the AHP evident in proxy data and indicates that changes in moisture can be attributed to the retreat of the summer monsoon and to changes in the extratropical troughs. The spatially varying impact of these systems imposes regionally different responses to the Holocene insolation change.
Xianyong Cao, Fang Tian, Furong Li, Marie-José Gaillard, Natalia Rudaya, Qinghai Xu, and Ulrike Herzschuh
Clim. Past, 15, 1503–1536, https://doi.org/10.5194/cp-15-1503-2019, https://doi.org/10.5194/cp-15-1503-2019, 2019
Short summary
Short summary
The high-quality pollen records (collected from lakes and peat bogs) of the last 40 ka cal BP form north Asia are homogenized and the plant abundance signals are calibrated by the modern relative pollen productivity estimates. Calibrated plant abundances for each site are generally consistent with in situ modern vegetation, and vegetation changes within the regions are characterized by minor changes in the abundance of major taxa rather than by invasions of new taxa during the last 40 ka cal BP.
Anne Dallmeyer, Martin Claussen, and Victor Brovkin
Clim. Past, 15, 335–366, https://doi.org/10.5194/cp-15-335-2019, https://doi.org/10.5194/cp-15-335-2019, 2019
Short summary
Short summary
A simple but powerful method for the biomisation of plant functional type distributions is introduced and tested for six different dynamic global vegetation models based on pre-industrial and palaeo-simulations. The method facilitates the direct comparison between vegetation distributions simulated by different Earth system models and between model results and the pollen-based biome reconstructions. It is therefore a powerful tool for the evaluation of Earth system models.
Behnaz Pirzamanbein, Anneli Poska, and Johan Lindström
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-51, https://doi.org/10.5194/cp-2017-51, 2017
Manuscript not accepted for further review
Short summary
Short summary
Realistic maps of past land cover needed to study environmental changes and human impacts are rare. A recent statistical method, Pirzamanbein et al. (2015), produces continuous maps of past land cover from pollen assemblage. These maps incorporate auxiliary data raising questions regarding both the method's sensitivity to the choice of auxiliary data and the unaffected transmission of observational data. In this paper, the sensitivity of the method is examined. The tests confirm robust results.
Anne Dallmeyer, Martin Claussen, Jian Ni, Xianyong Cao, Yongbo Wang, Nils Fischer, Madlene Pfeiffer, Liya Jin, Vyacheslav Khon, Sebastian Wagner, Kerstin Haberkorn, and Ulrike Herzschuh
Clim. Past, 13, 107–134, https://doi.org/10.5194/cp-13-107-2017, https://doi.org/10.5194/cp-13-107-2017, 2017
Short summary
Short summary
The vegetation distribution in eastern Asia is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate–vegetation relationship is lacking. To assess the Holocene vegetation change, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient climate simulations.
G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita
Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, https://doi.org/10.5194/cp-10-661-2014, 2014
Related subject area
Subject: Vegetation Dynamics | Archive: Modelling only | Timescale: Holocene
How does the explicit treatment of convection alter the precipitation–soil hydrology interaction in the mid-Holocene African humid period?
Effect of nitrogen limitation and soil biophysics on Holocene greening of the Sahara
Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2
The end of the African humid period as seen by a transient comprehensive Earth system model simulation of the last 8000 years
Harmonising plant functional type distributions for evaluating Earth system models
Controls on fire activity over the Holocene
North African vegetation–precipitation feedback in early and mid-Holocene climate simulations with CCSM3-DGVM
Comparing modelled fire dynamics with charcoal records for the Holocene
Climate and CO2 modulate the C3/C4 balance and δ13C signal in simulated vegetation
Leonore Jungandreas, Cathy Hohenegger, and Martin Claussen
Clim. Past, 19, 637–664, https://doi.org/10.5194/cp-19-637-2023, https://doi.org/10.5194/cp-19-637-2023, 2023
Short summary
Short summary
Increasing the vegetation cover over mid-Holcocene North Africa expands the West African monsoon ∼ 4–5° further north. This northward shift of monsoonal precipitation is caused by interactions of the land surface with large-scale monsoon circulation and the coupling of soil moisture to precipitation. We highlight the importance of considering not only how soil moisture influences precipitation but also how different precipitation characteristics alter the soil hydrology via runoff generation.
Jooyeop Lee, Martin Claussen, Jeongwon Kim, Je-Woo Hong, In-Sun Song, and Jinkyu Hong
Clim. Past, 18, 313–326, https://doi.org/10.5194/cp-18-313-2022, https://doi.org/10.5194/cp-18-313-2022, 2022
Short summary
Short summary
It is still a challenge to simulate the so–called Green Sahara (GS), which was a wet and vegetative Sahara region in the mid–Holocene, using current climate models. Our analysis shows that Holocene greening is simulated better if the amount of soil nitrogen and soil texture is properly modified for the humid and vegetative GS period. Future climate simulation needs to consider consequent changes in soil nitrogen and texture with changes in vegetation cover for proper climate simulations.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, Michael Sigl, Matthew Toohey, and Ulrike Herzschuh
Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, https://doi.org/10.5194/cp-17-2481-2021, 2021
Short summary
Short summary
Using the comprehensive Earth system model, MPI-ESM1.2, we explore the global Holocene vegetation changes and interpret them in terms of the Holocene climate change. The model results reveal that most of the Holocene vegetation transitions seen outside the high northern latitudes can be attributed to modifications in the intensity of the global summer monsoons.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, and Timothy Shanahan
Clim. Past, 16, 117–140, https://doi.org/10.5194/cp-16-117-2020, https://doi.org/10.5194/cp-16-117-2020, 2020
Short summary
Short summary
We analyse the end of the African humid period (AHP) in a transient Holocene simulation performed with the comprehensive Earth system model MPI-ESM1.2. The model reproduces the time-transgressive end of the AHP evident in proxy data and indicates that changes in moisture can be attributed to the retreat of the summer monsoon and to changes in the extratropical troughs. The spatially varying impact of these systems imposes regionally different responses to the Holocene insolation change.
