Articles | Volume 17, issue 5
https://doi.org/10.5194/cp-17-2091-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-2091-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate, cryosphere and carbon cycle controls on Southeast Atlantic orbital-scale carbonate deposition since the Oligocene (30–0 Ma)
Anna Joy Drury
CORRESPONDING AUTHOR
MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany
Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
Diederik Liebrand
MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany
Thomas Westerhold
MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany
Helen M. Beddow
Department of Earth Sciences, Faculty of Geosciences, Utrecht
University, Utrecht, the Netherlands
David A. Hodell
Department of Earth Science, University of Cambridge, Cambridge, EH9 3FE, UK
Nina Rohlfs
MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany
Roy H. Wilkens
School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii 96822, USA
Mitchell Lyle
College of Earth, Ocean, and Atmospheric Science, Oregon State
University, Corvallis, Oregon 97331, USA
David B. Bell
School of GeoSciences, University of Edinburgh, Edinburgh, CB2 3EQ, UK
Dick Kroon
School of GeoSciences, University of Edinburgh, Edinburgh, CB2 3EQ, UK
Heiko Pälike
MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany
Lucas J. Lourens
Department of Earth Sciences, Faculty of Geosciences, Utrecht
University, Utrecht, the Netherlands
Related authors
Gerald Auer, David De Vleeschouwer, Arisa Seki, Anna Joy Drury, Yusuke Kubo, Minoru Ikehara, Junichiro Kuroda, and the ReC23-01 scientists
EGUsphere, https://doi.org/10.5194/egusphere-2025-2760, https://doi.org/10.5194/egusphere-2025-2760, 2025
Short summary
Short summary
We explore new methods for ice-rafted debris detection in marine sediment cores to detect past climate changes and ice sheet dynamics. Traditional IRD detection methods are destructive and time-consuming. To alleviate this problem, we utilize non-destructive imaging techniques core material from the Indian Ocean. While promising, we found contamination to be an issue. Machine learning identifies density and chemical differences, but rigorous testing is needed to avoid false positives.
Ji-Eun Kim, Thomas Westerhold, Laia Alegret, Anna Joy Drury, Ursula Röhl, and Elizabeth M. Griffith
Clim. Past, 18, 2631–2641, https://doi.org/10.5194/cp-18-2631-2022, https://doi.org/10.5194/cp-18-2631-2022, 2022
Short summary
Short summary
This study attempts to gain a better understanding of the marine biological carbon pump and ecosystem functioning under warmer-than-today conditions. Our records from marine sediments show the Pacific tropical marine biological carbon pump was driven by variations in seasonal insolation in the tropics during the Late Cretaceous and may play a key role in modulating climate and the carbon cycle globally in the future.
Gerald Auer, David De Vleeschouwer, Arisa Seki, Anna Joy Drury, Yusuke Kubo, Minoru Ikehara, Junichiro Kuroda, and the ReC23-01 scientists
EGUsphere, https://doi.org/10.5194/egusphere-2025-2760, https://doi.org/10.5194/egusphere-2025-2760, 2025
Short summary
Short summary
We explore new methods for ice-rafted debris detection in marine sediment cores to detect past climate changes and ice sheet dynamics. Traditional IRD detection methods are destructive and time-consuming. To alleviate this problem, we utilize non-destructive imaging techniques core material from the Indian Ocean. While promising, we found contamination to be an issue. Machine learning identifies density and chemical differences, but rigorous testing is needed to avoid false positives.
Pauline Cornuault, Luc Beaufort, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
EGUsphere, https://doi.org/10.5194/egusphere-2025-198, https://doi.org/10.5194/egusphere-2025-198, 2025
Short summary
Short summary
We present new high-resolution data of the relative contribution of the two main pelagic carbonate producers (coccoliths and foraminifera) to the total pelagic carbonate production from the tropical Atlantic in past warm periods since the Miocene. Our findings suggests that the two groups responded differently to orbital forcing and oceanic changes in tropical ocean, but their proportion changes did not drive the changes in overall pelagic carbonate deposition.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past, 21, 79–93, https://doi.org/10.5194/cp-21-79-2025, https://doi.org/10.5194/cp-21-79-2025, 2025
Short summary
Short summary
Based on dinoflagellate cyst assemblages and sea surface temperature records west of offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes affected atmosphere–ocean CO2 exchange in the Southern Ocean.
Biagio Giaccio, Bernd Wagner, Giovanni Zanchetta, Adele Bertini, Gian Paolo Cavinato, Roberto de Franco, Fabio Florindo, David A. Hodell, Thomas A. Neubauer, Sebastien Nomade, Alison Pereira, Laura Sadori, Sara Satolli, Polychronis C. Tzedakis, Paul Albert, Paolo Boncio, Cindy De Jonge, Alexander Francke, Christine Heim, Alessia Masi, Marta Marchegiano, Helen M. Roberts, Anders Noren, and the MEME team
Sci. Dril., 33, 249–266, https://doi.org/10.5194/sd-33-249-2024, https://doi.org/10.5194/sd-33-249-2024, 2024
Short summary
Short summary
A total of 42 Earth scientists from 14 countries met in Gioia dei Marsi, central Italy, on 23 to 27 October 2023 to explore the potential for deep drilling of the thick lake sediment sequence of the Fucino Basin. The aim was to reconstruct the history of climate, ecosystem, and biodiversity changes and of the explosive volcanism and tectonics in central Italy over the last 3.5 million years, constrained by a detailed radiometric chronology.
