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Abstract. Improving the understanding of changes in the
mean and variability of climate variables as well as their in-
terrelation is crucial for reliable climate change projections.
Comparisons between general circulation models and pale-
oclimate archives using indirect proxies for temperature or
precipitation have been used to test and validate the capa-
bility of climate models to represent climate changes. The
oxygen isotopic ratio δ18O, a proxy for many different cli-
mate variables, is routinely measured in speleothem samples
at decadal or higher resolution, and single specimens can
cover full glacial–interglacial cycles. The calcium carbonate
cave deposits are precisely dateable and provide well pre-
served (semi-)continuous albeit multivariate climate signals
in the lower and mid-latitudes, where the measured δ18O in
the mineral does not directly represent temperature or precip-
itation. Therefore, speleothems represent suitable archives to
assess climate model abilities to simulate climate variability
beyond the timescales covered by meteorological observa-
tions (101–102 years).

Here, we present three transient isotope-enabled simu-
lations from the Hadley Center Climate Model version 3
(iHadCM3) covering the last millennium (850–1850 CE) and
compare them to a large global dataset of speleothem δ18O
records from the Speleothem Isotopes Synthesis and AnaL-
ysis (SISAL) database version 2 (Comas-Bru et al., 2020b).
We systematically evaluate offsets in mean and variance of
simulated δ18O and test for the main climate drivers recorded
in δ18O for individual records or regions.

The time-mean spatial offsets between the simulated δ18O
and the speleothem data are fairly small. However, using ro-
bust filters and spectral analysis, we show that the observed

archive-based variability of δ18O is lower than simulated by
iHadCM3 on decadal and higher on centennial timescales.
Most of this difference can likely be attributed to the records’
lower temporal resolution and averaging or smoothing pro-
cesses affecting the δ18O signal, e.g., through soil water res-
idence times. Using cross-correlation analyses at site level
and modeled grid-box level, we find evidence for highly vari-
able but generally low signal-to-noise ratios in the proxy
data. This points to a high influence of cave-internal pro-
cesses and regional climate particularities and could suggest
low regional representativity of individual sites. Long-range
strong positive correlations dominate the speleothem corre-
lation network but are much weaker in the simulation. One
reason for this could lie in a lack of long-term internal cli-
mate variability in these model simulations, which could be
tested by repeating similar comparisons with other isotope-
enabled climate models and paleoclimate databases.

1 Introduction

The impacts of a changing climate have been observed over
the last century (IPCC, 2013) and indicate a strong sensitiv-
ity of human societies and natural systems to changes in cli-
mate. While the mean state of the climate is well observed,
direction and magnitude of potential changes to its variabil-
ity are still largely unclear (Franzke et al., 2020). However,
changes in variability influence the occurrence of extreme
temperature and precipitation events (Katz and Brown, 1992)
and have major impacts on society, economies (Hänsel et al.,
2020), and ecosystems (Vasseur et al., 2014).
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Past climate changes provide a testbed to evaluate cli-
mate models and to better understand projected changes in
the future (Schmidt et al., 2012; Braconnot et al., 2012). In-
strumental records only cover a short period of time, since
systematic observations of climate variables only began in
1750 CE (black line in Fig. 1a, Morice et al., 2012). For
model evaluation on longer than centennial timescales, we
have to rely on evidence from paleoclimate archives, such
as trees, ice cores, foraminifera from marine sediment cores,
or speleothems. The abundance of the heavy oxygen isotope
18O, further denoted as δ18O, is a proxy for many climate
variables and can be measured on these and quite a few other
paleoclimate archives with high precision (Schmidt et al.,
2014). The climatic interpretation of δ18O changes, how-
ever, are not always straightforward (Fairchild and Baker,
2012). Speleothem archives, which we rely on here, allow
sampling of a wide range of climates in the low latitudes to
mid-latitudes and provide (semi-)continuous precisely dated
time series of oxygen isotope ratios.

Few other transient model–data comparison studies fo-
cused on δ18O (e.g., Wackerbarth et al., 2012; Dee et al.,
2015; Colose et al., 2016; Stevenson et al., 2019; Parker
et al., 2020). For example, Sjolte et al. (2018) compared
the variability of the simulated ECHAM5/MPI-OM δ18O
to Greenland ice cores over the last millennium, assim-
ilating the ice core data to produce gridded reconstruc-
tions. They were able to differentiate between solar and
volcanic forcing effects from their reconstructions. On or-
bital timescales (150 000 years), Caley et al. (2014) com-
pared a transient isotope-enabled simulation with a model
of intermediate complexity (iLOVECLIM) to speleothem
records from Southeast Asia. They found model–data simi-
larity for the broad temporal trends, but differences at shorter
timescales, highlighting the role of seasonality.

For our model–data comparison, we focus on the time
period of the last millennium (850–1850 CE; Taylor et al.,
2012), for which a fairly high number of well-preserved
datasets are available. This time period is characterized by
stable, close-to-present-day boundary conditions (fairly con-
stant greenhouse gas concentrations and sea level) and cli-
mate variability due to natural, solar, and volcanic forcings
(Schurer et al., 2014; PAGES2k-Consortium, 2019; Taylor
et al., 2012; Neukom et al., 2019). It is also one of the key
paleoclimate periods included in the joint experiments of the
Paleoclimate Model Intercomparison Project Phase 3 and
4 (PMIP3/PMIP4; Jungclaus et al., 2010; Kageyama et al.,
2018) and the overarching Coupled Model Intercomparison
Project Phase 5 and 6 (CMIP5/CMIP6; Taylor et al., 2012;
Eyring et al., 2016).

Modeled climate variability can be a consequence of either
internal interactions and processes (internal variability) or of
radiative forcings such as depicted in Fig. 1c–e (forced exter-
nal variability), e.g., greenhouse gases, volcanic eruptions, or
total solar irradiance.

Figure 1. Climate and main climatic drivers over the last millen-
nium. (a) Global annual mean surface temperature (GMST) as mod-
eled (iHadCM3, blue), reconstructed (PAGES2k, red) (PAGES2k-
Consortium, 2019), and observed (HadCRUT4, black) (Morice
et al., 2012). (b) Annual mean δ18O in precipitation at Bunker
Cave, Germany, as modeled (iHadCM3, green) and measured cal-
cite δ18O (drip water equivalent) from SISAL entity 240 (dark blue)
and 242 (light blue) at the Bunker cave site (Comas-Bru et al., 2019;
Fohlmeister et al., 2012). Comparison plots for all entities are given
in Figs. S1–S2 in the Supplement. (c) Atmospheric CO2 concentra-
tion, (d) volcanic forcing in units of aerosol optical depth (AOD)
(Crowley and Unterman, 2013), and (e) total solar irradiance (TSI)
as used in the model simulations (Steinhilber et al., 2009; Wang
et al., 2005).

Previous studies have suggested that simulated temper-
ature variability is systematically too low on decadal and
longer timescales, especially on the regional scale (Laep-
ple and Huybers, 2014a). This has been attributed to mod-
els being too diffusive, denoting energy being dissipated
too quickly across temporal scales (Laepple and Huybers,
2014b), or to missing processes and feedbacks (Rehfeld
et al., 2016). Variability induced by external radiative forc-
ing only accounts for a small fraction of the regional climate
variance (Goosse et al., 2005; Laepple and Huybers, 2014b).
Discrepancies increase towards longer timescales (Laepple
and Huybers, 2014a) and are already substantial at the mul-
tidecadal to centennial timescales that we target here.

The incorporation of an isotopic water cycle into isotope-
enabled general circulation models (iGCMs) provides addi-
tional means for understanding the hydrology of the climate
system (Werner et al., 2016; Sturm et al., 2010; Tindall et al.,
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2009). The ratio of H2
18O to H2

16O in precipitation is an
indicator of evaporation temperature, precipitation amount,
and altitude, as well as distance to source water (Dansgaard,
1964). It is given in the δ notation as

δ18O=

 18O
16O sample

18O
16O standard

− 1

 · 1000‰,

where standard indicates the Vienna Standard Mean Ocean
Water standard V-SMOW (Kendall and Caldwell, 1998).