Anne Dallmeyer, Martin Claussen, and Victor Brovkin
Clim. Past, 15, 335–366, https://doi.org/10.5194/cp-15-335-2019, https://doi.org/10.5194/cp-15-335-2019, 2019
Short summary
Short summary
A simple but powerful method for the biomisation of plant functional type distributions is introduced and tested for six different dynamic global vegetation models based on pre-industrial and palaeo-simulations. The method facilitates the direct comparison between vegetation distributions simulated by different Earth system models and between model results and the pollen-based biome reconstructions. It is therefore a powerful tool for the evaluation of Earth system models.
S. Kloster, T. Brücher, V. Brovkin, and S. Wilkenskjeld
Clim. Past, 11, 781–788, https://doi.org/10.5194/cp-11-781-2015, https://doi.org/10.5194/cp-11-781-2015, 2015
R. Rachmayani, M. Prange, and M. Schulz
Clim. Past, 11, 175–185, https://doi.org/10.5194/cp-11-175-2015, https://doi.org/10.5194/cp-11-175-2015, 2015
Short summary
Short summary
The role of vegetation-precipitation feedbacks in modifying the North African rainfall response to enhanced early to mid-Holocene summer insolation is analysed using the climate-vegetation model CCSM3-DGVM. Dynamic vegetation amplifies the positive early to mid-Holocene summer precipitation anomaly by ca. 20% in the Sahara-Sahel region. The primary vegetation feedback operates through surface latent heat flux anomalies by canopy evapotranspiration and their effect on the African easterly jet.
T. Brücher, V. Brovkin, S. Kloster, J. R. Marlon, and M. J. Power
Clim. Past, 10, 811–824, https://doi.org/10.5194/cp-10-811-2014, https://doi.org/10.5194/cp-10-811-2014, 2014
O. Flores, E. S. Gritti, and D. Jolly
Clim. Past, 5, 431–440, https://doi.org/10.5194/cp-5-431-2009, https://doi.org/10.5194/cp-5-431-2009, 2009
Cited articles
Bader, J., Jungclaus, J., Krivova, N., Lorenz, S., Maycock, A., Raddatz, T.,
Schmidt, H., Toohey, M., Wu, C. J., and Claussen, M.: Global temperature
modes shed light on the Holocene temperature conundrum, Nat. Commun., 11, 4726, https://doi.org/10.1038/s41467-020-18478-6, 2020.
Berger, A. L.: Long-term variations of daily insolation and Quaternary
climatic changes, J. Atmos. Sci., 35, 2361–2367,
https://doi.org/10.1175/1520-0469(1978)035<2362:ltvodi>2.0.co;2, 1978.
Boy, M., Zhou, P., Kurtén, T., Chen, D., Xavier, C., Clusius, P., Roldin, P., Baykara, M., Pichelstorfer, L., Foreback, B., Bäck, J., Petäjä, T., Makkonen, R., Kerminen, V.-M., Pihlatie, M., Aalto, J., and Kulmala, M.: Positive feedback mechanism between biogenic volatile
organic compounds and the methane lifetime in future climates, npj Clim.
Atmos. Sci., 5, 72, https://doi.org/10.1038/s41612-022-00292-0, 2022.
Braconnot, P., Zhu, D., Marti, O., and Servonnat, J.: Strengths and challenges for transient Mid- to Late Holocene simulations with dynamical
vegetation, Clim. Past, 15, 997–1024, https://doi.org/10.5194/cp-15-997-2019, 2019.
Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M., and Gayler, V.: Global
biogeophysical interactions between forest and climate, Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2009GL037543, 2009.
Brovkin, V., Lorenz, S., Raddatz, T., Ilyina, T., Stemmler, I., Toohey, M.,
and Claussen, M.: What was the source of the atmospheric CO2 increase during the Holocene?, Biogeosciences, 16, 2543–2555, https://doi.org/10.5194/bg-16-2543-2019, 2019.
Cao, X., Tian, F., Li, F., Gaillard, M.-J., Rudaya, N., Xu, Q., and Herzschuh, U.: Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP, Clim. Past, 15, 1503–1536, https://doi.org/10.5194/cp-15-1503-2019, 2019.
Čížková, H., Květ, J., Comín, F. A., Laiho, R.,
Pokorný, J., and Pithart, D.: Actual state of European wetlands and their possible future in the context of global climate change, Aquat. Sci., 75, 3–26, https://doi.org/10.1007/s00027-011-0233-4, 2013.
Dallmeyer, A., Claussen, M., Lorenz, S. J., and Shanahan, T.: The end of the
African humid period as seen by a transient comprehensive Earth system model
simulation of the last 8000 years, Clim. Past, 16, 117–140,
https://doi.org/10.5194/cp-16-117-2020, 2020.
