Articles | Volume 17, issue 3
https://doi.org/10.5194/cp-17-985-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-985-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of the oxygen isotope signatures in speleothem records and iHadCM3 model simulations for the last millennium
Janica C. Bühler
CORRESPONDING AUTHOR
Institute of Environmental Physics, Ruprecht-Karls-Universität Heidelberg, INF 229, 69120 Heidelberg, Germany
Carla Roesch
Institute of Environmental Physics, Ruprecht-Karls-Universität Heidelberg, INF 229, 69120 Heidelberg, Germany
Moritz Kirschner
Institute of Environmental Physics, Ruprecht-Karls-Universität Heidelberg, INF 229, 69120 Heidelberg, Germany
Louise Sime
British Arctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom
Max D. Holloway
Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, United Kingdom
Kira Rehfeld
CORRESPONDING AUTHOR
Institute of Environmental Physics, Ruprecht-Karls-Universität Heidelberg, INF 229, 69120 Heidelberg, Germany
Related authors
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Janica C. Bühler, Josefine Axelsson, Franziska A. Lechleitner, Jens Fohlmeister, Allegra N. LeGrande, Madhavan Midhun, Jesper Sjolte, Martin Werner, Kei Yoshimura, and Kira Rehfeld
Clim. Past, 18, 1625–1654, https://doi.org/10.5194/cp-18-1625-2022, https://doi.org/10.5194/cp-18-1625-2022, 2022
Short summary
Short summary
We collected and standardized the output of five isotope-enabled simulations for the last millennium and assess differences and similarities to records from a global speleothem database. Modeled isotope variations mostly arise from temperature differences. While lower-resolution speleothems do not capture extreme changes to the extent of models, they show higher variability on multi-decadal timescales. As no model excels in all comparisons, we advise a multi-model approach where possible.
Sentia Goursaud Oger, Louise C. Sime, and Max Holloway
Clim. Past, 20, 2539–2560, https://doi.org/10.5194/cp-20-2539-2024, https://doi.org/10.5194/cp-20-2539-2024, 2024
Short summary
Short summary
Antarctic ice cores provide information about past temperatures. Here, we run new climate model simulations, including stable water isotopes for the historical period. Across one-third of Antarctica, there is no strong connection between isotopes and temperature and a weak connection for most of the rest of Antarctica. This disconnect between isotopes and temperature is largely driven by changes in Antarctic sea ice. Our results are helpful for temperature reconstructions from ice core records.
John Slattery, Louise C. Sime, Francesco Muschitiello, and Keno Riechers
Clim. Past, 20, 2431–2454, https://doi.org/10.5194/cp-20-2431-2024, https://doi.org/10.5194/cp-20-2431-2024, 2024
Short summary
Short summary
Dansgaard–Oeschger events are a series of abrupt past climate change events during which the atmosphere, sea ice, and ocean in the North Atlantic underwent rapid changes. One current topic of interest is the order in which these different changes occurred, which remains unknown. In this work, we find that the current best method used to investigate this topic is subject to substantial bias. This implies that it is not possible to reliably determine the order of the different changes.
Mathurin A. Choblet, Janica C. Bühler, Valdir F. Novello, Nathan J. Steiger, and Kira Rehfeld
Clim. Past, 20, 2117–2141, https://doi.org/10.5194/cp-20-2117-2024, https://doi.org/10.5194/cp-20-2117-2024, 2024
Short summary
Short summary
Past climate reconstructions are essential for understanding climate mechanisms and drivers. Our focus is on the South American continent over the past 2000 years. We offer a new reconstruction that particularly utilizes data from speleothems, previously absent from continent-wide reconstructions. We use paleoclimate data assimilation, a reconstruction method that combines information from climate archives and climate simulations.
Jean-Philippe Baudouin, Nils Weitzel, Maximilian May, Lukas Jonkers, Andrew M. Dolman, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1387, https://doi.org/10.5194/egusphere-2024-1387, 2024
Short summary
Short summary
We explore past global temperatures, critical for climate change comprehension. We devise a method to test temperature reconstruction using climate simulations. Uncertainties, mainly from past temperature measurement methods and age determination, impact reconstructions over time. While more data enhances accuracy for long-term trends, high quality data are more important for short-term precision. Our study lays the groundwork for better reconstructions and suggests avenues for improvement.
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1396, https://doi.org/10.5194/egusphere-2024-1396, 2024
Short summary
Short summary
During the Last Deglaciation global surface temperature rose by about 4–7 degrees over several millennia. We show that changes of year-to-year up to century-to-century fluctuations of temperature and precipitation during the Deglaciation were mostly larger than during either the preceding or succeeding more stable periods in fifteen climate model simulations. The analysis demonstrates how ice sheets, meltwater and volcanism influence simulated variability to inform future simulation protocols.
Qinggang Gao, Emilie Capron, Louise C. Sime, Rachael H. Rhodes, Rahul Sivankutty, Xu Zhang, Bette L. Otto-Bliesner, and Martin Werner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1261, https://doi.org/10.5194/egusphere-2024-1261, 2024
Short summary
Short summary
Marine sediment and ice core records suggest a warmer Southern Ocean and Antarctica at the early last interglacial, ~127 thousand years ago. However, when only forced by orbital parameters and greenhouse gas concentrations during that period, state-of-the-art climate models do not reproduce the magnitude of warming. Here we show that much of the warming at southern mid-to-high latitudes can be reproduced by a UK climate model HadCM3 with a 3000-year freshwater forcing over the North Atlantic.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024, https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary
Short summary
The ability of climate models to faithfully reproduce past warming episodes is a valuable test considering potentially large future warming. We develop a new method to compare simulations of the last deglaciation with temperature reconstructions. We find that reconstructions differ more between regions than simulations, potentially due to deficiencies in the simulation design, models, or reconstructions. Our work is a promising step towards benchmarking simulations of past climate transitions.
Julie Christin Schindlbeck-Belo, Matthew Toohey, Marion Jegen, Steffen Kutterolf, and Kira Rehfeld
Earth Syst. Sci. Data, 16, 1063–1081, https://doi.org/10.5194/essd-16-1063-2024, https://doi.org/10.5194/essd-16-1063-2024, 2024
Short summary
Short summary
Volcanic forcing of climate resulting from major explosive eruptions is a dominant natural driver of past climate variability. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present an ensemble reconstruction of volcanic stratospheric sulfur injection over the last 140 000 years that is based primarily on tephra records.
Qinggang Gao, Louise C. Sime, Alison J. McLaren, Thomas J. Bracegirdle, Emilie Capron, Rachael H. Rhodes, Hans Christian Steen-Larsen, Xiaoxu Shi, and Martin Werner
The Cryosphere, 18, 683–703, https://doi.org/10.5194/tc-18-683-2024, https://doi.org/10.5194/tc-18-683-2024, 2024
Short summary
Short summary
Antarctic precipitation is a crucial component of the climate system. Its spatio-temporal variability impacts sea level changes and the interpretation of water isotope measurements in ice cores. To better understand its climatic drivers, we developed water tracers in an atmospheric model to identify moisture source conditions from which precipitation originates. We find that mid-latitude surface winds exert an important control on moisture availability for Antarctic precipitation.