On monthly to decadal timescales, the Global Network
of Isotopes in Precipitation (GNIP) database (IAEA/WMO,
2020) provides measurements of δ18O in collected precipi-
tation water, which have been used in model–data compar-
isons for the present climate (Tindall et al., 2009; Werner
et al., 2011; Comas-Bru et al., 2020b). On decadal and longer
timescales, paleoclimate archives such as speleothems are
crucial. δ18O variations in stalagmites, to first order, repre-
sent changes in δ18O in the meteoric precipitation above the
cave.

Speleothem cave deposits form in karst regions (Fairchild
and Baker, 2012) under climatic conditions spanning from
extremely cold (Lauritzen and Lundberg, 1999) and very
arid (Neff et al., 2001) to extremely hot and humid condi-
tions (Partin et al., 2007). As a terrestrial climate archive,
they are able to store information on continental climate
changes. They form as a calcite or aragonite matrix from
calcium dissolved in acidic drip water and hence archive
the oxygen isotope from precipitation water in accumulated
growth layers (Fairchild and Treble, 2009). δ18O can be re-
garded as a proxy, e.g., for surface temperature variations in
higher latitudes or precipitation amount in the tropics (Dans-
gaard, 1964). The proxy signal is, however, overlaid with
distinct observable signatures of source water evaporation,
transportation over longer distances (Bradley, 1999; Dans-
gaard, 1964), and large-scale climate patterns of circulation
such as for example the North Atlantic Oscillation (NAO)
(e.g. Vinther et al., 2010) or the El-Niño–Southern Oscil-
lation (ENSO) (Tindall et al., 2009). All these δ18O signa-
tures in precipitation may be visible in speleothem records,
including additionally fractionation processes involved in the
calcite formation, which is primarily temperature-dependent
(Urey, 1948; McCrea, 1950). The climatic interpretation of
speleothem δ18O variations in calcite or aragonite (hereafter
δ18Ospeleo) can be hampered by non-linear growth processes
(Dreybrodt and Scholz, 2011) and multiple cave-specific pa-
rameters such as vegetation cover (Haude, 1954; Wacker-
barth et al., 2010), karst (Jean-Baptiste et al., 2019), and in-
ner cave processes (Fairchild et al., 2006), which influence
δ18Ospeleo. Especially in the comparison between δ18Ospeleo
of different speleothems, dating uncertainties complicate the
assessment of climatic drivers, as they increase the un-
certainty in pairwise comparisons and similarity estimates
(Breitenbach et al., 2012; Rehfeld and Kurths, 2014). For
speleothems, in particular, positive correlations to ice core

δ18O, which is considered a proxy for temperature, have
been reported (McDermott et al., 2001) but so have nega-
tive correlations to local annual mean temperatures at the
cave site (e.g., Lauritzen and Lundberg, 1999). This high-
lights the complexity of the system and the potential region-
ality of the signal. In studies on drip water, δ18O and annual
mean temperature, regions with different dominant climate
controls could be distinguished (Baker et al., 2019).

Here, we present three new last-millennium isotope-
enabled simulations from the iGCM version 3 of the Hadley
Model (iHadCM3) and test how similar the δ18O varia-
tions in iHadCM3 and speleothem records are (Sect. 4.1).
A characterization of the datasets and relevant forcing can
be found in Fig. 1. The robustness of the findings and
methods are evaluated over the last millennium, for which
a large number of high-resolution proxy datasets from the
SISAL v.2 database (Comas-Bru et al., 2020b) are avail-
able. Our key questions are as follows: (i) how similar are
the modeled δ18O signatures to the speleothem records es-
pecially regarding variability, (ii) can we distinguish the
main drivers for these signatures, and (iii) how representa-
tive are the speleothem records for their region? To address
these questions, we explore similarities on both spatial and
temporal scales, to distinguish patterns of the mean state
(Sect. 4.1), the variability (Sect. 4.2 and 4.3), and the spa-
tial representativity of speleothem climate records (Sect. 4.4
and 4.5). We examine the simulation’s capability to simulate
and the records’ capability to capture variability on differ-
ent timescales to improve our understanding of processes and
uncertainties of both.

2 Data

2.1 Model description and simulation overview

In this study, we use the coupled atmosphere–ocean isotope-
enabled GCM iHadCM3, which has been widely used to sim-
ulate present and future climate (Sime et al., 2008; Tindall
et al., 2009; IPCC, 2013), as well as for past climates such
as the late Holocene and Last Glacial Maximum (Holloway
et al., 2016), the last interglacial (Sime et al., 2009, 2013;
Holloway et al., 2016, 2018), and the Eocene (Tindall et al.,
2010).

The model consists of several components: the atmo-
sphere model HadAM3 (Pope et al., 2000), the ocean model
HadOM3 (Gordon et al., 2000), a sea ice model (Valdes et al.,
2017), and a dynamic land surface and vegetation model
(Cox, 2001). The atmospheric component is run at a horizon-
tal resolution of 2.5◦× 3.75◦ and has 19 vertical levels and
time steps of 30 min. The oceanic output has a horizontal res-
olution of 1.25◦× 1.25◦, 20 vertical levels, and time steps of
1 h. For the isotope-enabled version, water isotopes HD16O
and H2

18O were added as two separate water species in the
atmospheric model, and as tracers in the ocean model. Fixed
isotope fractions are added to a fixed volume grid box of the
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Table 1. Basic characterization of the LM1, LM2, and LM3 last-
millennium simulations.

Years 850–1850 CE
1100–100 BP

Orography fixed to 0 BP

Orbital parameter fixed to 0 BP

GHG well mixed CO2, CH4, NO2 and
other trace gases; Schurer et al. (2014),
Schmidt et al. (2012)

Vegetation dynamic; based on Cox (2001)

Total solar irradiance Steinhilber et al. (2009)
Wang et al. (2005)
Schurer et al. (2014)

Volcanic forcing Crowley and Unterman (2013)

ocean and experience changes due to evaporation, precipita-
tion, and runoff through a virtual isotope flux, altering the
δ18O ratio in the top level of the ocean accordingly (Tindall
et al., 2009). The land surface and vegetation evolve dynami-
cally and are based on TRIFFID (Cox, 2001) with time steps
of 5 years.

Compared to instrumental observations, the model repre-
sents sea surface temperature (SST), sea ice, and ocean heat
content well (Gordon et al., 2000). The freshwater hydrolog-
ical cycle in the model shows only a slight overestimation
in the local evaporation (Pardaens et al., 2003). The model
simulates the major isotopic fractionation effects as in Dans-
gaard (1964) (e.g., the latitude effect, the amount effect, and
the continental effect) appropriately compared to GNIP data
(Zhang et al., 2012). Additionally, a broad agreement in iso-
topic output with GNIP data in the general spatial distribu-
tion can be observed and the above-mentioned general oxy-
gen isotopic ratio features are represented well (Tindall et al.,
2009). As such, iHadCM3 captures large-scale features of
climate and oxygen isotope ratios while remaining compu-
tationally efficient for the simulation of timescales such as
the last millennium. The three ensemble members, which are
identified with the LM prefix, were initialized from different
years of the same spinup simulation. The basic characteris-
tics and boundary conditions of the last-millennium simula-
tions used in this analysis are listed in Table 1.

2.2 The speleothem isotope dataset

The oxygen isotope ratio measured in speleothems is subject
to many processes, starting from the source water which is in-
fluenced by the atmospheric circulation and climate. There-
fore, the amount of precipitation, its composition, the annual
mean temperature, and the variability of these events are in
part imprinted in the archive. A comprehensive summary of

the processes involving speleothem growth can be found in
Fairchild and Baker (2012).

Vegetation above the cave can alter the amount of infil-
trating water and its isotopic signature, where the meteoric
δ18O is subject to additional fractionation processes and sea-
sonal effects (Haude, 1954; Thornthwaite and Mather, 1957;
Wackerbarth et al., 2010). Filter processes and transporta-
tion through the soil and upper karst influence the signal
and may lead to varying transit times between several min-
utes and multiple years (Jean-Baptiste et al., 2019) at differ-
ent drip sites within the same cave. Infiltrating surface water
is charged with soil gas CO2, where the partial CO2 pres-
sure is larger than in the atmosphere, facilitating the carbonic
acid-driven CaCO3 dissolution of the host rock. The gener-
ally lower partial pCO2 pressure conditions in the cave en-
vironment compared to that of the soil and epikarst makes
the drip water degas and precipitate calcite in a fractionation
process, which consequently forms a speleothem (Tremaine
et al., 2011).