Dallmeyer, A., Claussen, M., Lorenz, S. J., Sigl, M., Toohey, M., and
Herzschuh, U.: Holocene vegetation transitions and their climatic drivers in
MPI-ESM1.2, Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, 2021.
Dallmeyer, A., Kleinen, T., Claussen, M., Weitzel, N., Cao, X., and Herzschuh, U.: The deglacial forest conundrum, Nat. Commun., 13, 6035, https://doi.org/10.1038/s41467-022-33646-6, 2022.
Davis, B. A. S., Collins, P. M., and Kaplan, J. O. The age and post-glacial
development of the modern European vegetation: a plant functional approach
based on pollen data, Veg. Hist. Archaeobot., 2, 303–317,
https://doi.org/10.1007/s00334-014-0476-9, 2015.
Dawson, A., Cao, X., Chaput, M., Hopla, E., Li, Furong, Edwards, M., Fyfe,
R., Gajewski, K., Goring, S. J., Herzschuh, Ulrike, Mazier, F., Sugita, S.,
Williams, J. W., Xu, Q., and Gaillard, M.-J.: Finding the magnitude of
human-induced Northern Hemisphere land-cover transformation between 6 and
0.2 ka BP, PAGES Mag., 26, 34–35, https://doi.org/10.22498/pages.26.1.34, 2018.
Eggermont, H. and Heiri, O.: The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications, Biol. Rev., 87, 430–456, https://doi.org/10.1111/j.1469-185X.2011.00206.x, 2012.
Fyfe, R. M., Roberts, C. N., and Woodbridge, J.: A pollen-based pseudo-biomisation approach to anthropogenic land cover change, Holocene, 20,
1165–1171, 2010.
Fyfe, R. M., Twiddle, C., Sugita, S., Gaillard, M.-J., Barratt, P., Caseldine, C. J., Dodson, J., Edwards, K. J., Farrell, M., Froyd, C., Grant,
M. J., Huckerby, E., Innes, J. B., Shaw, H., and Waller, M.: The Holocene
vegetation cover of Britain and Ireland: overcoming problems of scale and
discerning patterns of openness, Quaternary Sci. Rev. 73, 132–148,
https://doi.org/10.1016/j.quascirev.2013.05.014, 2013.
Gaillard, M.-J. and LandCover6k Interim Steering Group members: LandCover6k: Global anthropogenic land-cover change and its role in past climate, PAGES Mag., 23, 38–39, https://doi.org/10.22498/pages.23.1.38, 2015.
Gaillard, M.-J., Sugita, S., Mazier, F., Trondman, A. K., Broström, A.,
Hickler, T., Kaplan, J. O., Kjellström, E., Kokfelt, U., Kuneš, P.,
Lemmen, C., Miller, P., Olofsson, J., Poska, A., Rundgren, M., Smith, B.,
Strandberg, G., Fyfe, R., Nielsen, A. B., Alenius, T., Balakauskas, L., Barnekow, L., Birks, H. J. B., Bjune, A., Björkman, L., Giesecke, T.,
Hjelle, K., Kalnina, L., Kangur, M., Van Der Knaap, W. O., Koff, T., Lageras, P., Latałowa, M., Leydet, M., Lechterbeck, J., Lindbladh, M., Odgaard, B., Peglar, S., Segerström, U., Von Stedingk, H., and Seppä, H.: Holocene land-cover reconstructions for studies on land cover-climate feedbacks, Clim.e Past, 6, 483–499, https://doi.org/10.5194/cp-6-483-2010, 2010.
Gallego-Sala, A. V., Charman, D. J., Harrison, S. P., Li, G., and Prentice,
I. C.: Climate-driven expansion of blanket bogs in Britain during the Holocene, Clim. Past, 12, 129–136, https://doi.org/10.5194/cp-12-129-2016, 2016.
Garreta, V., Miller, P. A., Guiot, J., Hély, C., Brewer, S., Sykes, M.
T., and Litt, T.: A method for climate and vegetation reconstruction through
the inversion of a dynamic vegetation model, Clim. Dynam., 35, 371–389,
https://doi.org/10.1007/s00382-009-0629-1, 2010.
Giesecke, T., Brewer, S., Finsinger, W., Leydet, M., and Bradshaw, R. H. W.:
Patterns and dynamics of European vegetation change over the last 15,000 years, J. Biogeogr., 44, 1441–1456, https://doi.org/10.1111/jbi.12974, 2017.
Githumbi, E., Fyfe, R., Gaillard, M.-J., Trondman, A.-K., Mazier, F.,
Nielsen, A.-B., Poska, A., Sugita, S., Woodbridge, J., Azuara, J., Feurdean,
A., Grindean, R., Lebreton, V., Marquer, L., Nebout-Combourieu, N.,
Stančikaitė, M., Tanţău, I., Tonkov, S., Shumilovskikh, L.,
and LandClimII data contributors: European pollen-based REVEALS land-cover
reconstructions for the Holocene: methodology, mapping and potentials, Earth
Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, 2022a.
Githumbi, E., Pirzamanbein, B., Lindström, J., Poska, A., Fyfe, R., Mazier, F., Nielsen, A. B., Sugita, S., Trondman, A.-K., Woodbridge, J., and
Gaillard, M.-J.: Pollen-Based Maps of Past Regional Vegetation Cover in
Europe Over 12 Millennia – Evaluation and Potential, Front. Ecol. Evol., 10, 2022, https://doi.org/10.3389/fevo.2022.795794, 2022b.