Irene Malmierca-Vallet, Louise C. Sime, and the D–O community members
Clim. Past, 19, 915–942, https://doi.org/10.5194/cp-19-915-2023, https://doi.org/10.5194/cp-19-915-2023, 2023
Short summary
Short summary
Greenland ice core records feature Dansgaard–Oeschger (D–O) events, abrupt warming episodes followed by a gradual-cooling phase during mid-glacial periods. There is uncertainty whether current climate models can effectively represent the processes that cause D–O events. Here, we propose a Marine Isotopic Stage 3 (MIS3) baseline protocol which is intended to provide modelling groups investigating D–O oscillations with a common framework.
Louise C. Sime, Rahul Sivankutty, Irene Vallet-Malmierca, Agatha M. de Boer, and Marie Sicard
Clim. Past, 19, 883–900, https://doi.org/10.5194/cp-19-883-2023, https://doi.org/10.5194/cp-19-883-2023, 2023
Short summary
Short summary
It is not known if the Last Interglacial (LIG) experienced Arctic summers that were sea ice free: models show a wide spread in LIG Arctic temperature and sea ice results. Evaluation against sea ice markers is hampered by few observations. Here, an assessment of 11 climate model simulations against summer temperatures shows that the most skilful models have a 74 %–79 % reduction in LIG sea ice. The measurements of LIG areas indicate a likely mix of ice-free and near-ice-free LIG summers.
Maria Vittoria Guarino, Louise C. Sime, Rachel Diamond, Jeff Ridley, and David Schroeder
Clim. Past, 19, 865–881, https://doi.org/10.5194/cp-19-865-2023, https://doi.org/10.5194/cp-19-865-2023, 2023
Short summary
Short summary
We investigate the response of the atmosphere, ocean, and ice domains to the release of a large volume of glacial meltwaters thought to have occurred during the Last Interglacial period. We show that the signal that originated in the North Atlantic travels over great distances across the globe. It modifies the ocean gyre circulation in the Northern Hemisphere as well as the belt of westerly winds in the Southern Hemisphere, with consequences for Antarctic sea ice.
Christian Wirths, Elisa Ziegler, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2023-86, https://doi.org/10.5194/egusphere-2023-86, 2023
Preprint archived
Short summary
Short summary
We compare Holocene temperature trends from reconstructions and global climate models of different complexities. We find that models of all complexities disagree with mid-Holocene trends in reconstructions, and we show that this disagreement is largely independent of the type of reconstruction. From our results we conclude that a seasonal bias in the reconstructions is unlikely as a full explanation for the disagreement.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Janica C. Bühler, Josefine Axelsson, Franziska A. Lechleitner, Jens Fohlmeister, Allegra N. LeGrande, Madhavan Midhun, Jesper Sjolte, Martin Werner, Kei Yoshimura, and Kira Rehfeld
Clim. Past, 18, 1625–1654, https://doi.org/10.5194/cp-18-1625-2022, https://doi.org/10.5194/cp-18-1625-2022, 2022
Short summary
Short summary
We collected and standardized the output of five isotope-enabled simulations for the last millennium and assess differences and similarities to records from a global speleothem database. Modeled isotope variations mostly arise from temperature differences. While lower-resolution speleothems do not capture extreme changes to the extent of models, they show higher variability on multi-decadal timescales. As no model excels in all comparisons, we advise a multi-model approach where possible.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
Matthew Chadwick, Claire S. Allen, Louise C. Sime, Xavier Crosta, and Claus-Dieter Hillenbrand
Clim. Past, 18, 129–146, https://doi.org/10.5194/cp-18-129-2022, https://doi.org/10.5194/cp-18-129-2022, 2022
Short summary
Short summary
Algae preserved in marine sediments have allowed us to reconstruct how much winter sea ice was present around Antarctica during a past time period (130 000 years ago) when the climate was warmer than today. The patterns of sea-ice increase and decrease vary between different parts of the Southern Ocean. The Pacific sector has a largely stable sea-ice extent, whereas the amount of sea ice in the Atlantic sector is much more variable with bigger decreases and increases than other regions.
Rachel Diamond, Louise C. Sime, David Schroeder, and Maria-Vittoria Guarino
The Cryosphere, 15, 5099–5114, https://doi.org/10.5194/tc-15-5099-2021, https://doi.org/10.5194/tc-15-5099-2021, 2021
Short summary
Short summary
The Hadley Centre Global Environment Model version 3 (HadGEM3) is the first coupled climate model to simulate an ice-free summer Arctic during the Last Interglacial (LIG), 127 000 years ago, and yields accurate Arctic surface temperatures. We investigate the causes and impacts of this extreme simulated ice loss and, in particular, the role of melt ponds.
Raphaël Hébert, Kira Rehfeld, and Thomas Laepple
Nonlin. Processes Geophys., 28, 311–328, https://doi.org/10.5194/npg-28-311-2021, https://doi.org/10.5194/npg-28-311-2021, 2021
Short summary
Short summary
Paleoclimate proxy data are essential for broadening our understanding of climate variability. There remain, however, challenges for traditional methods of variability analysis to be applied to such data, which are usually irregular. We perform a comparative analysis of different methods of scaling analysis, which provide variability estimates as a function of timescales, applied to irregular paleoclimate proxy data.
Elisa Ziegler and Kira Rehfeld
Geosci. Model Dev., 14, 2843–2866, https://doi.org/10.5194/gmd-14-2843-2021, https://doi.org/10.5194/gmd-14-2843-2021, 2021
Short summary
Short summary
Past climate changes are the only record of how the climate responds to changes in conditions on Earth, but simulations with complex climate models are challenging. We extended a simple climate model such that it simulates the development of temperatures over time. In the model, changes in carbon dioxide and ice distribution affect the simulated temperatures the most. The model is very efficient and can therefore be used to examine past climate changes happening over long periods of time.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Irene Malmierca-Vallet, Louise C. Sime, Paul J. Valdes, and Julia C. Tindall
Clim. Past, 16, 2485–2508, https://doi.org/10.5194/cp-16-2485-2020, https://doi.org/10.5194/cp-16-2485-2020, 2020
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Charles J. R. Williams, Maria-Vittoria Guarino, Emilie Capron, Irene Malmierca-Vallet, Joy S. Singarayer, Louise C. Sime, Daniel J. Lunt, and Paul J. Valdes
Clim. Past, 16, 1429–1450, https://doi.org/10.5194/cp-16-1429-2020, https://doi.org/10.5194/cp-16-1429-2020, 2020
Short summary
Short summary
Computer simulations of the geological past are an important tool to improve our understanding of climate change. We present results from two simulations using the latest version of the UK's climate model, the mid-Holocene (6000 years ago) and Last Interglacial (127 000 years ago). The simulations reproduce temperatures consistent with the pattern of incoming radiation. Model–data comparisons indicate that some regions (and some seasons) produce better matches to the data than others.