Varying environmental conditions within the cave can also
be imprinted in the isotopic signal and may pronounce or at-
tenuate the climate signal (Fairchild and Baker, 2012). Dur-
ing the calcification process, interactions with the cave en-
vironment or water inclusions within the mineral are still
possible and, therefore, may further change the δ18Ospeleo
archived in the speleothem.

The oxygen isotope composition of drip water is influ-
enced by all above-mentioned factors. Due to the multivariate
processes impacting speleothem growth, the interpretation of
the δ18Ospeleo signal is not straightforward, although system-
atic evaluation has identified patterns of similar climate in-
fluence based on modern observations (Baker et al., 2019).
Proxy system models (PSMs), where the input signal modi-
fication is modeled based on known processes in the karst,
may also help with the interpretation (Evans et al., 2013;
Dee et al., 2015). PSMs of varying complexity have been
proposed from the simple exponential decay filter, mimick-
ing karst mixing (Dee et al., 2015) with the delay time as
the single tunable parameter, to full-blown karst system mod-
els with numerous parameters describing soil water and gas
equilibration or carbonate bedrock dissolution (Owen et al.,
2018).

The Speleothem Isotopes Synthesis and Analysis is an in-
ternational working group, collecting speleothem datasets in
a quality-controlled and cross-referenced database with rich
metadata for samples and dating procedures (Atsawawanunt
et al., 2018; Comas-Bru et al., 2020b). The second version
of the database SISAL v.2 includes measurements of sta-
ble 13C and 18O isotopes on speleothems of 691 individ-
ual entities from 294 globally distributed sites (Comas-Bru
et al., 2020b). In order to provide a comprehensive and reli-
able analysis, we only use data from entities which are not
superseded (entity_state= current) and that cover at least a
600-year period within the analysis period (850–1850 CE).
Furthermore, records considered must have at least two ra-
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Figure 2. Site locations of the SISAL database on a global karst
map (brown shadings from Williams and Ford, 2006). The sites with
entities that fulfill the prerequisites for our analysis are marked in
colored triangles. These entities cover at least a period of 600 years
within the last millennium and have a minimum of 30 (red), 20 (or-
ange), or 10 (purple) δ18O measurements and two dating points in
this period. All other sites in the SISAL database v.2 are marked
with a black dot. The nine clusters used in the network analysis
contain sites in North America (c1, 12 entities), South America (c2,
12 entities), Europe with northern Africa (c3, 21 entities), southern
Africa (c4, 2 entities – too few for systematic analysis), the Middle
East (c5, 6 entities), India and central Asia (c6, 8 entities), East Asia
(c7, 18 entities), Southeast Asia (c8, 3 entities), and New Zealand
(c9, 3 entities).

diometric dates, or one radiometric date (in the analysis pe-
riod) and be marked as actively forming at the time of col-
lection, or be lamina counted. We only check for dates that
are marked as used, indicating that they are known to have
been used in the original chronology in the database. Sam-
ples without sample or depth information are omitted. In the
analysis, we filter the database adapted to the requirements of
the different analyses, as depicted in Fig. 2. For the last mil-
lennium, we retain 110 records from 91 different sites with
at least 10 isotopic measurements, which we used for the as-
sessment of the mean δ18O offset, and 85 records from 71
sites with at least 30 isotope samples for the correlation and
network analyses.

For each U/Th-dated speleothem, SISAL v.2 provides the
original age model (if available), and new possible age mod-
els based on up to seven methods. Methods include linear
interpolation, linear regression, Bchron (Haslett and Parnell,
2008) as adapted by Roesch and Rehfeld (2019), Bacon
(Blaauw and Christeny, 2011), Oxcal (Ramsey, 2009), co-
pRa (Comas-Bru et al., 2020b, modified R version after Bre-
itenbach et al., 2012), and StalAge (Scholz and Hoffmann,
2011). Details on the automated age-modeling procedure are
given in Roesch and Rehfeld (2019) and Comas-Bru et al.
(2020b). For each entity and ensemble method, one median
best-fit estimate with confidence intervals and between 129
and 7737 age models based on perturbations of the radio-
metric ages are available (Comas-Bru et al., 2020b). These
ensembles are available for 69 of the 85 entities that we
used in the network-correlation analysis, resulting in a to-

tal of 464 383 ensemble age models in our analysis. In all
other analyses, we use the corresponding original age model
as provided by the original authors.

3 Methods

3.1 Speleothem analysis and drip water conversion

To increase the robustness of the results, we maximize the
number of records by adaptive filtering of the database
(Fig. 2). For calculations involving the time-averaged δ18O
values, we only use speleothem data with at least 10
δ18Ospeleo measurements and two dating points within a 600-
year period in 850–1850 CE. For variance analyses, we de-
mand at least 20 and for spectral, correlation, and network
analyses 30 δ18Ospeleo measurements. For the investigation
of spatial correlation patterns by network analysis, the set of
speleothems is divided into nine regional clusters (Fig. 2),
as explained in detail in Sect. 3.3. We primarily use the
chronologies provided by the original authors but test for the
sensitivity to age-modeling choice by considering the age-
model ensembles (details below in Sect. 3.3).

Within the last millennium, we remain with 15 arago-
nite and 89 calcite speleothems with 10 or more δ18O sam-
ples. Following Comas-Bru et al. (2019), we exclude six
speleothems of mixed mineralogy, as the extent to which the
applied conversion is appropriate is unclear. The δ18Ospeleo
signal of calcite and aragonite speleothems is converted to
its drip-water equivalent (δ18Odw.eq) relative to the V-SMOW
standard as in Comas-Bru et al. (2019). For calcite, we use
the empirically based fractionation formula of Tremaine et al.
(2011).

δ18Odw.eq = δ
18Ocalcite−

((16.1 · 1000
T

)
− 24.6

)
, (1)

where T is in K and δ18O in units of ‰. For aragonite, we
use the fractionation factor from Grossman and Ku (1986):

δ18Odw.eq = δ
18Oarag.−

((18.34 · 1000
T

)
− 31.954

)
. (2)

Here, temperature values T represent the local cave temper-
ature in units of K. These are often not available. The an-
nual mean temperature on the surface above the cave can,
however, serve as a surrogate for local cave air temperatures
(Fairchild and Baker, 2012). For both aragonite and calcite
drip water conversion, we use the simulated annual mean
temperatures at the cave location, down-sampled to the tem-
poral resolution of the record. Note that, as a consequence,
the conversion changes the time-averaged mean and the vari-
ance in our analysis. Finally, the V-PDB to V-SMOW con-
version from Coplen et al. (1983) is used.

δ18OSMOW = 1.03092 · δ18OPDB+ 30.92. (3)

Whenever we directly compare simulation output values with
the speleothem records, e.g., when comparing means, vari-
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ances, or spectra, we use δ18Odw.eq, accounting for the dif-
ferent mineralogies. The conversion would, however, add an
extra source of uncertainty in correlation analyses, as it im-
plicitly builds on transient simulation data. Therefore, we de-
note the raw values of δ18O measured directly in the calcite
or aragonite matrix by δ18Ospeleo and focus on those in the
network and correlation analyses.

3.2 Statistical tests and time series processing

Speleothems form naturally and therefore provide irregular
time series with reconstructed and uncertain observation time
series (Rehfeld and Kurths, 2014). We account for this in
our assessment as outlined below. Temperature, precipita-
tion, and isotopic data are extracted from the simulation at
cave locations by bi-linear interpolation. Annual mean val-
ues for temperature, precipitation, and isotopic composition
of precipitation are formed by averaging over all months
from April to March of the following year. This is also the
time span for which precipitation-weighted δ18O (δ18Opw)
values are calculated, all for each simulation individually.
This allows the dynamic response in the signal to be ex-
amined. All analyses are conducted using both simulated
δ18O and δ18Opw. Differences in mean are given in1δ18O=
δ18O−δ18Odw.eq (model–data difference) and variance ratios
in the record’s variance divided by the variance of the simu-
lation at the cave location (VarRec/VarSim). If not explicitly
stated otherwise, we always provide 90 % confidence inter-
vals by bootstrapping (Efron and Tibshirani, 1986) with 1000
repetitions. To reduce potential bias due to the irregular spa-
tial distribution of cave sites, we use area-weighting in spa-
tial mean estimates, where stated. This is done by calculating
grid-box means of all speleothems within a 3.75◦× 2.5◦ grid
box similar to the simulation, which is then area-weighted
across latitudes, following Marcott et al. (2013).