Harper, A. B., Powell, T., Cox, P. M., House, J., Huntingford, C., Lenton, T. M., Sitch, S., Burke, E., Chadburn, S. E., Collins, W. J., Comyn-Platt, E., Daioglou, V., Doelman, J. C., Hayman, G., Robertson, E., van Vuuren, D., Wiltshire, A., Webber, C. P., Bastos, A., Boysen, L., Ciais, P., Devaraju, N., Jain, A. K., Krause, A., Poulter, B., and Shu, S.: Land-use emissions
play a critical role in land-based mitigation for Paris climate targets, Nat.
Commun., 9, 2938, https://doi.org/10.1038/s41467-018-05340-z, 2018.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Sci. Data,
7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Harrison, S. P., Jolly, D., Laarif, F., Abe-Ouchi, A., Dong, B., Herterich,
K., Hewitt, C., Joussaume, S., Kutzbach, J. E., Mitchell, J., De Noblet, N.,
and Valdes, P.: Intercomparison of simulated global vegetation distributions
in response to 6 kyr BP orbital forcing, J. Climate, 11, 2721–2742, 1998.
Harrison, S. P., Gaillard, M.-J., Stocker, B. D., Vander Linden, M., Klein Goldewijk, K., Boles, O., Braconnot, P., Dawson, A., Fluet-Chouinard, E., Kaplan, J. O., Kastner, T., Pausata, F. S. R., Robinson, E., Whitehouse, N. J., Madella, M., and Morrison, K. D.: Development and testing scenarios for implementing land use and land cover changes during the Holocene in Earth
system model experiments, Geosci. Model Dev., 13, 805–824,
https://doi.org/10.5194/gmd-13-805-2020, 2020.
Hellman, S., Gaillard, M.-J., Broström, A., and Sugita, S.: The REVEALS
model, a new tool to estimate past regional plant abundance from pollen data
in large lakes: validation in southern Sweden, J. Quaternary Sci., 23,
21–42, https://doi.org/10.1002/jqs.1126, 2008a.
Hellman, S. E. V., Gaillard, M., Broström, A., and Sugita, S.: Effects
of the sampling design and selection of parameter values on pollen-based
quantitative reconstructions of regional vegetation: a case study in southern Sweden using the REVEALS model, Veget. Hist. Archaeobot., 17, 445–459, https://doi.org/10.1007/s00334-008-0149-7, 2008b.
Hengl, T., Walsh, M. G., Sanderman, J., Wheeler, I., Harrison, S. P., and
Prentice, I. C.: Global mapping of potential natural vegetation: an assessment of machine learning algorithms for estimating land potential,
Peer J., 6, e5457, https://doi.org/10.7717/peerj.5457, 2018.
Hickler, T., Vohland, K., Feehan, J., Miller, P. A., Smith, B., Costa, L.,
Giesecke, T., Fronzek, S., Carter, T. R., Cramer, W., Kühn, I., and Sykes, M. T.: Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model: Future changes in European vegetation zones, Global Ecol. Biogeogr., 21, 50–63, https://doi.org/10.1111/j.1466-8238.2010.00613.x, 2012.
Hopcroft, P. O., Valdes, P. J., Harper, A. B., and Beerling, D. J.: Multi
vegetation model evaluation of the Green Sahara climate regime, Geophys. Res. Lett., 44, 6804–6813, https://doi.org/10.1002/2017GL073740, 2017.
Huang, B., Hu, X., Fuglstad, G.-A., Zhou, X., Zhao, W., and Cherubini, F.:
Predominant regional biophysical cooling from recent land cover changes in
Europe, Nat. Commun., 11, 1066, https://doi.org/10.1038/s41467-020-14890-0, 2020.
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464,
https://doi.org/10.5194/gmd-13-5425-2020, 2020.
Kaplan, J., Krumhardt, K., Gaillard, M.-J., Sugita, S., Trondman, A.-K.,
Fyfe, R., Marquer, L., Mazier, F., and Nielsen, A.: Constraining the Deforestation History of Europe: Evaluation of Historical Land Use Scenarios
with Pollen-Based Land Cover Reconstructions, Land, 6, 91, https://doi.org/10.3390/land6040091, 2017.
Kaplan, J. O., Krumhardt, K. M., and Zimmermann, N.: The prehistoric and
preindustrial deforestation of Europe, Quaternary Sci. Rev., 28, 3016–3034, https://doi.org/10.1016/j.quascirev.2009.09.028, 2009.
Kaufman, D. S., McKay, N. P., and Routson, C.: NOAA/WDS Paleoclimatology – Temperature 12k Database, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/4ry2-g808, 2020b.
Kleinen, T., Tarasov, P., Brovkin, V., Andreev, A., and Stebich, M.:
Comparison of modeled and reconstructed changes in forest cover through the
past 8000 years, Holocene, 21, 723–734, https://doi.org/10.1177/0959683610386980, 2011.
Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene – HYDE 3.2, Earth Syst. Sci. Data, 9, 927–953, https://doi.org/10.5194/essd-9-927-2017, 2017.
Köhler, P.: Interactive comment on “What was the source of the
atmospheric CO2 increase during the Holocene?” by Victor Brovkin et
al., Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-64-SC1, 2019.