Kira Rehfeld, Raphaël Hébert, Juan M. Lora, Marcus Lofverstrom, and Chris M. Brierley
Earth Syst. Dynam., 11, 447–468, https://doi.org/10.5194/esd-11-447-2020, https://doi.org/10.5194/esd-11-447-2020, 2020
Short summary
Short summary
Under continued anthropogenic greenhouse gas emissions, it is likely that global mean surface temperature will continue to increase. Little is known about changes in climate variability. We analyze surface climate variability and compare it to mean change in colder- and warmer-than-present climate model simulations. In most locations, but not on subtropical land, simulated temperature variability up to decadal timescales decreases with mean temperature, and precipitation variability increases.
Quentin Dalaiden, Hugues Goosse, François Klein, Jan T. M. Lenaerts, Max Holloway, Louise Sime, and Elizabeth R. Thomas
The Cryosphere, 14, 1187–1207, https://doi.org/10.5194/tc-14-1187-2020, https://doi.org/10.5194/tc-14-1187-2020, 2020
Short summary
Short summary
Large uncertainties remain in Antarctic surface temperature reconstructions over the last millennium. Here, the analysis of climate model outputs reveals that snow accumulation is a more relevant proxy for surface temperature reconstructions than δ18O. We use this finding in data assimilation experiments to compare to observed surface temperatures. We show that our continental temperature reconstruction outperforms reconstructions based on δ18O, especially for East Antarctica.
Maria-Vittoria Guarino, Louise C. Sime, David Schroeder, Grenville M. S. Lister, and Rosalyn Hatcher
Geosci. Model Dev., 13, 139–154, https://doi.org/10.5194/gmd-13-139-2020, https://doi.org/10.5194/gmd-13-139-2020, 2020
Short summary
Short summary
When the same weather or climate simulation is run on different high-performance computing (HPC) platforms, model outputs may not be identical for a given initial condition. Here, we investigate the behaviour of the Preindustrial simulation prepared by the UK Met Office for the forthcoming CMIP6 under different computing environments. Discrepancies between the means of key climate variables were analysed at different timescales, from decadal to centennial.
Laia Comas-Bru, Sandy P. Harrison, Martin Werner, Kira Rehfeld, Nick Scroxton, Cristina Veiga-Pires, and SISAL working group members
Clim. Past, 15, 1557–1579, https://doi.org/10.5194/cp-15-1557-2019, https://doi.org/10.5194/cp-15-1557-2019, 2019
Short summary
Short summary
We use an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled climate model to provide a protocol for using speleothem isotopic data for model evaluation, including screening the observations and the optimum period for the modern observational baseline. We also illustrate techniques through which the absolute isotopic values during any time period could be used for model evaluation.
Matthias M. May and Kira Rehfeld
Earth Syst. Dynam., 10, 1–7, https://doi.org/10.5194/esd-10-1-2019, https://doi.org/10.5194/esd-10-1-2019, 2019
Short summary
Short summary
Current CO2 emission rates are incompatible with the 2 °C target for global warming. Negative emission technologies are therefore an important basis for climate policy scenarios. We show that photoelectrochemical CO2 reduction might be a viable, high-efficiency alternative to biomass-based approaches, which reduce competition for arable land. To develop them, chemical reactions have to be optimized for CO2 removal, which deviates from energetic efficiency optimization in solar fuel applications.
Kira Rehfeld, Mathias Trachsel, Richard J. Telford, and Thomas Laepple
Clim. Past, 12, 2255–2270, https://doi.org/10.5194/cp-12-2255-2016, https://doi.org/10.5194/cp-12-2255-2016, 2016
Short summary
Short summary
Indirect evidence on past climate comes from the former composition of ecological communities such as plants, preserved as pollen grains in sediments of lakes. Transfer functions convert relative counts of species to a climatologically meaningful scale (e.g. annual mean temperature in degrees C). We show that the fundamental assumptions in the algorithms impact the reconstruction results in he idealized model world, in particular if the reconstructed variables were not ecologically relevant.
Louise C. Sime, Dominic Hodgson, Thomas J. Bracegirdle, Claire Allen, Bianca Perren, Stephen Roberts, and Agatha M. de Boer
Clim. Past, 12, 2241–2253, https://doi.org/10.5194/cp-12-2241-2016, https://doi.org/10.5194/cp-12-2241-2016, 2016
Short summary
Short summary
Latitudinal shifts in the Southern Ocean westerly wind jet could explain large observed changes in the glacial to interglacial ocean CO2 inventory. However there is considerable disagreement in modelled deglacial-warming jet shifts. Here multi-model output is used to show that expansion of sea ice during the glacial period likely caused a slight poleward shift and intensification in the westerly wind jet. Issues with model representation of the winds caused much of the previous disagreement.
K. Rehfeld, N. Molkenthin, and J. Kurths
Nonlin. Processes Geophys., 21, 691–703, https://doi.org/10.5194/npg-21-691-2014, https://doi.org/10.5194/npg-21-691-2014, 2014
L. Tupikina, K. Rehfeld, N. Molkenthin, V. Stolbova, N. Marwan, and J. Kurths
Nonlin. Processes Geophys., 21, 705–711, https://doi.org/10.5194/npg-21-705-2014, https://doi.org/10.5194/npg-21-705-2014, 2014
N. Molkenthin, K. Rehfeld, V. Stolbova, L. Tupikina, and J. Kurths
Nonlin. Processes Geophys., 21, 651–657, https://doi.org/10.5194/npg-21-651-2014, https://doi.org/10.5194/npg-21-651-2014, 2014
K. Rehfeld and J. Kurths
Clim. Past, 10, 107–122, https://doi.org/10.5194/cp-10-107-2014, https://doi.org/10.5194/cp-10-107-2014, 2014
Related subject area
Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Centennial-Decadal
Using a process-based dendroclimatic proxy system model in a data assimilation framework: a test case in the Southern Hemisphere over the past centuries
Investigating stable oxygen and carbon isotopic variability in speleothem records over the last millennium using multiple isotope-enabled climate models
Long-term Surface Temperature (LoST) database as a complement for GCM preindustrial simulations
Inconsistencies between observed, reconstructed, and simulated precipitation indices for England since the year 1650 CE
Testing the consistency between changes in simulated climate and Alpine glacier length over the past millennium
Temperature variability in the Iberian Range since 1602 inferred from tree-ring records
North American regional climate reconstruction from ground surface temperature histories
Comparison of simulated and reconstructed variations in East African hydroclimate over the last millennium
Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 3: Practical considerations, relaxed assumptions, and using tree-ring data to address the amplitude of solar forcing
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Janica C. Bühler, Josefine Axelsson, Franziska A. Lechleitner, Jens Fohlmeister, Allegra N. LeGrande, Madhavan Midhun, Jesper Sjolte, Martin Werner, Kei Yoshimura, and Kira Rehfeld
Clim. Past, 18, 1625–1654, https://doi.org/10.5194/cp-18-1625-2022, https://doi.org/10.5194/cp-18-1625-2022, 2022
Short summary
Short summary
We collected and standardized the output of five isotope-enabled simulations for the last millennium and assess differences and similarities to records from a global speleothem database. Modeled isotope variations mostly arise from temperature differences. While lower-resolution speleothems do not capture extreme changes to the extent of models, they show higher variability on multi-decadal timescales. As no model excels in all comparisons, we advise a multi-model approach where possible.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, Eduardo Zorita, and Fernando Jaume-Santero
Clim. Past, 15, 1099–1111, https://doi.org/10.5194/cp-15-1099-2019, https://doi.org/10.5194/cp-15-1099-2019, 2019
Short summary
Short summary
A database of North American long-term ground surface temperatures, from approximately 1300 CE to 1700 CE, was assembled from geothermal data. These temperatures are useful for studying the future stability of permafrost, as well as for evaluating simulations of preindustrial climate that may help to improve estimates of climate models’ equilibrium climate sensitivity. The database will be made available to the climate science community.