While the simulation data are available on a monthly ba-
sis, the proxy time series are irregular and at annual or lower
resolution. Therefore, the simulation data at cave location
are down-sampled to the record’s reconstructed time axis by
block averaging. The power spectral density (PSD) of a time
series over a finite interval of time describes the distribution
of power in frequency components of the time series. The
integration over all spectral components yields the variance
of the time series (Chatfield, 2003). For spectral analyses,
the proxy records are interpolated to their mean resolution
in a double interpolation and filtering procedure (following
Laepple and Huybers, 2014a, b; Rehfeld et al., 2018; Dol-
man et al., 2020). Spectra of sufficient resolution can then be
averaged to a mean spectrum over a certain frequency range
(Kunz et al., 2020).

We test the impact of karst storage of drip water (Gelhar
and Wilson, 1974; Dee et al., 2015) by applying an additional
simplified aquifer recharge-model-style filter (hereafter karst
filter). The impulse response of the Green’s function depends
solely on the transit time τ , as g(t)= 1/τ · e−t/τ , with t > 0.

The Green’s function is convolved with the simulated input
δ18O or δ18Opw signal to obtain the simulated karst-filtered
signal in the cave. Following Dee et al. (2015) we use a nor-
malization such that

∫
g(t)dt = 1, integrated over the length

of the respective time series. For the down-sampled case, we
first apply the filter to the annual-resolution simulated δ18O
and down-sample to record resolution afterward.

The correlation of irregular time series is estimated
by Person correlation adapted for irregular time series
(Rehfeld et al., 2011; Rehfeld and Kurths, 2014). The
signal-to-noise ratio (SNR) is estimated from the estimated
cross-correlation r̂ij between two time series i and j by
calculating SNR= r̂ij/(1− r̂ij ), as described by Fisher et al.
(1985). If more than two estimates are available, e.g., at the
grid-box level, the median between all possible combina-
tions of cross-correlations between the time series is used.
For correlation estimation, we choose a significance level of
α = 0.1. In balancing the strictness and the expected level of
false positives against that of data demands and the available
number of samples N , the level is appropriate for both pale-
oclimate archive and model data time series. The p values
for irregular series are estimated based on a t distribution,
with the degrees of freedom estimated from the temporal
coverages Rx,y and the persistence time τx,y as Neff =

min(max(Rx/τx,Ry/τy,na.rm=TRUE),max(Nx,Ny)).
This is implemented in the R package nest
(https://github.com/krehfeld/nest, last access: 29 April 2021,
Rehfeld et al., 2011; Rehfeld and Kurths, 2014). In the
case of the speleothem records, the estimated effective
degrees of freedom range from Neff = 20 to Neff = 470,
and they are generally similar to the length of the records.
For the regular time series, p values are calculated via
Pearson’s product moment correlation (via the function
cor.test). We account for age-model sensitivity by
calculating cross-correlation estimates for all possible
combinations of available age-model ensembles (Comas-
Bru et al., 2020b). The provided age models are not a
priori ranked by likelihood and are all consistent with the
radiometric chronological constraints. The age-model pair
that results in the strongest significant absolute correlation
estimate (p < 0.1) between two records is selected for the
best selection tuning.

3.3 Spatial correlation via network analysis

Networks are practical representations for complex systems
with interacting components and can be used to analyze dy-
namics in the climate system (Tsonis et al., 2006; Tupikina
et al., 2014; Rehfeld et al., 2013). Here we use a network
with n nodes, where n is the number of SISAL v.2 entities
that fulfill the sampling criteria. The speleothem entities are
joined in pairs by edges or links, where the n·(n−1) links are
formed if the cross-correlations r̂i,j between two speleothem
entities i and j are significantly different from zero with a
p value of pi,j .
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We split the network into eight sub-networks by hierarchi-
cal distance-based clustering of the node locations. The clus-
ter that includes all East Asian caves is manually split into
two clusters, one for East Asia (all caves above 20◦ N) and a
cluster for Southeast Asia (all caves below 20◦ N). With this,
we end up with nine clusters as depicted in Fig. 2. Links in
the plots (Fig. 8) are visualized if they are stronger than a
certain threshold |r|> r5 %, where r5 % is the minimum cor-
relation strength of the 5 % absolute strongest correlations
(“fixed link density”).

4 Results

4.1 Assessing model–data differences in time-averaged
δ18O

We first compare the mean SISAL v.2 record δ18Odw.eq
and iHadCM3 δ18Opw to assess potential model biases, us-
ing the 104 records with more than 10 δ18Ospeleo measure-
ments within the last millennium. Annual mean tempera-
ture and precipitation fields (Fig. 3a, b) and the mean mod-
eled δ18Opw together with the mean δ18Odw.eq in the SISAL
records (Fig. 3c) are shown in Fig. 3. Shown and described
are the fields and results for LM1; results for the other en-
semble members are generally very similar and given in Ta-
ble S1 in the Supplement. The major oxygen isotope ratio
depletion features as described by Dansgaard (1964) can be
distinguished. Modeled values show progressive depletion
towards higher latitudes, the interior of continents, and to-
wards regions with high precipitation amounts.

The offsets between modeled and measured δ18Opw
(1δ18O= δ18Opw− δ

18Odw.eq) show a heterogeneous pat-
tern (Fig. 3d). Generally, modeled values appear to be
more depleted overall than the mean values of speleothem
δ18Odw.eq, except in the Northern Hemisphere extratrop-
ics. There are some localized clusters and individual sites
with large positive and negative differences. One example
is site 38 (eID= 113, Diva cave in Brazil), which is vis-
ible as a dark blue dot in Fig. 3d. The δ18Odw.eq record
shows only slightly depleted δ18O in calcite (δ18Odw.eq =

−2.89‰), while the simulation shows much more depletion
(δ18Opw =−7.68‰). This results in a model–data differ-
ence of 1δ18O=−4.79‰. The surrounding sites in Brazil
are also less depleted than in the simulation. Site 277
(eID= 598, Huagapo cave in Peru), visible as a dark red dot
in Fig. 3d, shows a strong depletion in calcite (δ18Odw.eq =

−13.7‰) while the simulation is not as strongly depleted
(δ18Opw =−6.47‰). This results in a large positive offset
of 1δ18O= 7.33‰. The cave is located at an altitude of
3850 m above sea level, whereas model altitude at the grid
box is close to sea level. This should explain part of the off-
set.

At the regional scale, the largest cluster offset can be seen
over China and East Asia (c7) 1δ18O=+2.2‰ (−0.18 ‰,
4.65 ‰, 90 % confidence interval). However, the most con-

sistent negative difference is visible over neighboring In-
donesia (c8) 1δ18O=−2.95‰ (−5.89,−0.02). The small-
est differences are found in Europe with 1δ18O=+0.51‰
(−1.95,2.96). Overall, the simulated δ18O is smaller than
the δ18Odw.eq measured in speleothems (1δ18O=−0.07‰
(−4.31,4.17)). The grid-box-level area-weighted global
mean difference is −0.02‰ (−0.22,1.00) for LM1.

We further explore the impact of site conditions on the
model–data offset (Fig. 4). We find a decreasing δ18Odw.eq
towards northern higher latitudes (Fig. 4a), and most notably
a dependency of δ18Odw.eq on the local mean annual temper-
ature (Fig. 4b). We see more positive offsets in the North-
ern Hemisphere and mostly negative offsets in the Southern
Hemisphere (Fig. 4c) as was also distinguishable in the map
in Fig. 3d.