Köppen, W.: Das geographische System der Klimate, in: Handbuch der
Klimatologie, Band. 1, Teil C, Verlag von Gebrüder Borntraeger, Berlin,
https://koeppen-geiger.vu-wien.ac.at/pdf/Koppen_1936.pdf (last access: 25 July 2023), 1936.
Kotrys, B., Płóciennik, M., Sydor, P., and Brooks, S. J.: Expanding the Swiss-Norwegian chironomid training set with Polish data, Boreas, 49,
89–107, https://doi.org/10.1111/bor.12406, 2020.
Krivova, N. A., Solanki, S. K., and Unruh, Y. C.: Towards a long-term record
of solar total and spectral irradiance, J. Atmos. Sol.-Terr. Phy., 73, 223–234, https://doi.org/10.1016/j.jastp.2009.11.013, 2011.
Li, F., Gaillard, M.-J., Cao, X., Herzschuh, U., Sugita, S., Tarasov, P. E.,
Wagner, M., Xu, Q., Ni, J., Wang, W., Zhao, Y., An, C., Beusen, A. H. W.,
Chen, F., Feng, Z., Goldewijk, C. G. M. K., Huang, X., Li, Y., Li, Y., Liu,
H., Sun, A., Yao, Y., Zheng, Z., and Jia, X.: Towards quantification of
Holocene anthropogenic land-cover change in temperate China: A review in the
light of pollen-based REVEALS reconstructions of regional plant cover,
Earth-Sci. Rev., 203, 103119, https://doi.org/10.1016/j.earscirev.2020.103119, 2020.
Li, F., Gaillard, M.-J., Cao, X., Herzschuh, U., Sugita, S., Ni, J., Zhao,
Y., An, C., Huang, X., Li, Y., Liu, H., Sun, A., and Yao, Y.: Gridded
pollen-based Holocene regional plant cover in temperate and northern subtropical China suitable for climate modelling, Earth Syst. Sci. Data, 15,
95–112, https://doi.org/10.5194/essd-15-95-2023, 2023.
Lindeskog, M., Arneth, A., Bondeau, A., Waha, K., Seaquist, J., Olin, S., and Smith, B.: Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa, Earth Syst. Dynam., 4, 385–407,
https://doi.org/10.5194/esd-4-385-2013, 2013.
Lu, Z., Miller, P. A., Zhang, Q., Zhang, Q., Wårlind, D., Nieradzik, L.,
Sjolte, J., and Smith, B.: Dynamic Vegetation Simulations of the Mid-Holocene Green Sahara, Geophys. Res. Lett., 45, 8294–8303, https://doi.org/10.1029/2018GL079195, 2018.
Lu, Z., Zhang, Q., Miller, P. A., Zhang, Q., Berntell, E., and Smith, B.:
Impacts of Large-Scale Sahara Solar Farms on Global Climate and Vegetation
Cover, Geophys. Res. Lett., 48, e2020GL090789, https://doi.org/10.1029/2020GL090789, 2021.
Lund University: LPJ-GUESS Education, https://web.nateko.lu.se/lpj-guess/education/ (last access: 25 July 2023), 2014.
Luoto, T., Kotrys, B., and Płóciennik, M.: East European chironomid-based calibration model for past summer temperature reconstructions, Clim. Res., 77, 63–76, https://doi.org/10.3354/cr01543, 2019.
Marquer, L., Gaillard, M.-J., Sugita, S., Trondman, A.-K., Mazier, F.,
Nielsen, A. B., Fyfe, R. M., Odgaard, B. V., Alenius, T., Birks, H. J. B.,
Bjune, A. E., Christiansen, J., Dodson, J., Edwards, K. J., Giesecke, T.,
Herzschuh, U., Kangur, M., Lorenz, S., Poska, A., Schult, M., and Seppä,
H.: Holocene changes in vegetation composition in northern Europe: why
quantitative pollen-based vegetation reconstructions matter, Quaternary Sci. Rev., 90, 199–216, https://doi.org/10.1016/j.quascirev.2014.02.013, 2014.
Marquer, L., Gaillard, M.-J., Sugita, S., Poska, A., Trondman, A.-K., Mazier, F., Nielsen, A. B., Fyfe, R. M., Jönsson, A. M., Smith, B., Kaplan, J. O., Alenius, T., Birks, H. J. B., Bjune, A. E., Christiansen, J., Dodson, J., Edwards, K. J., Giesecke, T., Herzschuh, U., Kangur, M., Koff, T., Latałowa, M., Lechterbeck, J., Olofsson, J., and Seppä, H.: Quantifying the effects of land use and climate on Holocene vegetation in Europe, Quaternary Sci. Rev., 171, 20–37, https://doi.org/10.1016/j.quascirev.2017.07.001, 2017.
Marquer, L., Dallmeyer, A., Poska, A., Pongratz, J., Smith, B., and Gaillard, M.-J.: Modeling past human-induced vegetation change is a challenge – the case of Europe, Past Global Change. Mag., 26, 12–13, https://doi.org/10.22498/pages.26.1.12, 2018.
Marquer, L., Gaillard, M.-J., Sugita, S., Poska, A., Trondman, A.-K.,
Mazier, F., Nielsen, A. B., Fyfe, R. M., Jönsson, A. M., Smith, B.,
Kaplan, J. O., Alenius, T., Birks, H. J. B., Bjune, A. E., Christiansen, J.,
Dodson, J., Edwards, K. J., Giesecke, T., Herzschuh, U., Kangur, M., Koff,
T., Latalowa, M., Lechterbeck, J., Olofsson, J., and Seppä, H.:
Pollen-based REVEALS estimates of plant cover in Europe for 36 grid-cells
and the last 11700 years, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.900966, 2019.