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Clim. Past, 15, 307–334, https://doi.org/10.5194/cp-15-307-2019, https://doi.org/10.5194/cp-15-307-2019, 2019
Short summary
Short summary
Our understanding of future climate changes increases if different sources of information agree on past climate variations. Changing climates particularly impact local scales for which future changes in precipitation are highly uncertain. Here, we use information from observations, model simulations, and climate reconstructions for regional precipitation over the British Isles. We find these do not agree well on precipitation variations over the past few centuries.
Hugues Goosse, Pierre-Yves Barriat, Quentin Dalaiden, François Klein, Ben Marzeion, Fabien Maussion, Paolo Pelucchi, and Anouk Vlug
Clim. Past, 14, 1119–1133, https://doi.org/10.5194/cp-14-1119-2018, https://doi.org/10.5194/cp-14-1119-2018, 2018
Short summary
Short summary
Glaciers provide iconic illustrations of past climate change, but records of glacier length fluctuations have not been used systematically to test the ability of models to reproduce past changes. One reason is that glacier length depends on several complex factors and so cannot be simply linked to the climate simulated by models. This is done here, and it is shown that the observed glacier length fluctuations are generally well within the range of the simulations.
Ernesto Tejedor, Miguel Ángel Saz, José María Cuadrat, Jan Esper, and Martín de Luis
Clim. Past, 13, 93–105, https://doi.org/10.5194/cp-13-93-2017, https://doi.org/10.5194/cp-13-93-2017, 2017
Short summary
Short summary
Through this study, and inferred from 316 series of tree-ring width, we developed a maximum temperature reconstruction that is significant for much of the Iberian Peninsula (IP). This reconstruction will not only help to understand the past climate of the IP but also serve to improve future climate change scenarios particularly affecting the Mediterranean area.
Fernando Jaume-Santero, Carolyne Pickler, Hugo Beltrami, and Jean-Claude Mareschal
Clim. Past, 12, 2181–2194, https://doi.org/10.5194/cp-12-2181-2016, https://doi.org/10.5194/cp-12-2181-2016, 2016
Short summary
Short summary
Within the framework of the PAGES NAm2k project, we estimated regional trends in the ground surface temperature change for the past 500 years in North America. The mean North American ground surface temperature history suggests a warming of 1.8 °C between preindustrial times and 2000. A regional analysis of mean temperature changes over the last 5 centuries shows that all regions experienced warming, but this warming displays large spatial variability and is more marked in high-latitude regions.
François Klein, Hugues Goosse, Nicholas E. Graham, and Dirk Verschuren
Clim. Past, 12, 1499–1518, https://doi.org/10.5194/cp-12-1499-2016, https://doi.org/10.5194/cp-12-1499-2016, 2016
Short summary
Short summary
This paper analyses global climate model simulations of long-term East African hydroclimate changes relative to proxy-based reconstructions over the last millennium. No common signal is found between model results and reconstructions as well as among the model time series, which suggests that simulated hydroclimate is mostly driven by internal variability rather than by common external forcing.
A. Moberg, R. Sundberg, H. Grudd, and A. Hind
Clim. Past, 11, 425–448, https://doi.org/10.5194/cp-11-425-2015, https://doi.org/10.5194/cp-11-425-2015, 2015
Short summary
Short summary
Experiments with climate models can help to understand causes of past climate changes. We develop a statistical framework for comparing data from simulation experiments with temperature reconstructions for the last millennium. A combination of several external factors is found to explain a significant part of the observed variations, but our selection of data cannot tell which of two alternative choices of past solar forcing gives the best fit between simulations and reconstructions.
Cited articles
Atsawawaranunt, K., Comas-Bru, L., Amirnezhad Mozhdehi, S., Deininger, M., Harrison, S. P., Baker, A., Boyd, M., Kaushal, N., Ahmad, S. M., Ait Brahim, Y., Arienzo, M., Bajo, P., Braun, K., Burstyn, Y., Chawchai, S., Duan, W., Hatvani, I. G., Hu, J., Kern, Z., Labuhn, I., Lachniet, M., Lechleitner, F. A., Lorrey, A., Pérez-Mejías, C., Pickering, R., Scroxton, N., and SISAL Working Group Members: The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems, Earth Syst. Sci. Data, 10, 1687–1713, https://doi.org/10.5194/essd-10-1687-2018, 2018. a
Baker, A., Hartmann, A., Duan, W., Hankin, S., Comas-Bru, L., Cuthbert, M. O.,
Treble, P. C., Banner, J., Genty, D., Baldini, L. M., Bartolomé, M.,
Moreno, A., Pérez-Mejías, C., and Werner, M.: Global analysis
reveals climatic controls on the oxygen isotope composition of cave drip
water, Nat. Commun., 10, 2984, https://doi.org/10.1038/s41467-019-11027-w,
2019. a, b, c
Baker, J. L., Lachniet, M. S., Chervyatsova, O., Asmerom, Y., and Polyak,
V. J.: Holocene warming in western continental Eurasia driven by glacial
retreat and greenhouse forcing, Nat. Geosci., 10, 430–435,
https://doi.org/10.1038/ngeo2953, 2017. a
Blaauw, M. and Christeny, J. A.: Flexible paleoclimate age-depth models using
an autoregressive gamma process, Bayesian Analysis, 6, 457–474,
https://doi.org/10.1214/11-BA618, 2011. a
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte,
V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate
models using palaeoclimatic data, Nat. Clim. Change, 2, 417–424,
https://doi.org/10.1038/nclimate1456, 2012. a
Bradley, R. S.: Paleoclimate: reconstructing climates of the Quaternary,
Elsevier, Oxford, Amsterdam, Waltham, San Diego, 1999. a
Breitenbach, S. F. M., Rehfeld, K., Goswami, B., Baldini, J. U. L., Ridley, H. E., Kennett, D. J., Prufer, K. M., Aquino, V. V., Asmerom, Y., Polyak, V. J., Cheng, H., Kurths, J., and Marwan, N.: COnstructing Proxy Records from Age models (COPRA), Clim. Past, 8, 1765–1779, https://doi.org/10.5194/cp-8-1765-2012, 2012. a, b
Bühler, J. C. and Rehfeld, K.: iHadCM3LastMill Github Repository,
available at: https://github.com/paleovar/iHadCM3LastMill (last access:
19 February 2021), 2020. a
Caley, T., Roche, D. M., and Renssen, H.: Orbital Asian summer monsoon
dynamics revealed using an isotope-enabled global climate model, Nat. Commun., 5, 6–11, https://doi.org/10.1038/ncomms6371, 2014. a
Chatfield, C.: The Analysis of Time Series – An Introduction, Chapman &
Hall/CRC, Boca Raton, London, New York, Washington D.C., sixth edn., 2003. a
Colose, C. M., LeGrande, A. N., and Vuille, M.: The influence of volcanic eruptions on the climate of tropical South America during the last millennium in an isotope-enabled general circulation model, Clim. Past, 12, 961–979, https://doi.org/10.5194/cp-12-961-2016, 2016. a