The offsets also show a strong influence of temperature
(Fig. 4d) and elevation (Fig. 4i), which are both controlling
factors during the isotopic fractionation process. The eleva-
tion difference between the simulation and the record spans
from a 1332 m higher elevation in the simulation (eID= 538
in Shenqi cave in China) and 3065 m higher elevation in the
records (eID= 598 in Huagapo cave in Peru, visible outlier
in Fig. 4c, d). Here, the offsets increase with increasing abso-
lute difference (Fig. 4j). The offset shows a weak correlation
with precipitation (Fig. 4f), both in the annual mean and for
the boreal winter and summer seasons (see DJF and JJA pre-
cipitation in Fig. 4g, h). No relation can be seen with miner-
alogy, parent rock (Fig. 4e), or cover thickness (Fig. 4k).

4.2 Assessing model–data differences in the local
variance of δ18O

To analyze how similar the variability of the isotopic signal
is in the iHadCM3 climate model and the speleothems, we
compare the total variance of the simulation to that of the 92
speleothem records with more than 20 δ18Ospeleo measure-
ments over the last millennium. The global distribution of
variance ratios between δ18Odw.eq and down-sampled δ18O
(Fig. 5a) shows overall higher variability in the speleothem
records than in the simulation, with local exceptions. This
is also corroborated by the density plots of the ratio for both
δ18O and δ18Opw in Fig. 5b, c. Generally, the observed proxy
variance is roughly 2 times higher than that of the down-
sampled simulation δ18Opw at the cave location (median of
the histogram at 1.8 (1.4,2.6) in Fig. 5b, c). This is consis-
tent with the predominance of red-shaded variance ratio vi-
sualizations in the spatial view indicating VarRec/VarSim > 1
(Fig. 5a). However, there is a clear impact of averaging on
the total variance, as down-sampling results in a variance ra-
tio above unity. Overall, this shows a discrepancy between
the variance observed in δ18Odw.eq and the simulated vari-
ance at the cave location over the total time period.

The highest variance ratio for down-sampled δ18Opw is
found in Jiuxian cave in China (eID 330, with a variance ra-
tio of 49.5) and the lowest variance ratio in Dandak cave in
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Figure 3. Characterization of the mean state of the simulation (LM1): shown are (a) mean annual surface temperature, (b) precipitation, and
(c) δ18Opw, including δ18Odw.eq at cave sites in drip water equivalents. Note the logarithmic color scale. Point-wise differences between the
mean simulated δ18O and proxy-based δ18Odw.eq (d) show anomalies. Spatially aggregated differences at the global and cluster level for
simulations LM1–LM3 are given in Table S1 in the Supplement.

India (eID 130, with a variance ratio of 0.2), while neighbor-
ing caves show very different variance ratios. As the modeled
patterns are fairly smooth, this indicates a large heterogeneity
of the speleothem data from the cave environment. We find
no strong or significant relationship between variance or vari-
ance ratios to any tested climate or cave parameter (Fig. S4
in the Supplement where we show a similar figure to Fig. 4
but for variance ratios).

4.3 Assessing δ18O variability at interannual to
centennial timescales

We extend the analysis of total variance (Fig. 5) to the
timescale-dependent variance (Fig. 6) to better explore vari-
ability on interannual, decadal, and centennial timescales as
compared to the total variance over the last millennium. We
set stronger criteria on the speleothem records and only an-
alyze the 85 with more than 30 measurements over the last
millennium. The spectra in Fig. 6d give an insight into the
variability over different timescales and the representativity
of records for reconstruction resolution.

On the left side (Fig. 6a–c), the time series of δ18Odw.eq
of eID 240 (Bunker cave, Germany) is depicted (Fig. 6a),
together with the simulated δ18Opw at the cave site at differ-
ent temporal resolutions (Fig. 6b, c), including karst-filtered
δ18Opw. Comparing Fig. 6a–c visually, different levels of
variance can already be distinguished, for example, between
the filtered and unfiltered simulated data. The iHadCM3
δ18Opw spectrum of the yearly resolved signal has similar
variance over all frequencies and shows a fairly constant PSD

(Fig. 6d). Variance at decadal timescales (i.e., the PSD for
higher frequencies) is just as high as the variance on centen-
nial timescales (i.e., the PSD for lower frequencies).

After down-sampling to the irregular resolution of the
record, the simulated spectrum loses power in the higher
frequency range. Comparing for example the time series in
Fig. 6c to the spectra in Fig. 6d, the down-sampled spectrum
indicates lower variability than the annual resolution spec-
trum on decadal timescales. On centennial timescales, both
spectra display similar variability. Contrasting Fig. 6b to c,
this loss in decadal timescale variability is also visible on the
time series level.

The proxies’ spectra have even fewer frequency compo-
nents in the high frequency range, due to the lower tem-
poral resolution. They do, however, show a higher PSD at
lower frequencies. The records are, therefore, less variable
on decadal timescales, and more variable than both the down-
sampled and the full-resolution simulated δ18Opw on centen-
nial timescales.

An additional impact of karst processes and storage on the
δ18Opw variability could be expected. To test the impact of
this, we apply simple karst filters (see Sect. 3) with increas-
ing filter length and test whether they reduce the spectral
mismatch. Filters of different lengths resulted in increasing
spectral slopes with increasing transit times. A 3-year filter
for the down-sampled δ18Opw achieves equivalent variance
trends as the record spectrum with less power on decadal
timescales. It eventually flattens again for longer timescales,
without exceeding the PSD of the unfiltered signal, such that
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Figure 4. Systematic comparison of climate variables from LM1 and cave parameters on δ18Odw.eq and the offset1δ18O to the simulation.
Shown are the absolute values of δ18Odw.eq vs. (a) site latitude and (b) simulated local annual mean temperature, and the model–data
difference vs. (c) latitude, (d) simulated mean annual temperature, (e) geology surrounding the cave (“?” means unknown geology), and
(f) mean annual precipitation amount from (g) DJF and (h) JJA as well as (i) cave elevation, (j) the elevation difference between the model
grid and actual cave, and (k) the overall cover thickness above the cave. Symbols denote calcite (black circles) or aragonite (blue triangles)
specimens. An unweighted linear regression (red line) is added for illustration, but without consideration of significance.

it is less variable than the proxies on longer timescales. A
full set of individual spectra (full simulation, down-sampled,
record spectrum, and all filters) for all entities used in this
analysis can be found in Figs. S5 and S6.

4.4 Climatic drivers of δ18O variability

To distinguish the main important climatic drivers for
specific areas for δ18O both in the simulation and in
speleothems, we correlate simulated δ18Opw with the sim-
ulated temperature (Fig. 7a) and the precipitation signal

(Fig. 7b) on a grid-box level after temporal down-sampling.
Grey (empty) tiles indicate non-significant correlation esti-
mates. The correlation between δ18Ospeleo and the climate
variable is also shown.

We see strong correlations of simulated δ18Opw to simu-
lated temperature at high latitudes as well as over some land-
masses (background in Fig. 7). The speleothem signals show
positive as well as strong negative correlations. The absolute
highest correlation is found for eID 124 in Leviathan cave in
the USA (c =−0.4 (−0.7,0.1)). In the simulation, this cor-
relation is locally positive, which indicates that the simulated
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Figure 5. (a) Spatial visualization of the site-based dimensionless variance ratio VRec/VSim, where the simulated δ18O is down-sampled to
record resolution, based on LM1. Aggregated density plots of the variance ratio of δ18O (b) and precipitation-weighted δ18Opw (c) for the
raw records (“full”, black lines). The simulation has also been down-sampled to the record resolution (“down-sampled”, red lines), which
illustrates the variance loss due to temporal averaging in the archive (uses LM1-3).

Figure 6. Variability on different timescales through comparison of measured δ18Odw.eq and simulated δ18Opw time series as well as of
their spectra. (a–c) Example time series of eID 240 in Bunker cave (Germany) (Fohlmeister et al., 2012). (a) The measured δ18Odw.eq in
the speleothem, (b) the iHadCM3 simulated δ18Opw at the cave location with two filters (3 and 9 years), and (c) the simulated δ18Opw but
down-sampled to the same temporal resolution as in (a) with a 3-year filter. (d) Power spectral density (PSD) of mean spectra of simulated
δ18Opw at the cave site in yearly resolution (blue), down-sampled to the individual record’s resolution (red), and mean spectrum of the
δ18Odw.eq of the records (black), including the karst filter as shown in (a)–(c). The spectra are area-weighted and averaged over the three
simulations (LM1, LM2, and LM3). The colors for the example eID in (a)–(c) correspond to the colors of the mean spectra over all entities
in (d).

temperature is a positive δ18Opw driver in the general area in
the model. The correlation of the simulated climate and the
record’s δ18Ospeleo is, however, negative.

