Articles | Volume 18, issue 7
https://doi.org/10.5194/cp-18-1563-2022
https://doi.org/10.5194/cp-18-1563-2022
Research article
 | Highlight paper
 | 
07 Jul 2022
Research article | Highlight paper |  | 07 Jul 2022

Stratigraphic templates for ice core records of the past 1.5 Myr

Eric W. Wolff, Hubertus Fischer, Tas van Ommen, and David A. Hodell

Related authors

Ice core nitrogen isotopes archive dramatic changes in West Antarctic Ice Sheet thinning
Amy Constance Faith King, Thomas Keith Bauska, Amaelle Landais, Carlos Martin, and Eric William Wolff
EGUsphere, https://doi.org/10.5194/egusphere-2025-3305,https://doi.org/10.5194/egusphere-2025-3305, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Doomed descent? How fast sulphate signals diffuse in the EPICA Dome C ice column
Felix S. L. Ng, Rachael H. Rhodes, Tyler J. Fudge, and Eric W. Wolff
EGUsphere, https://doi.org/10.5194/egusphere-2025-1566,https://doi.org/10.5194/egusphere-2025-1566, 2025
Short summary
500-thousand-year-old basal ice at Skytrain Ice Rise, West Antarctica, estimated with the 36Cl/10Be ratio
Niklas Kappelt, Eric Wolff, Marcus Christl, Christof Vockenhuber, Philip Gautschi, and Raimund Muscheler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1780,https://doi.org/10.5194/egusphere-2025-1780, 2025
Short summary
Laser ablation inductively coupled plasma mass spectrometry measurements for high-resolution chemical ice core analyses with a first application to an ice core from Skytrain Ice Rise (Antarctica)
Helene Hoffmann, Jason Day, Rachael H. Rhodes, Mackenzie Grieman, Jack Humby, Isobel Rowell, Christoph Nehrbass-Ahles, Robert Mulvaney, Sally Gibson, and Eric Wolff
The Cryosphere, 18, 4993–5013, https://doi.org/10.5194/tc-18-4993-2024,https://doi.org/10.5194/tc-18-4993-2024, 2024
Short summary
New estimates of sulfate diffusion rates in the EPICA Dome C ice core
Rachael H. Rhodes, Yvan Bollet-Quivogne, Piers Barnes, Mirko Severi, and Eric W. Wolff
Clim. Past, 20, 2031–2043, https://doi.org/10.5194/cp-20-2031-2024,https://doi.org/10.5194/cp-20-2031-2024, 2024
Short summary

Cited articles

Ahn, S., Khider, D., Lisiecki, L. E., and Lawrence, C. E.: A probabilistic Pliocene–Pleistocene stack of benthic δ18O using a profile hidden Markov model, Dynamics and Statistics of the Climate System, 2, https://doi.org/10.1093/climsys/dzx002, 2017. 
Baggenstos, D., Häberli, M., Schmitt, J., Shackleton, S. A., Birner, B., Severinghaus, J. P., Kellerhals, T., and Fischer, H.: Earth's radiative imbalance from the Last Glacial Maximum to the present, P. Natl. Acad. Sci. USA, 116, 14881, https://doi.org/10.1073/pnas.1905447116, 2019. 
Barker, S., Knorr, G., Edwards, R. L., Parrenin, F., Putnam, A. E., Skinner, L. C., Wolff, E. W., and Ziegler, M.: 800 000 years of abrupt climate variability, Science, 334, 347–351, 2011. 
Baumgartner, M., Kindler, P., Eicher, O., Floch, G., Schilt, A., Schwander, J., Spahni, R., Capron, E., Chappellaz, J., Leuenberger, M., Fischer, H., and Stocker, T. F.: NGRIP CH4 concentration from 120 to 10 kyr before present and its relation to a δ15N temperature reconstruction from the same ice core, Clim. Past, 10, 903–920, https://doi.org/10.5194/cp-10-903-2014, 2014. 
Download
Co-editor-in-chief
Reviewer 2 of that paper made a clear statement about that paper which can be used at the present level. "This manuscript’s goal is to provide recommendations for how best to develop age models for new ice cores that are anticipated to retrieve ice from 0.8-1.5 Myr ago. As significant resources are being invested to retrieve this ice, the thoughtful advance planning for the creation of these age models is commendable. In proposing specific age modeling strategies, the manuscript also generates useful hypotheses about the types of climate responses that are expected to be found in the new ice cores."
Short summary
Projects are underway to drill ice cores in Antarctica reaching 1.5 Myr back in time. Dating such cores will be challenging. One method is to match records from the new core against datasets from existing marine sediment cores. Here we explore the options for doing this and assess how well the ice and marine records match over the existing 800 000-year time period. We are able to recommend a strategy for using marine data to place an age scale on the new ice cores.
Share