Comas-Bru, L., Harrison, S. P., Werner, M., Rehfeld, K., Scroxton, N., Veiga-Pires, C., and SISAL working group members: Evaluating model outputs using integrated global speleothem records of climate change since the last glacial, Clim. Past, 15, 1557–1579, https://doi.org/10.5194/cp-15-1557-2019, 2019. a, b, c
Comas-Bru, L., Atsawawaranunt, K., Harrison, S., and working group Members, S.:
SISAL database version 2.0, University of Reading Research Data Archive, https://doi.org/10.17864/1947.256, 2020a. a
Comas-Bru, L., Rehfeld, K., Roesch, C., Amirnezhad-Mozhdehi, S., Harrison, S. P., Atsawawaranunt, K., Ahmad, S. M., Brahim, Y. A., Baker, A., Bosomworth, M., Breitenbach, S. F. M., Burstyn, Y., Columbu, A., Deininger, M., Demény, A., Dixon, B., Fohlmeister, J., Hatvani, I. G., Hu, J., Kaushal, N., Kern, Z., Labuhn, I., Lechleitner, F. A., Lorrey, A., Martrat, B., Novello, V. F., Oster, J., Pérez-Mejías, C., Scholz, D., Scroxton, N., Sinha, N., Ward, B. M., Warken, S., Zhang, H., and SISAL Working Group members: SISALv2: a comprehensive speleothem isotope database with multiple age–depth models, Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, 2020b. a, b, c, d, e, f, g, h, i, j, k, l
Coplen, T. B., Kendall, C., and Hopple, J.: Comparison of stable isotope
reference samples, Nature, 302, 28–30, 1983. a
Crowley, T. J. and Unterman, M. B.: Technical details concerning development of a 1200 yr proxy index for global volcanism, Earth Syst. Sci. Data, 5, 187–197, https://doi.org/10.5194/essd-5-187-2013, 2013. a, b
Dalaiden, Q., Goosse, H., Klein, F., Lenaerts, J. T. M., Holloway, M., Sime, L., and Thomas, E. R.: How useful is snow accumulation in reconstructing surface air temperature in Antarctica? A study combining ice core records and climate models, The Cryosphere, 14, 1187–1207, https://doi.org/10.5194/tc-14-1187-2020, 2020. a
Dolman, A. M., Kunz, T., Groeneveld, J., and Laepple, T.: Estimating the timescale-dependent uncertainty of paleoclimate records – a spectral approach. Part II: Application and interpretation, Clim. Past Discuss. [preprint], https://doi.org/10.5194/cp-2019-153, in review, 2020. a
Dreybrodt, W. and Scholz, D.: Climatic dependence of stable carbon and oxygen
isotope signals recorded in speleothems: From soil water to speleothem
calcite, Geochim. Cosmochim. Ac., 75, 734–752,
https://doi.org/10.1016/j.gca.2010.11.002, 2011. a
Efron, B. and Tibshirani, R.: Bootstrap methods for standard errors,
confidence intervals, and other measures of statistical accuracy,
Statist. Sci., 1, 54–75, https://doi.org/10.1214/ss/1177013815, 1986. a
Evans, M. N., Tolwinski-ward, S. E., Thompson, D. M., and Anchukaitis, K. J.:
Applications of proxy system modeling in high resolution paleoclimatology,
Quaternary Sci. Rev., 76, 16–28,
https://doi.org/10.1016/j.quascirev.2013.05.024, 2013. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Fairchild, I. J. and Treble, P. C.: Trace elements in speleothems as recorders
of environmental change, Quaternary Sci. Rev., 28, 449–468,
https://doi.org/10.1016/j.quascirev.2008.11.007, 2009. a
Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C., Mattey, D.,
and McDermott, F.: Modification and preservation of environmental signals in
speleothems, Earth-Sci. Rev., 75, 105–153,
https://doi.org/10.1016/j.earscirev.2005.08.003, 2006. a
Fisher, D. A., Reeh, N., and Clausen, H.: Stratigraphic Noise in Time Series
Derived from Ice Cores, Ann. Glaciol., 7, 76–83,
https://doi.org/10.3189/s0260305500005942, 1985. a
Fohlmeister, J., Schröder-Ritzrau, A., Scholz, D., Spötl, C., Riechelmann, D. F. C., Mudelsee, M., Wackerbarth, A., Gerdes, A., Riechelmann, S., Immenhauser, A., Richter, D. K., and Mangini, A.: Bunker Cave stalagmites: an archive for central European Holocene climate variability, Clim. Past, 8, 1751–1764, https://doi.org/10.5194/cp-8-1751-2012, 2012. a, b
Fohlmeister, J., Plessen, B., Dudashvili, A. S., Tjallingii, R., Wolff, C.,
Gafurov, A., and Cheng, H.: Winter precipitation changes during the Medieval
Climate Anomaly and the Little Ice Age in arid Central Asia, Quaternary
Sci. Rev., 178, 24–36, https://doi.org/10.1016/j.quascirev.2017.10.026, 2017. a
Franzke, C. L. E., Barbosa, S., Blender, R., Fredriksen, H., Laepple, T.,
Lambert, F., Nilsen, T., Rypdal, K., Rypdal, M., Scotto, M. G., Vannitsem,
S., Watkins, N. W., Yang, L., and Yuan, N.: The Structure of Climate
Variability Across Scales, Rev. Geophys., 58, 2,
https://doi.org/10.1029/2019rg000657, 2020. a
Gelhar, L. W. and Wilson, J. L.: Ground-Water Quality Modeling a,
Groundwater, 12, 399–408, 1974. a
Goosse, H., Renssen, H., Timmermann, A., and Bradley, R. S.: Internal and
forced climate variability during the last millennium: A model-data
comparison using ensemble simulations, Quaternary Sci. Rev., 24,
1345–1360, https://doi.org/10.1016/j.quascirev.2004.12.009, 2005. a
Gordon, C., Cooper, C., Senior, C. A., Banks, H. T., Gregory, J. M., Johns,
T. C., Mitchell, J. F. B., and Wood, R. A.: The simulation of SST, sea ice
extents and ocean heat transports in a version of the Hadley Centre coupled
model without flux adjustments, Clim. Dynam., 16, 147–168,
https://doi.org/10.1007/s003820050010, 2000. a, b
Grossman, E. L. and Ku, T. L.: Oxygen and carbon isotope fractionation in
biogenic aragonite: Temperature effects, Chem. Geol., 59, 59–74, https://doi.org/10.1016/0168-9622(86)90057-6, 1986. a
Hänsel, M. C., Drupp, M. A., Johansson, D. J. A., Nesje, F., Azar, C.,
Freeman, M. C., Groom, B., and Sterner, T.: Climate economics support for
the UN climate targets, Nature Clim. Change, 10, 1758–6798,
https://doi.org/10.1038/s41558-020-0833-x, 2020. a
Haslett, J. and Parnell, A.: A simple monotone process with application to
radiocarbon-dated depth chronologies, J. R. Stat. Soc. C-Appl., 57, 399–418,
https://doi.org/10.1111/j.1467-9876.2008.00623.x, 2008. a
Hijmans, R. J.: raster: Geographic Data Analysis and Modeling,
available at: https://CRAN.R-project.org/package=raster (last access: 29 April 2021), r package version
3.0-7, 2019. a
Holloway, M. D., Sime, L. C., Singarayer, J. S., Tindall, J. C., and Valdes,
P. J.: Reconstructing paleosalinity from δ18O: Coupled model
simulations of the Last Glacial Maximum, Last Interglacial and Late
Holocene, Quaternary Sci. Rev., 131, 350–364,
https://doi.org/10.1016/j.quascirev.2015.07.007, 2016. a, b
Holloway, M. D., Sime, L. C., Singarayer, J. S., Tindall, J. C., and Valdes,
P. J.: Simulating the 128-ka Antarctic Climate Response to Northern
Hemisphere Ice Sheet Melting Using the Isotope-Enabled HadCM3, Geophys.