The correlation between the simulated precipitation and
δ18Opw is especially strong in the tropics. We find the highest

absolute correlation for eID 523 in Gempa Bumi cave in In-
donesia (c =−0.5 (−0.7,−0.1)). Here, the background also
shows a negative correlation.

Comparing the two proposed climatic drivers of δ18Opw
variability, we observe that the correlations to temperature
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Figure 7. Correlation fields of simulated δ18Opw and the related climate variables surface temperature (a) and precipitation (b) for simulation
LM1 (|c|> 0.2,p < 0.1). Colored symbols give the correlation between simulated climate variables and the δ18Odw.eq of the speleothem
records. Empty tiles mask non-significant correlations. Black dots show cave locations with non-significant correlations.

are higher in the higher latitudes, while correlations to the
precipitation appear more important in the tropics. A fairly
clear zonal structure of correlations between the climate and
oxygen isotope ratio fields is visible in the model. How-
ever, only a few of the records show a significant correla-
tion (p < 0.1). We find 18, 15, and 22 significant correla-
tions from 85 entities for temperature for the 3 LM ensemble
runs respectively. A total of 44 of these are from entities that
show significance in 2 of the 3 LM runs. For precipitation,
we find 14, 7, and 10 significant correlations where 54 enti-
ties are significant in at least 2 of the 3 LM runs. No clear
climatic driver can, therefore, be extracted alone from record
correlation results. Fewer records show significant correla-
tion to both climate variables. The direct correlation of the
time series of the simulated and proxy-based δ18O results in
only 19, 17, and 19 significant correlations from 85, i.e., at
around 20 % of the sites. Here, 45 entities show significant
correlations in 2 or 3 of the LM runs.

4.5 Similarity measures and network analysis

Computing all statistical similarity between the δ18Ospeleo
signals within a cave (“site-level correlation”) or across
nearby caves (regional or grid-box-level correlation) yields a
measure of representativity useful for model comparison and
uncertainty assessment. The networks in Fig. 8 are based on
the simulated signal (annual resolution and down-sampled)
δ18Opw (Fig. 8a–d) and for δ18Ospeleo (Fig. 8e, f) for 85 enti-
ties.

Network links are based on the 5 % highest absolute cor-
relations. The highest correlations are found at close proxim-
ity for the models (Fig. 8a–d), whereas links across a wide
range of distance can be seen in the proxy data (Fig. 8e, f).
High local correlations for the model data can be expected,
as the simulated δ18Opw within one cave will be the same
and only differs on a temporal scale after the adjustment to
the entity’s temporal resolution (down-sampling). The mean
absolute correlation for the 5 % strongest significant links
in Fig. 8c) is c = 0.42 (0.41,0.43). Comparing the down-
sampled distance-to-correlation plot (Fig. 8d) to that on an-

Figure 8. Network spanned by the 5 % strongest absolute corre-
lations of simulated iHadCM3 LM1 δ18Opw at the SISAL cave
sites: (a) full (i.e., annual) resolution, (c) down-sampled. All
model-based between-site correlations are shown in the distance-
binned boxplot (b, d). Network visualizations (e) and distance-
binned boxplot (f) of the cross-correlations between SISAL site
δ18Ospeleo for the original age models. The color values indicate
the 5 % strongest correlations in network and boxplot. The LOESS
smoother (span= 0.2) in the boxplots indicates the correlation for
the original chronology (black) as well as the absolute highest cor-
relation through selection of age models (orange).

nual resolution analysis (Fig. 8b), an additional scattering of
correlation estimates at longer than 2000 km distance is visi-
ble.

The network of δ18Ospeleo does not display large-scale
spatial patterns and no observable relationship between cor-
relation and distance. The mean absolute correlation for
the 5 % strongest significant links shown in Fig. 8e is c =
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Figure 9. Cross-correlation on site, grid boxes, clusters and global
scale for speleothem records and the locally interpolated model out-
put for δ18Opw. The 12 (18) sites (grid boxes) contain more than
one speleothem entity with a total of 27 (45). At each aggrega-
tion level the correlation estimates between all entities is shown
for δ18Ospeleo (white bars), and the down-sampled model output
δ18Opw of LM1-3 at cave locations (blue bars). Different temporal
scales (original resolution and 100-year timescale (t.sc)) are com-
pared as well as the age-model ensemble that gives the highest ab-
solute correlation (dark green bars). Clusters are indicated with the
number of speleothem entities in brackets, where c4, c5, c8, and c9
are not included because they contain too few entities. c6/ICA is
the India and Central Asia cluster, c7/CEA is the China and Eastern
Asia cluster.

0.52 (0.52,0.53). Computing the networks based on the en-
semble age models, as well as selecting the age models
that maximize the absolute correlation between sites, am-
plifies both positive and negative correlation estimates but
does not change the correlation-to-distance relationship. The
sensitivity test performed on the simulated down-sampled
δ18Opw still shows strong yet weaker correlation estimates at
short distances. Comparing the results for simulated δ18Opw
(Fig. 8a–d) and δ18Ospeleo (Fig. 8e, f), we obtain low corre-
lation estimates at the local scale.

We can also investigate relationships using regional net-
works. For this, we look at correlation on different spatial
levels and separate the network analysis from Fig. 8 by sites,
grid boxes, and clusters. Cluster c4, c8, and c9 contain less
than four entities and are excluded. We check for representa-
tivity on different timescales of record resolution (white and
dark blue) and a 100-year Gaussian smoothing filter (grey
and light blue) and on different spatial scales using boxplots
(Fig. 9).

At the site level, we find 27 entities within 12 sites
that contain at least 2 entities. The median correlation of
these 28 pairs is craw = 0.25 (−0.17,0.33). On a 100-year
timescale, this increases to c100 = 0.42 (−0.46,0.49)). The
SNR gives a measure of the relative importance of non-
climatic overprints on the proxy signal. We obtain a lo-

cal SNR estimate of 0.5 (0.4,1.1). On the grid-box level
(45 entities in 18 grid boxes), we find a median correla-
tion of craw = 0.23 (0.2,0.25) (100-year timescale: c100 =

0.34 (0.27,0.47)). As on spatial resolutions below grid-box
level, correlations between simulated δ18Opw are not mean-
ingful, which is why the analysis in Fig. 9 shows only the
correlations between record δ18Ospeleo and not those of the
simulated δ18Opw on a site and grid-box level.

For regional clusters, the correlation between proxies
shows positive and negative median values. In the sim-
ulation, the median values are always positive. For clus-
ters containing more than 10 records detailed correlation
maps including correlation matrices are depicted for Eu-
rope (Fig. S7), China and Eastern Asia (Fig. S8), South
America (Fig. S9), and North America (Fig. S10) where
very red maps and matrices can be found, indicating mostly
positive correlations for the down-sampled simulation when
compared to more blue ones in the records, indicating that
negative correlations are also present. On the global scale,
the median correlation between all records is slightly pos-
itive (craw = 0.1 (−0.09,0.11), 100-year timescale: c100 =

0.13 (−0.14,0.17)), whereas for the simulation this median
is positive (craw = 0.06 (0.06,0.06)) and strongly enhanced
at centennial timescale to c100 = 0.76 (0.73,0.81).

By the selection of the age model that maximizes the ab-
solute correlation, we obtain a significant positive correlation
at site level and a stronger significantly positive correlation
at grid-box level. A detailed table with median correlations
and SNR using the original chronologies as well as using
the described age-model selection on different spatial levels
is shown in ST2. Calculating correlations for different age-
model ensembles was only done for the 69 entities, where
both age-model ensembles were available (U/Th-dated enti-
ties) in Comas-Bru et al. (2020b), and our strongest criteria
were matched.