Marquer, L., Mazier, F., Sugita, S., Galop, D., Houet, T., Faure, E., Gaillard, M.-J., Haunold, S., de Munnik, N., Simonneau, A., De Vleeschouwer,
F., and Le Roux, G.: Pollen-based reconstruction of Holocene land-cover in
mountain regions: Evaluation of the Landscape Reconstruction Algorithm in
the Vicdessos valley, northern Pyrenees, France, Quaternary Sci. Rev., 228, 106049, https://doi.org/10.1016/j.quascirev.2019.106049, 2020.
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S.,
Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz-de-la-Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S.,
Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke,
J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B.,
Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz, D., Nyawira, S.
S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp,
M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschneider, T.,
Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein,
L., Stemmler, I., Stevens, B., von Storch, J. S., Tian, F., Voigt, A., Vrese, P., Wieners, K. H., Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and
Its Response to Increasing CO2, J. Adv. Model. Earth Syst., 11, 998–1038, https://doi.org/10.1029/2018MS001400, 2019.
Mazier, F., Gaillard, M.-J., Kuneš, P., Sugita, S., Trondman, A.-K., and
Broström, A.: Testing the effect of site selection and parameter setting
on REVEALS-model estimates of plant abundance using the Czech Quaternary
Palynological Database, Rev. Palaeobot. Palynol., 187, 38–49,
https://doi.org/10.1016/j.revpalbo.2012.07.017, 2012.
Miller, P. A., Giesecke, T., Hickler, T., Bradshaw, R. H. W., Smith, B.,
Seppä, H., Valdes, P. J., and Sykes, M. T.: Exploring climatic and
biotic controls on Holocene vegetation change in Fennoscandia, J. Ecol., 96, 247–259, https://doi.org/10.1111/j.1365-2745.2007.01342.x, 2008.
Monsi, M.: On the Factor Light in Plant Communities and its Importance for
Matter Production, Ann. Bot., 95, 549–567, https://doi.org/10.1093/aob/mci052, 2004.
Monsi, M. and Saeki, T.: Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion, Jpn. J. Bot., 14, 22–52, 1953.
MPG.PuRe: The challenge of comparing pollen-based quantitative vegetation
reconstructions with outputs from vegetation models – a European perspective, Publication Repository of the Max-Planck-Society,
https://hdl.handle.net/21.11116/0000-000D-4E03-9 (last access: 21 June 2023), 2023.
MPI-M: Climate Modeling at the Max Planck Institute for Meteorology, official webpage of the Max Planck Institute for Meteorology, https://mpimet.mpg.de/en/research/modeling (last access: 25 July 2023), 2023.
Müller, C., Franke, J., Jägermeyr, J., Ruane, A. C., Elliott, J.,
Moyer, E., Heinke, J., Falloon, P. D., Folberth, C., Francois, L., Hank, T.,
Izaurralde, R. C., Jacquemin, I., Liu, W., Olin, S., Pugh, T. A. M., Williams, K., and Zabel, F.: Exploring uncertainties in global crop yield
projections in a large ensemble of crop models and CMIP5 and CMIP6 climate
scenarios, Environ. Res. Lett., 16, 034040, https://doi.org/10.1088/1748-9326/abd8fc, 2021.
National Geophysical Data Center: 5-minute Gridded Global Relief Data
(ETOPO5),
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.dem:3141
(last access: 25 July 2023), 1993.
Nielsen, A. B., Giesecke, T., Theuerkauf, M., Feeser, I., Behre, K.-E.,
Beug, H.-J., Chen, S.-H., Christiansen, J., Dörfler, W., Endtmann, E.,
Jahns, S., de Klerk, P., Kühl, N., Latałowa, M., Odgaard, B. V.,
Rasmussen, P., Stockholm, J. R., Voigt, R., Wiethold, J., and Wolters, S.:
Quantitative reconstructions of changes in regional openness in north-central Europe reveal new insights into old questions, Quaternary Sci. Rev., 47, 131–149, https://doi.org/10.1016/j.quascirev.2012.05.011, 2012.
Olofsson, J. and Hickler, T.: Effects of human land-use on the global carbon
cycle during the last 6,000 years, Veget. Hist. Archaeobot., 17, 605–615, https://doi.org/10.1007/s00334-007-0126-6, 2008.
Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X.,
Ahlström, A., Anav, A., Canadell, J. G., Cong, N., Huntingford, C., Jung, M., Levis, S., Levy, P. E., Li, J., Lin, X., Lomas, M. R., Lu, M., Luo, Y., Ma, Y., Myneni, R. B., Poulter, B., Sun, Z., Wang, T., Viovy, N., Zaehle, S., and Zeng, N.: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends, Global Change Biol.,
19, 2117–2132, https://doi.org/10.1111/gcb.12187, 2013.
Pirzamanbein, B., Lindström, J., Poska, A., Sugita, S., Trondman, A. K.,
Fyfe, R., Mazier, F., Nielsen, A. B., Kaplan, J. O., Bjune, A. E., Birks, H.