Res. Lett., 45, 11921–11929, https://doi.org/10.1029/2018GL079647, 2018. a
IAEA/WMO: Global Network of Isotopes in Precipitation. The GNIP Database,
available at: https://www.iaea.org/services/networks/gnip (last access: 29 April 2021), 2020. a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge University Press, https://doi.org/10.1017/CBO9781107415324,
2013. a, b
Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V., Six, K., Segschneider, J., Giorgetta, M. A., Crowley, T. J., Pongratz, J., Krivova, N. A., Vieira, L. E., Solanki, S. K., Klocke, D., Botzet, M., Esch, M., Gayler, V., Haak, H., Raddatz, T. J., Roeckner, E., Schnur, R., Widmann, H., Claussen, M., Stevens, B., and Marotzke, J.: Climate and carbon-cycle variability over the last millennium, Clim. Past, 6, 723–737, https://doi.org/10.5194/cp-6-723-2010, 2010. a
Kageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus, J. H., Otto-Bliesner, B. L., Peterschmitt, J.-Y., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Brierley, C., Crucifix, M., Dolan, A., Fernandez-Donado, L., Fischer, H., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Lunt, D. J., Mahowald, N. M., Peltier, W. R., Phipps, S. J., Roche, D. M., Schmidt, G. A., Tarasov, L., Valdes, P. J., Zhang, Q., and Zhou, T.: The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan, Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, 2018. a
Katz, R. W. and Brown, B. G.: Extreme events in a changing climate:
Variability is more important than averages, Clim. Change, 21, 289–302,
https://doi.org/10.1007/BF00139728, 1992. a
Kaufmann, G.: Stalagmite growth and palaeo-climate: The numerical
perspective, Earth Planet. Sc. Lett., 214, 251–266,
https://doi.org/10.1016/S0012-821X(03)00369-8, 2003. a
Kendall, C. and Caldwell, E. A.: Chapter 2 – Fundamentals of Isotope
Geochemistry, in: Fundamentals of Isotope Geochemistry,
Elsevier, Amsterdam, 51–86, https://doi.org/10.1016/B978-0-444-81546-0.50009-4, 1998. a
Kluge, T., Riechelmann, D. F., Wieser, M., Spötl, C.,
Sültenfuß, J., Schröder-Ritzrau, A., Niggemann, S., and
Aeschbach-Hertig, W.: Dating cave drip water by tritium, J.
Hydrol., 394, 396–406, https://doi.org/10.1016/j.jhydrol.2010.09.015, 2010. a
Kluge, T., Affek, H. P., Marx, T., Aeschbach-Hertig, W., Riechelmann, D. F. C., Scholz, D., Riechelmann, S., Immenhauser, A., Richter, D. K., Fohlmeister, J., Wackerbarth, A., Mangini, A., and Spötl, C.: Reconstruction of drip-water δ18O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany), Clim. Past, 9, 377–391, https://doi.org/10.5194/cp-9-377-2013, 2013. a
Kunz, T., Dolman, A. M., and Laepple, T.: A spectral approach to estimating the timescale-dependent uncertainty of paleoclimate records – Part 1: Theoretical concept, Clim. Past, 16, 1469–1492, https://doi.org/10.5194/cp-16-1469-2020, 2020. a, b
Lachniet, M. S.: Climatic and environmental controls on speleothem
oxygen-isotope values, Quaternary Sci. Rev., 28, 412–432,
https://doi.org/10.1016/j.quascirev.2008.10.021, 2009. a
Laepple, T. and Huybers, P.: Ocean surface temperature variability: Large
model–data differences at decadal and longer periods, P.
Natl. Acad. Sci. USA, 111, 16682–16687,
https://doi.org/10.1073/pnas.1412077111, 2014a. a, b, c
Laepple, T. and Huybers, P.: Global and regional variability in marine surface
temperatures, Geophys. Res. Lett., 41, 2528–2534,
https://doi.org/10.1002/2014GL059345, 2014b. a, b, c, d
Lechleitner, F. A., Amirnezhad-Mozhdehi, S., Columbu, A., Comas-Bru, L.,
Labuhn, I., Pérez-Mejías, C., and Rehfeld, K.: The Potential of
Speleothems from Western Europe as Recorders of Regional Climate: A Critical
Assessment of the SISAL Database, Quaternary, 1, 30,
https://doi.org/10.3390/quat1030030, 2018. a
Lohmann, G., Wackerbarth, A., Langebroek, P. M., Werner, M., Fohlmeister, J., Scholz, D., and Mangini, A.: Simulated European stalagmite record and its relation to a quasi-decadal climate mode, Clim. Past, 9, 89–98, https://doi.org/10.5194/cp-9-89-2013, 2013. a
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A reconstruction
of regional and global temperature for the past 11,300 years., Science, 339, 1198–201, https://doi.org/10.1126/science.1228026, 2013. a
McCrea, J. M.: On the isotopic chemistry of carbonates and a paleotemperature
scale, J. Chem. Phys., 18, 849–857,
https://doi.org/10.1063/1.1747785, 1950. a
McDermott, F., Mattey, D. P., and Hawkesworth, C.: Centennial-scale holocene
climate variability revealed by a high-resolution speleothem δ18O
record from SW Ireland, Science, 294, 1328–1331,
https://doi.org/10.1126/science.1063678, 2001. a, b
Midhun, M., Stevenson, S., and Cole, J. E.: Oxygen Isotopic Signatures of Major
Climate Modes and Implications for Detectability in Speleothems, Geophys.
Res. Lett., 48, e2020GL089515, https://doi.org/10.1029/2020GL089515, 2021. a, b
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying
uncertainties in global and regional temperature change using an ensemble of
observational estimates: The HadCRUT4 data set, J. Geophys.