5 Discussion

5.1 δ18O model–data comparison in mean and
variance

In our study, we found the last-millennium mean iHadCM3-
simulated δ18O to agree well with the mean state of the
measured δ18Odw.eq (Fig. 3). The average unweighted off-
set of 1δ18O= 0.1‰ (−4.6,4.4) was small compared to
the total δ18Opw and the area weighted standard deviation
of σ 2

= 0.78‰2 (0.77,0.8) of the global simulated mean
δ18Opw. Measured δ18Odw.eq followed general isotopic sig-
nature patterns as described by Dansgaard (1964). The off-
sets are more positive in the extratropics of the Northern
Hemisphere, which is also shown by their temperature de-
pendency (Fig. 4).

Baker et al. (2019) distinguished between temperature
zones of climatic controls on δ18O in offset analyses on drip
water. They find a stronger influence of seasonality of pre-
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cipitation in warmer climates, highlighting the importance
of a karst-recharge model. Here, we also observed a strong
temperature dependency reflected in the offset and δ18Odw.eq
over the last millennium, showing the influence of fraction-
ation and other internal cave processes on the δ18O in drip
water (Fig. 4) but also additional fractionation processes of
weighting through evaporation before the precipitated water
enters the epikarst. The higher offsets on the Northern Hemi-
sphere possibly indicate a stronger influence of the continen-
tal effect. Still, from the records alone and with no karst-
recharge or evaporation information, we were not able to
distinguish specific climatic control regions. This requires a
more thorough analysis including monitoring data as well as
more simulated variables.

We found no evidence that the variance ratio between
record variance and simulated variance is related to the offset
between simulation and records (Fig. S4 is similar to Fig. 4,
with variance ratios instead of 1δ18O). Specifically, there is
no correlation between site-level offset and site-level vari-
ance ratio (results not shown, r = 0.1 (0.0,0.3), p = 0.2). In
general, the total variance of the simulated δ18Opw and of
the speleothem isotopic signatures over the last millennium
are consistent. Differences in variance can, to some extent,
be attributed to the sample resolution of the records, whereas
down-sampling of simulated δ18Opw decreases the variabil-
ity on decadal timescales. The resolution to which the simu-
lation is temporally aggregated impacts whether the variance
in the simulation appears to be larger or smaller than in the
records. The variance over the last millennium in the records
is overall 1.8 (1.4,2.6) times as high as the simulated down-
sampled variance in Fig. 5.

Furthermore, the simulated δ18O time series at the cave
sites show less variability on centennial timescales than the
time series of the records. This is true even when comparing
the same temporal resolutions (timescale-dependent variance
depicted in Fig. S11 for δ18Odw.eq, yearly-resolution δ18O,
and down-sampled δ18O). This is in agreement with the find-
ings of Laepple and Huybers (2014b), who compared simu-
lated and reconstructed temperature variability across differ-
ent timescales and found that the model–data discrepancies
increased with timescale, particularly on a regional level.

If we assume that paleoclimate archives record climate
variability correctly and that the proxy–climate relationships
are not timescale-dependent or transient, discrepancies at the
centennial timescale could in part be explained by the mod-
els’ underestimation of variability, in particular on centen-
nial timescales. However, we find little regional consistency
and high heterogeneity in the variance estimates from the
speleothem records. These findings point to the influence of
karst and internal cave processes on meteoric δ18O or the
impact of seasonally filtered data captured by speleothems,
e.g., through strong evaporation in warm months, which is in
agreement with McDermott et al. (2001). Age uncertainties
that are not covered by the age-model ensembles could also

be responsible for the low similarity between isotopic signals
of neighboring speleothem entities.

5.2 Influence of the karst filter

By delaying the simulated down-sampled signal through a
simplified karst filter with a transit time of 3 years, we ob-
tained matching equivalent power spectra for the simulation
and the records. Studies observing cave reaction time in karst
systems find increases in drip rate after an increase in pre-
cipitation, e.g., after days (Riechelmann et al., 2011). More
complex tritium measurements show actual transit times of
years in the Bunker cave in Germany (Kluge et al., 2010),
to decades in the Villars cave in France (Jean-Baptiste et al.,
2019), depending on the karst hydrology. The karst filter ef-
fectively reduces the temporal resolution of the record be-
yond the nominal median of 5.6 years (Fig. 6). Such low-
pass filtering to model drip water transit times has been used
(Wackerbarth et al., 2010; Dee et al., 2015; Lohmann et al.,
2013) to produce similar time lags of 2–10 years, indicating
that the best-fit mean time lag for our karst filter of 3 years
(down-sampled) is a realistic estimate for transit times.

We find low interannual to decadal variability in the
δ18Ospeleo signals recorded by speleothems (Fig. 6). In part,
this is likely due to the average resolution of the records,
which lies close to these timescales. Furthermore, mixing
processes in the soil and karst could play an important role,
where soil δ18O is found to have much lower variability than
precipitation δ18O (Tang and Feng, 2001).

On decadal timescales (shorter than 50 years), the karst fil-
ter reduced the resolution-adjusted variance by 34 % (20,43)
and on longer timescales (longer than 50 years) by 4.0 %
(3.3,4.4) of the non-filtered down-sampled variance. The
total filtered and down-sampled variance over the last mil-
lennium decreased by 14 % (9,27) of the unfiltered down-
sampled variance. Still, this is equivalent to only 29 %
(23,38) of the record variance, as the filter only decreases
variance on annual to decadal timescales. On centennial
timescales the filter has little to no effect, so the record’s vari-
ance on these timescales is not strongly affected.

5.3 Representativity of δ18O at different spatial levels

A clear picture of the relationship between the climatic
drivers for the simulation was distinguishable. However,
no systematic pattern and few significant correlations were
found for the speleothem records (Fig. 7). Accounting for
seasonal sensitivity could enhance the number of simulation-
to-record correlations of Fig. S12, which shows the selected
strongest seasonal correlation. However, this enhances nei-
ther the overall correlation (histogram of correlation distri-
bution using annual down-sampled time series and seasonal
down-sampled time series in Fig. S13) nor the SNR (results
not shown). Still, the strong influence of seasonality sug-
gests a dependency of δ18Ospeleo on certain seasons rather
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than the annual mean. Supporting this, Fig. S14 shows a
correlation map with the strongest seasonal correlation of
δ18Ospeleo to the simulated climate variables temperature,
precipitation, and δ18O in precipitation. Further drip water
monitoring studies combined with a comparison to model
data output and observation data would help to characterize
the seasonality of individual caves and would, therefore, lead
to deeper understanding of which climatic signal is captured
by speleothems and enhance comparability between different
caves.

We found low spatial representativity of individual
speleothems for sites, grid boxes, and regions when com-
pared to the simulation (Figs. 8 and 9). We obtained
stronger correlations between entities by selection of the
best-matching age-model ensemble for entities where these
ensembles were available. This age-model ensemble “tun-
ing” increased the median of correlations on site and grid-
box level by roughly a factor of 2, while also increasing the
SNR by a factor of 3 and 2.5, respectively. However, no
improvement could be observed on the cluster and global
level. A detailed table of correlations and SNRs using the
original chronologies as well as using the age-model ensem-
ble selection that gives the highest absolute correlation is
shown in Table S2 in the Supplement. Testing other “tun-
ing” options, such as the consideration of only the 50 %
of the records at closest proximity within a cluster or the
50 % with the smallest mean offset showed no improvement
(boxplot similar to Fig. 9 for the other selection criteria in
Fig. S15). We also found no correlation between the total
variance and the number of significant links in the network
(c =−0.02(−0.23,0.19), p = 0.8). Testing for age-model
sensitivity and analyzing the resulting “tuning” for the down-
sampled simulated δ18O in Fig. 8, however, yielded that the
method is useful but better selection criteria are needed.

Examining climatic modes such as ENSO, NAO, and oth-
ers (as shown in Fig. S18 for LM1), which modulate hydro-
climate variability across spatiotemporal scales, may provide
additional help in the interpretation of the climatic drivers,
e.g., following the recent example of Midhun et al. (2021).
They found that changes in modeled climatic mode strengths
lead to small changes in δ18Ospeleo. The methods applied, es-
pecially regarding teleconnections, could provide deeper in-
sight into climatic controls on speleothem isotopic signals.
In particular Midhun et al. (2021) point out the potential to
use of speleothem networks in the reconstruction of climatic
modes.