J. B., Giesecke, T., Kangur, M., Latałowa, M., Marquer, L., Smith, B., and
Gaillard, M. J.: Creating spatially continuous maps of past land cover from
point estimates: A new statistical approach applied to pollen data, Ecol. Complex., 20, 127–141, https://doi.org/10.1016/j.ecocom.2014.09.005, 2014.
Pirzamanbein, B., Poska, A., and Lindström, J.: Bayesian reconstruction of past land cover from pollen data: Model robustness and sensitivity to auxiliary variables, Earth Space Sci., 7, e2018EA00057, https://doi.org/10.1029/2018EA000547, 2020.
Pleskot, K., Apolinarska, K., Cwynar, L. C., Kotrys, B., and Lamentowicz, M.: The late-Holocene relationship between peatland water table depth and summer temperature in northern Poland, Palaeogeogr. Palaeocl. Palaeoecol., 586, 110758, https://doi.org/10.1016/j.palaeo.2021.110758, 2022.
Płóciennik, M., Self, A., Birks, H. J. B., and Brooks, S. J.: Chironomidae (Insecta: Diptera) succession in Żabieniec bog and its
palaeo-lake (central Poland) through the Late Weichselian and Holocene,
Palaeogeography, Palaeoclimatology, Palaeoecology, 307, 150–167,
https://doi.org/10.1016/j.palaeo.2011.05.010, 2011.
Prentice, I. C.: Multidimensional scaling as a research tool in quaternary
palynology: A review of theory and methods, Rev. Palaeobot. Palynol., 31, 71–104, https://doi.org/10.1016/0034-6667(80)90023-8, 1980.
Prentice, I. C.: Pollen representation, source area, and basin size: toward a
unified theory of pollen analysis, Quatern. Res., 23, 76–86, 1985.
Prentice, I. C., Sykes, M. T., Lautenschlager, M., Harrison, S. P., Denissenko, O., and Bartlein, P. J.: Modelling Global Vegetation Patterns
and Terrestrial Carbon Storage at the Last Glacial Maximum, Global Ecol. Biogeogr. Lett., 3, 67–76, https://doi.org/10.2307/2997548, 1993.
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of
natural and anthropogenic land cover change in MPI-ESM: Land Cover in MPI-ESM, J. Adv. Model. Earth Syst., 5, 459–482, https://doi.org/10.1002/jame.20022, 2013.
Reick, C. H., Gayler, V., Goll, D., Hagemann, Stefan Heidkamp, M., Nabel, J., Raddatz, T., Roeckner, E., Schnur, R., and Wilkenskjeld, S.: JSBACH 3 – The land component of the MPI Earth System Model: documentation of version 3.2, Berichte zur Erdsystemforschung,MPI für Meteorologie, Hamburg, https://doi.org/10.17617/2.3279802, 2021.
Roberts, N., Fyfe, R. M., Woodbridge, J., Gaillard, M.-J., Davis, B. A. S.,
Kaplan, J. O., Marquer, L., Mazier, F., Nielsen, A. B., Sugita, S., Trondman, A.-K., and Leydet, M.: Europe's lost forests: a pollen-based synthesis for the last 11,000 years, Sci. Rep., 8, 716, https://doi.org/10.1038/s41598-017-18646-7, 2018.
Ruddiman, W. F.: The early anthropogenic hypothesis: Challenges and responses, Rev. Geophys., 45, RG4001, https://doi.org/10.1029/2006RG000207, 2007.
Ruddiman, W. F., Ellis, E. C., Kaplan, J. O., and Fuller, D. Q.: Defining
the epoch we live in, Science, 348, 38–39, https://doi.org/10.1126/science.aaa7297, 2015.
Serge, M. A., Mazier, F., Fyfe, R., Gaillard, M.-J., Klein, T., Lagnoux, A.,
Galop, D., Githumbi, E., Mindrescu, M., Nielsen, A. B., et al.: Testing the Effect of Relative Pollen Productivity on the REVEALS Model: A Validated Reconstruction of Europe-Wide Holocene Vegetation, Land, 12, 986, https://doi.org/10.3390/land12050986, 2023.
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W.,
Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and
terrestrial carbon cycling in the LPJ dynamic global vegetation model: LPJ
Dynamic Global Vegetation Model, Global Change Biol., 9, 161–185,
https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003.
Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation
dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space: Vegetation dynamics in
ecosystem models, Global Ecol. Biogeogr., 10, 621–637,
https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x, 2001.
Smith, B., Knorr, W., Widlowski, J.-L., Pinty, B., and Gobron, N.: Combining
remote sensing data with process modelling to monitor boreal conifer forest
carbon balances, Forest Ecol. Manage., 255, 3985–3994,
https://doi.org/10.1016/j.foreco.2008.03.056, 2008.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg,
J., and Zaehle, S.: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, 2014.
Smith, M. C., Singarayer, J. S., Valdes, P. J., Kaplan, J. O., and Branch, N. P.: The biogeophysical climatic impacts of anthropogenic land use change during the Holocene, Clim. Past, 12, 923–941, https://doi.org/10.5194/cp-12-923-2016, 2016.
Strandberg, G., Kjellström, E., Poska, A., Wagner, S., Gaillard, M.-J.,
Trondman, A.-K., Mauri, A., Davis, B. A. S., Kaplan, J. O., Birks, H. J. B.,
Bjune, A. E., Fyfe, R., Giesecke, T., Kalnina, L., Kangur, M., van der
Knaap, W. O., Kokfelt, U., Kuneš, P., Latałowa, M., Marquer, L., Mazier, F., Nielsen, A. B., Smith, B., Seppä, H., and Sugita, S.: Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation, Clim. Past, 10,
661–680, https://doi.org/10.5194/cp-10-661-2014, 2014.