Res.-Atmos., 117, 1–22, https://doi.org/10.1029/2011JD017187, 2012. a, b
Neff, U., Burns, S. J., Mangini, A., Mudelsee, M., Fleitmann, D., and Matter,
A.: Strong coherence between solar variability and the monsoon in Oman
between 9 and 6 kyr ago, Nature, 411, 290–293, https://doi.org/10.1038/35077048,
2001. a
Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J., and Werner,
J. P.: No evidence for globally coherent warm and cold periods over the
preindustrial Common Era, Nature, 571, 550–554,
https://doi.org/10.1038/s41586-019-1401-2, 2019. a
Owen, R., Day, C. C., and Henderson, G. M.: CaveCalc: a new model for
speleothem chemistry & isotopes, Comput. Geosci., 119, 115–122, 2018. a
PAGES2k-Consortium: Consistent multidecadal variability in global temperature
reconstructions and simulations over the Common Era, Nat. Geosci., 12,
643–649, https://doi.org/10.1038/s41561-019-0400-0, 2019. a, b
Pardaens, A. K., Banks, H. T., Gregory, J. M., and Rowntree, P. R.: Freshwater
transports in HadCM3, Clim. Dynam., 21, 177–195,
https://doi.org/10.1007/s00382-003-0324-6, 2003. a
Parker, S. E., Harrison, S. P., Comas-Bru, L., Kaushal, N., LeGrande, A. N., and Werner, M.: A data-model approach to interpreting speleothem oxygen isotope records from monsoon regions on orbital timescales, Clim. Past Discuss. [preprint], https://doi.org/10.5194/cp-2020-78, in review, 2020. a
Partin, J. W., Cobb, K. M., Adkins, J. F., Clark, B., and Fernandez, D. P.:
Millennial-scale trends in west Pacific warm pool hydrology since the Last
Glacial Maximum, Nature, 449, 452–455, https://doi.org/10.1038/nature06164, 2007. a
Pierce, D.: ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format
Data Files, available at: https://CRAN.R-project.org/package=ncdf4 (last access: 29 April 2021), r
package version 1.17, 2019. a
Pope, V. D., Gallani, M. L., Rowntree, P. R., and Stratton, R. A.: The impact
of new physical parametrizations in the Hadley Centre climate model: HadAM3,
Clim. Dynam., 16, 123–146, https://doi.org/10.1007/s003820050009, 2000. a
Ramsey, C. B.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51,
337–360, https://doi.org/10.1017/s0033822200033865, 2009. a
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria,
available at: https://www.R-project.org/ (last access: 29 April 2021), 2020. a
Rehfeld, K. and Bühler, J.: Climate variables and oxygen isotope ratio in
precipitation extracted at speleothem sites for three iHadCM3 climate model
simulations over the last millennium (810 CE–1850 CE), Zenodo,
https://doi.org/10.5281/zenodo.4551065, 2021. a
Rehfeld, K., Marwan, N., Heitzig, J., and Kurths, J.: Comparison of correlation analysis techniques for irregularly sampled time series, Nonlin. Processes Geophys., 18, 389–404, https://doi.org/10.5194/npg-18-389-2011, 2011. a, b, c
Rehfeld, K., Marwan, N., Breitenbach, S. F., and Kurths, J.: Late Holocene
Asian summer monsoon dynamics from small but complex networks of paleoclimate
data, Clim. Dynam., 41, 3–19, https://doi.org/10.1007/s00382-012-1448-3, 2013. a
Rehfeld, K., Trachsel, M., Telford, R. J., and Laepple, T.: Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world, Clim. Past, 12, 2255–2270, https://doi.org/10.5194/cp-12-2255-2016, 2016. a
Rehfeld, K., Münch, T., Ho, S. L., and Laepple, T.: Golbal paterns of
declining temperature variability from the Last Glacial Maximum to the
Holocene, Nature, 554, 356–359, https://doi.org/10.1038/nature25454, 2018. a
Rehfeld, K., Bühler, J., Sime, L. C., and Holloway, M.: Climate variables and
oxygen isotope ratio in precipitation extracted at speleothem sites for three
iHadCM3 climate model simulations over the last millennium (810 CE–1850 CE), PANGAEA,
https://doi.org/10.1594/PANGAEA.924795, 2021. a
Riechelmann, D. F. C., Schröder-Ritzrau, A., Scholz, D., Fohlmeister, J.,
Spötl, C., Richter, D. K., and Mangini, A.: Monitoring Bunker Cave (NW
Germany): A prerequisite to interpret geochemical proxy data of speleothems
from this site, J. Hydrol., 409, 682–695,
https://doi.org/10.1016/j.jhydrol.2011.08.068, 2011. a
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1), Geosci. Model Dev., 5, 185–191, https://doi.org/10.5194/gmd-5-185-2012, 2012. a, b
Schmidt, G. A., Annan, J. D., Bartlein, P. J., Cook, B. I., Guilyardi, E., Hargreaves, J. C., Harrison, S. P., Kageyama, M., LeGrande, A. N., Konecky, B., Lovejoy, S., Mann, M. E., Masson-Delmotte, V., Risi, C., Thompson, D., Timmermann, A., Tremblay, L.-B., and Yiou, P.: Using palaeo-climate comparisons to constrain future projections in CMIP5, Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, 2014. a
Scholz, D. and Hoffmann, D. L.: StalAge – An algorithm designed for
construction of speleothem age models, Quat. Geochronol., 6,
369–382, https://doi.org/10.1016/j.quageo.2011.02.002, 2011. a
Schurer, A. P., Tett, S. F. B., and Hegerl, G. C.: Small influence of solar
variability on climate over the past millennium, Nat. Geosci., 7,
104–108, https://doi.org/10.1038/ngeo2040, 2014. a, b, c
Schwarcz, H. P., Harmon, R. S., Thompson, P., and Ford, D. C.: Stable isotope
studies of fluid inclusions in speleothems and their paleoclimatic
significance, Geochim. Cosmochim. Ac., 40, 657–665,
https://doi.org/10.1016/0016-7037(76)90111-3, 1976. a
Sime, L. C., Tindall, J. C., Wolff, E. W., Connolley, W. M., and Valdes, P. J.:
Antarctic isotopic thermometer during a CO2 forced warming event, J. Geophys. Res.-Atmos., 113, 1–16, https://doi.org/10.1029/2008JD010395,
2008. a
Sime, L. C., Wolff, E. W., Oliver, K. I. C., and Tindall, J. C.: Evidence for
warmer interglacials in East Antarctic ice cores, Nature, 462, 342–345,
https://doi.org/10.1038/nature08564, 2009. a
Sime, L. C., Kohfeld, K. E., Le Quéré, C., Wolff, E. W., de Boer,
A. M., Graham, R. M., and Bopp, L.: Southern Hemisphere westerly wind
changes during the Last Glacial Maximum: Model-data comparison, Quaternary
Sci. Rev., 64, 104–120, https://doi.org/10.1016/j.quascirev.2012.12.008, 2013. a
Sjolte, J., Sturm, C., Adolphi, F., Vinther, B. M., Werner, M., Lohmann, G., and Muscheler, R.: Solar and volcanic forcing of North Atlantic climate inferred from a process-based reconstruction, Clim. Past, 14, 1179–1194, https://doi.org/10.5194/cp-14-1179-2018, 2018. a
Sjolte, J., Adolphi, F., Vinther, B. M., Muscheler, R., Sturm, C., Werner, M., and Lohmann, G.: Seasonal reconstructions coupling ice core data and an isotope-enabled climate model – methodological implications of seasonality, climate modes and selection of proxy data, Clim. Past, 16, 1737–1758, https://doi.org/10.5194/cp-16-1737-2020, 2020. a
Steinhilber, F., Beer, J., and Fröhlich, C.: Total solar irradiance
during the Holocene, Geophys. Res. Lett., 36, 1–5,
https://doi.org/10.1029/2009GL040142, 2009. a, b
Stevenson, S., Otto-Bliesner, B. L., Brady, E. C., Nusbaumer, J., Tabor, C.,
Tomas, R., Noone, D. C., and Liu, Z.: Volcanic Eruption Signatures in the
Isotope-Enabled Last Millennium Ensemble, Paleoceanogr.