A strong between-site variability has been attributed to
controls of regional atmospheric circulation according to
Lachniet (2009). We also find a strong heterogeneity in the
recorded variance of δ18O at the grid-box and cluster lev-
els. In part, this can be due to heterogeneous temporal res-
olution but could also be influenced by non-climatic envi-
ronmental overprints on the δ18O signal up to the centennial
scale. This could be investigated by comparing the δ18O and
the δ13C signal recorded within the cave to vegetation, cli-

mate, and landscape evolution archives in the region. How-
ever, representativity tests across western Europe noted co-
herent δ18Ospeleo trends on glacial–interglacial timescales,
where trends are less clearly expressed during the Holocene
(Lechleitner et al., 2018). Therefore, this study could be ex-
tended to longer timescales, when longer transient isotope-
enabled simulations become available.

5.4 Limitations

Simulated isotope variability is primarily dictated by the
model’s climatology and the complexity of its dynamics and
hydrological cycle. We use a three-member initial-condition
ensemble from a single iGCM in this study. Therefore, all re-
sults relate to these iHadCM3 last-millennium ensemble runs
and the chosen radiative forcings. While solar forcing has lit-
tle influence on simulated δ18O, the impact of volcanic forc-
ing is much clearer yet still weak (Fig. S16). In this respect, a
more thorough comparison with more simulations is needed
in order to estimate the capability of models to simulate vari-
ability and to find common biases. However, the establish-
ment of isotope-enabled GCMs requires substantial work for
the addition of isotopic tracers and their evaluation, and the
computational costs increase. This still inhibits the simula-
tion of large transient ensembles with iGCMs over centen-
nial to millennial and orbital timescales. Nevertheless, the
three-member ensemble we provide could also be used to test
offline data assimilation methods, as suggested by Dalaiden
et al. (2020) or Sjolte et al. (2020). With their precise U/Th
dating, speleothems are a well-suited archive for this method
and age uncertainties can be accounted for similar to this
study by the available age-model ensembles in Comas-Bru
et al. (2020b). This might also help to better identify the cli-
mate factors that govern the speleothem archiving of δ18O
and its variability.

An uncertainty factor in our study comes from the tem-
perature dependence of the calcite- and aragonite-to-drip-
water conversion. We calculated the adjustment factors us-
ing the simulated annual mean temperature at the cave lo-
cation, sampled to the speleothem’s temporal resolution. We
take this simulated temperature as a surrogate for the long-
term changes of the inside-cave air temperature. Knowing the
actual temperature history of the caves better could strongly
reduce the uncertainty, as a bias of 11 ◦C in the simulated
temperature would account for a change in δ18Odw.eq of ap-
proximately10.2‰. Following Eqs. (1)–(3), a bias of11‰
in the δ18Odw.eq however, accounts for a temperature change
of 4.5 ◦C for the lowest simulated annual mean cave tem-
perature (3.1 ◦C in Norway), and a change of 5.5 ◦C for the
highest simulated annual mean cave temperature (32.5 ◦C in
the tropics).

This model–data comparison focuses on the comparison
between simulated δ18O and precipitation-weighted δ18Opw
to the drip-water-converted δ18Ospeleo. Especially in the more
arid regions, evaporation processes play an important role,
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and δ18Ospeleo might be in better agreement with simulated
infiltration-weighted δ18O or a karst recharge model. Further
studies explicitly addressing evaporative effects might help
in the interpretation of the results, for example in the region
of South America.

Furthermore, our study focussed solely on δ18O as one
particular proxy for climate and environmental changes
and not other geochemical proxies that can be measured
on speleothem samples (Kaufmann, 2003; Schwarcz et al.,
1976) or a combination of proxies, which have the poten-
tial of a more thorough interpretation of a climate signal. A
multi-proxy approach, such as in Fohlmeister et al. (2017)
or Baker et al. (2017) who also include δ13C along with
δ18O, could offer deeper insights. Many proxies for climate
processes such as δ13C have not (yet) been implemented in
comprehensive GCMs, as it requires a detailed and complex
representation of the biology, physics, and ecology and dedi-
cated model development. Therefore, in order to consider the
vast majority of models in the evaluation, time series have to
be calibrated to climatic and environmental parameters that
are explicitly modeled. This would introduce additional un-
certainty, which could counteract the added value of consid-
ering multiple proxies in the first place.

We have considered a regional to global view on
speleothem δ18O signal. Therefore, influences and processes
known for individual cave systems could not be considered.
For example, Kluge et al. (2013) account for kinetic frac-
tionation changes over time via clumped isotope measure-
ments, and Jean-Baptiste et al. (2019) were able to extract
transit times of drip water in Villar cave. Considering these
and other local factors might give deeper insight into indi-
vidual speleothem records, but it is difficult to scale quantita-
tively and systematically. Nevertheless, including monitoring
datasets from different caves globally might give deeper in-
sight into the filter and fractionation processes involved, and
PSM studies informed by the monitoring and local exper-
tise throughout the database could help in further comparison
studies.

6 Conclusions

We presented an ensemble of iHadCM3 last-millennium sim-
ulations and compared the oxygen isotope ratios, temper-
ature, and precipitation variability to oxygen isotope ratio
observations from a large speleothem dataset (a subset of
SISAL v.2). Overall, time-mean patterns of oxygen isotope
ratio were fairly similar in both. Considering total variance
as well as the variability on different timescales, we observed
that the effects of resolution adjustment and a convolution
karst filter were sufficient to bring simulated and observed
δ18O spectra into good agreement. Still, total variability in
the speleothem records is much higher than in the simulation.
This supports previous studies that found that climate models

currently do not capture appropriate variability on centennial
timescales.

However, we find that the climatological and environmen-
tal interpretation of δ18Ospeleo is not straightforward. We
found low signal-to-noise ratios for the isotopic signatures
in the speleothem records, which imply a low spatial rep-
resentativity of individual entities. Furthermore, while re-
gional climatic signals were distinguished in the simulation,
the main climatic drivers for δ18Ospeleo at the regional scale
were difficult to isolate. It is difficult to establish the size of
the spatial footprint of representativity, the seasonality, and
the relevant climatological and environmental parameters for
reconstructions. Here, expert knowledge on local cave pro-
cesses, environmental history, and, in particular, the avail-
ability of monitoring data are crucial to aid the interpretation
of the climate signal. Inner cave and karst processes, which
influence the seasonality of the input signal above the cave
and inside the cave, may need to be taken into consideration.
However, monitoring data for evaluation and potential cal-
ibration of reconstructions are currently only available for a
few sites (e.g., Tremaine et al., 2011). Furthermore, some pa-
rameters, such as transit times, are difficult to measure (Jean-
Baptiste et al., 2019).

Proxy system models that account for the internal cave
fractionation processes may give a deeper insight into how
climate variability is captured in speleothem archives. To
gain a deeper understanding of the underlying concepts that
influence the capability of speleothems to capture and resolve
climate variability and the capability of models to simulate
them, further model–data comparison studies are required.

Code and data availability. Code to reproduce figures and anal-
yses in this paper are provided at https://github.com/paleovar/
iHadCM3LastMill (last access: 19 February 2021, Bühler and
Rehfeld, 2020). Model data are freely available on Pangaea at
https://doi.org/10.1594/PANGAEA.924795 (Rehfeld et al., 2021)
and Zenodo https://doi.org/10.5281/zenodo.4551065 (Rehfeld and
Bühler, 2021). The SISAL v.2 database (Comas-Bru et al.,
2020b) can be downloaded at https://researchdata.reading.ac.uk/
256/ (last access: 29 April 2021, Comas-Bru et al., 2020a).
We use R for the data analysis (R Core Team, 2020). The
main packages are tidyverse (Wickham et al., 2019), ncdf4
(Pierce, 2019), ggplot2 (Wickham, 2016), and raster (Hijmans,
2019). We use the nest R package (https://github.com/krehfeld/
nest (last access: 29 April 2021, Rehfeld et al., 2011; Rehfeld
and Kurths, 2014)) and the PaleoSpec package (https://github.com/
EarthSystemDiagnostics/PaleoSpec (last access: 29 April 2021
Kunz et al., 2020)).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/cp-17-985-2021-supplement.
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