Strandberg, G., Lindström, J., Poska, A., Zhang, Q., Fyfe, R., Githumbi,
E., Kjellström, E., Mazier, F., Nielsen, A. B., Sugita, S., Trondman, A.-K., Woodbridge, J., and Gaillard, M.-J.: Mid-Holocene European climate
revisited: New high-resolution regional climate model simulations using
pollen-based land-cover, Quaternary Sci. Rev., 281, 107431,
https://doi.org/10.1016/j.quascirev.2022.107431, 2022.
Strandberg, G., Chen, J., Fyfe, R., Kjellström, E., Lindström, J., Poska, A., Zhang, Q., and Gaillard, M.-J.: Did the Bronze Age deforestation of Europe affect its climate? A regional climate-model study using pollen-based land-cover reconstructions, Clim. Past Discuss. [preprint], https://doi.org/10.5194/cp-2023-17, in review, 2023.
Sugita, S.: Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition, Holocene, 17,
229–241, https://doi.org/10.1177/0959683607075837, 2007.
Sugita, S., Parshall, T., Calcote, R., and Walker, K.: Testing the Landscape
Reconstruction Algorithm for spatially explicit reconstruction of vegetation
in northern Michigan and Wisconsin, Quatern. Res., 74, 289–300,
https://doi.org/10.1016/j.yqres.2010.07.008, 2010.
Sun, Y., Xu, Q., Gaillard, M.-J., Zhang, S., Li, D., Li, M., Li, Y., Li, X.,
and Xiao, J.: Pollen-based reconstruction of total land-cover change over
the Holocene in the temperate steppe region of China: An attempt to quantify
the cover of vegetation and bare ground in the past using a novel approach,
Catena, 214, 106307, https://doi.org/10.1016/j.catena.2022.106307, 2022.
Toohey, M. and Sigl, M.: Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE, Earth Syst. Sci. Data, 9, 809–831, https://doi.org/10.5194/essd-9-809-2017, 2017.
Trondman, A., Gaillard, M., Mazier, F., Sugita, S., and Fyfe, R.: Pollen-based quantitative reconstructions of Holocene regional vegetation
cover (plant-functional types and land-cover types) in Europe suitable for
climate modelling, Global Change Biol., 46, 676–697, https://doi.org/10.1111/gcb.12737, 2015.
Trondman, A.-K., Gaillard, M.-J., Sugita, S., Björkman, L., Greisman, A., Hultberg, T., Lagerås, P., Lindbladh, M., and Mazier, F.: Are pollen
records from small sites appropriate for REVEALS model-based quantitative
reconstructions of past regional vegetation? An empirical test in southern
Sweden, Veget. Hist. Archaeobot., 25, 131–151,
https://doi.org/10.1007/s00334-015-0536-9, 2016.
University of East Anglia Climatic Research Unit (CRU), Harris, I. C., and Jones, P. D.: CRU TS4.00: Climatic Research Unit (CRU) Time-Series (TS) version 4.00 of high resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2015), https://catalogue.ceda.ac.uk/uuid/edf8febfdaad48abb2cbaf7d7e846a86 (last access: 25 July 2023), 2017.
Velle, G., Brodersen, K. P., Birks, H. J. B., and Willassen, E.: Midges as
quantitative temperature indicator species: Lessons for palaeoecology,
Holocene, 20, 989–1002, https://doi.org/10.1177/0959683610365933, 2010.
Williams, J. W. and Jackson, S. T.: Novel climates, no-analog communities,
and ecological surprises, Front. Ecol. Environ., 5, 475–482, https://doi.org/10.1890/070037, 2007.
Williamson, P.: Emissions reduction: Scrutinize CO2 removal methods, Nature, 530, 153–155, https://doi.org/10.1038/530153a, 2016.
Wohlfahrt, J., Harrison, S. P., Braconnot, P., Hewitt, C. D., Kitoh, A.,
Mikolajewicz, U., Otto-Bliesner, B. L., and Weber, S. L.: Evaluation of
coupled ocean-atmosphere simulations of the mid-Holocene using palaeovegetation data from the northern hemisphere extratropics, Clim. Dynam., 31, 871–890, 2008.
Wolf, A., Callaghan, T. V., and Larson, K.: Future changes in vegetation and
ecosystem function of the Barents Region, Climatic Change, 87, 51–73,
https://doi.org/10.1007/s10584-007-9342-4, 2008.
Wramneby, A., Smith, B., and Samuelsson, P.: Hot spots of vegetation-climate
feedbacks under future greenhouse forcing in Europe, J. Geophys. Res., 115,
D21119, https://doi.org/10.1029/2010JD014307, 2010.
Short summary
We compare past tree cover changes in Europe during the last 8000 years simulated with two dynamic global vegetation models and inferred from pollen data. The major model–data mismatch is related to the much earlier onset of anthropogenic deforestation in the data compared to the prescribed land use in the models. We show that land use, and not climate, is the main driver of the Holocene forest decline. The model–data agreement depends on the model tuning, challenging model–data comparisons.
We compare past tree cover changes in Europe during the last 8000 years simulated with two...