Paleocl., 34, 1534–1552, https://doi.org/10.1029/2019PA003625, 2019. a
Sturm, C., Zhang, Q., and Noone, D.: An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology, Clim. Past, 6, 115–129, https://doi.org/10.5194/cp-6-115-2010, 2010. a
Tang, K. and Feng, X.: The effect of soil hydrology on the oxygen and
hydrologen isotopic compositions of plants' source water, Earth
Planet. Sc. Lett., 185, 355–367,
https://doi.org/10.1016/S0012-821X(00)00385-X, 2001. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the
experiment design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a, b, c
Thornthwaite, C. W. and Mather, J. R.: Instructions and tables for computing
potential evapotranspiration and the water balance, Tech. rep., Centerton,
1957. a
Tindall, J., Flecker, R., Valdes, P., Schmidt, D. N., Markwick, P., and Harris,
J.: Modelling the oxygen isotope distribution of ancient seawater using a
coupled ocean-atmosphere GCM: Implications for reconstructing early Eocene
climate, Earth Planet. Sc. Lett., 292, 265–273,
https://doi.org/10.1016/j.epsl.2009.12.049, 2010. a
Tremaine, D. M., Froelich, P. N., and Wang, Y.: Speleothem calcite farmed in
situ: Modern calibration of δ18O and δ13C paleoclimate proxies
in a continuously-monitored natural cave system, Geochim. Cosmochim.
Ac., 75, 4929–4950, https://doi.org/10.1016/j.gca.2011.06.005, 2011. a, b, c
Tsonis, A. A., Swanson, K. L., and Roebber, P. J.: What do networks have to do
with climate?, B Am. Meteorol. Soc., 87,
585–595, https://doi.org/10.1175/BAMS-87-5-585, 2006. a
Tupikina, L., Rehfeld, K., Molkenthin, N., Stolbova, V., Marwan, N., and Kurths, J.: Characterizing the evolution of climate networks, Nonlin. Processes Geophys., 21, 705–711, https://doi.org/10.5194/npg-21-705-2014, 2014. a
Urey, H. C.: Oxygen Isotopes in Nature and in the Laboratory, Science, 108,
489–496, 1948. a
Valdes, P. J., Armstrong, E., Badger, M. P. S., Bradshaw, C. D., Bragg, F., Crucifix, M., Davies-Barnard, T., Day, J. J., Farnsworth, A., Gordon, C., Hopcroft, P. O., Kennedy, A. T., Lord, N. S., Lunt, D. J., Marzocchi, A., Parry, L. M., Pope, V., Roberts, W. H. G., Stone, E. J., Tourte, G. J. L., and Williams, J. H. T.: The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0, Geosci. Model Dev., 10, 3715–3743, https://doi.org/10.5194/gmd-10-3715-2017, 2017. a
Vasseur, D. A., DeLong, J. P., Gilbert, B., Greig, H. S., Harley, C. D.,
McCann, K. S., Savage, V., Tunney, T. D., and O'Connor, M. I.: Increased
temperature variation poses a greater risk to species than climate warming,
P. Roy. Soc. B, 281, 20132612,
https://doi.org/10.1098/rspb.2013.2612, 2014. a
Vinther, B., Jones, P., Briffa, K., Clausen, H., Andersen, K., Dahl-Jensen, D.,
and Johnsen, S.: Climatic signals in multiple highly resolved stable isotope
records from Greenland, Quaternary Sci. Rev., 29, 522–538,
https://doi.org/10.1016/j.quascirev.2009.11.002, 2010.
a
Wackerbarth, A., Scholz, D., Fohlmeister, J., and Mangini, A.: Modelling the
δ18O value of cave drip water and speleothem calcite, Earth Planet. Sc. Lett., 299, 387–397, https://doi.org/10.1016/j.epsl.2010.09.019,
2010. a, b, c
Wackerbarth, A., Langebroek, P. M., Werner, M., Lohmann, G., Riechelmann, S., Borsato, A., and Mangini, A.: Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves, Clim. Past, 8, 1781–1799, https://doi.org/10.5194/cp-8-1781-2012, 2012. a
Wang, Y., Lean, J. L., and Sheeley, Jr., N. R.: Modeling the Sun's Magnetic
Field and Irradiance since 1713, Astrophys. J., 625, 522–538,
https://doi.org/10.1086/429689, 2005. a, b
Werner, M., Langebroek, P. M., Carlsen, T., Herold, M., and Lohmann, G.:
Stable water isotopes in the ECHAM5 general circulation model: Toward
high-resolution isotope modeling on a global scale, J. Geophys.
Res.-Atmos., 116, 1–14, https://doi.org/10.1029/2011JD015681, 2011. a
Werner, M., Haese, B., Xu, X., Zhang, X., Butzin, M., and Lohmann, G.: Glacial–interglacial changes in , HDO and deuterium excess – results from the fully coupled ECHAM5/MPI-OM Earth system model, Geosci. Model Dev., 9, 647–670, https://doi.org/10.5194/gmd-9-647-2016, 2016. a
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New
York, available at: https://ggplot2.tidyverse.org (last access: 29 April 2021), 2016. a
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R.,
Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L.,
Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P.,
Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H.:
Welcome to the tidyverse, Journal of Open Source Software, 4, 1686,
https://doi.org/10.21105/joss.01686, 2019. a
Williams, P. W. and Ford, D. C.: Global distribution of carbonate rocks,
Zeitschrift für Geomorphologie Supplementband, 147, 1, 2006. a
Zhang, X., Sun, Z., Guan, H., Zhang, X., Wu, H., and Huang, Y.: GCM
simulations of stable isotopes in the water cycle in comparison with GNIP
observations over east asia, Acta Meteorol. Sin., 26, 420–437,
https://doi.org/10.1007/s13351-012-0403-x, 2012. a
Short summary
We present three new isotope-enabled simulations for the last millennium (850–1850 CE) and compare them to records from a global speleothem database. Offsets between the simulated and measured oxygen isotope ratios are fairly small. While modeled oxygen isotope ratios are more variable on decadal timescales, proxy records are more variable on (multi-)centennial timescales. This could be due to a lack of long-term variability in complex model simulations, but proxy biases cannot be excluded.
We present three new isotope-enabled simulations for the last millennium (850–1850 CE) and...