Mitchell Lyle and Annette Olivarez Lyle
Clim. Past, 20, 2685–2700, https://doi.org/10.5194/cp-20-2685-2024, https://doi.org/10.5194/cp-20-2685-2024, 2024
Short summary
Short summary
Greenhouse gases were key in maintaining past warm intervals, but feedbacks are needed to sustain high atmospheric CO2 levels. We assess whether changes in the ocean degradation depth of plankton-produced organic matter (particulate organic carbon – POC) affect ocean carbon storage. Limited POC burial in sediments during the Miocene Climate Optimum (MCO) warm interval, relative to recent periods, suggests poorer POC transfer to the abyss, leading to the MCO's higher atmospheric CO2 levels.
Julia de Entrambasaguas, Thomas Westerhold, Heather L. Jones, and Laia Alegret
J. Micropalaeontol., 43, 303–322, https://doi.org/10.5194/jm-43-303-2024, https://doi.org/10.5194/jm-43-303-2024, 2024
Short summary
Short summary
The Gulf Stream plays a crucial role in the ocean stability and climate regulation of the Northern Hemisphere. By analysing the fossil microorganisms that lived in the water column and the ocean floor, as well as reconstructing the ancient ocean's biogeochemistry, we were able to trace longitudinal shifts in the Gulf Stream during the late Eocene (36 Ma). Our results provide insight into the Gulf Stream's behaviour and the NW Atlantic's palaeoceanography during the Late Eocene (ca. 36 Ma).
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024, https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Short summary
The Oligocene and early Miocene periods featured dynamic glacial cycles on Antarctica. In this paper, we use Sr isotopes in marine carbonate sediments to document a change in the location and intensity of continental weathering during short periods of very intense Antarctic glaciation. Potentially, the weathering intensity of old continental rocks on Antarctica was reduced during glaciation. We also show improved age models for correlation of Southern Ocean and North Atlantic sediments.
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Diederik Liebrand, Anouk T. M. de Bakker, Heather J. H. Johnstone, and Charlotte S. Miller
Clim. Past, 19, 1447–1459, https://doi.org/10.5194/cp-19-1447-2023, https://doi.org/10.5194/cp-19-1447-2023, 2023
Short summary
Short summary
Climate cycles with millennial periodicities are enigmatic because no Earth external climate forcing exists that operates on millennial timescales. Using a statistical analysis of a famous Greenlandic air temperature record, we show that two disparate energy sources (one astronomical and one centennial) fuel millennial climate variability. We speculate that two distinct Earth internal cryospheric/climatic/oceanic processes are responsible for the transfer of energy to millennial climate cycles.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
David A. Hodell, Simon J. Crowhurst, Lucas Lourens, Vasiliki Margari, John Nicolson, James E. Rolfe, Luke C. Skinner, Nicola C. Thomas, Polychronis C. Tzedakis, Maryline J. Mleneck-Vautravers, and Eric W. Wolff
Clim. Past, 19, 607–636, https://doi.org/10.5194/cp-19-607-2023, https://doi.org/10.5194/cp-19-607-2023, 2023
Short summary
Short summary
We produced a 1.5-million-year-long history of climate change at International Ocean Discovery Program Site U1385 of the Iberian margin, a well-known location for rapidly accumulating sediments on the seafloor. Our record demonstrates that longer-term orbital changes in Earth's climate were persistently overprinted by abrupt millennial-to-centennial climate variability. The occurrence of abrupt climate change is modulated by the slower variations in Earth's orbit and climate background state.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
Ji-Eun Kim, Thomas Westerhold, Laia Alegret, Anna Joy Drury, Ursula Röhl, and Elizabeth M. Griffith
Clim. Past, 18, 2631–2641, https://doi.org/10.5194/cp-18-2631-2022, https://doi.org/10.5194/cp-18-2631-2022, 2022
Short summary
Short summary
This study attempts to gain a better understanding of the marine biological carbon pump and ecosystem functioning under warmer-than-today conditions. Our records from marine sediments show the Pacific tropical marine biological carbon pump was driven by variations in seasonal insolation in the tropics during the Late Cretaceous and may play a key role in modulating climate and the carbon cycle globally in the future.
Rick Hennekam, Katharine M. Grant, Eelco J. Rohling, Rik Tjallingii, David Heslop, Andrew P. Roberts, Lucas J. Lourens, and Gert-Jan Reichart
Clim. Past, 18, 2509–2521, https://doi.org/10.5194/cp-18-2509-2022, https://doi.org/10.5194/cp-18-2509-2022, 2022
Short summary
Short summary
The ratio of titanium to aluminum (Ti/Al) is an established way to reconstruct North African climate in eastern Mediterranean Sea sediments. We demonstrate here how to obtain reliable Ti/Al data using an efficient scanning method that allows rapid acquisition of long climate records at low expense. Using this method, we reconstruct a 3-million-year North African climate record. African environmental variability was paced predominantly by low-latitude insolation from 3–1.2 million years ago.
Eric W. Wolff, Hubertus Fischer, Tas van Ommen, and David A. Hodell
Clim. Past, 18, 1563–1577, https://doi.org/10.5194/cp-18-1563-2022, https://doi.org/10.5194/cp-18-1563-2022, 2022
Short summary
Short summary
Projects are underway to drill ice cores in Antarctica reaching 1.5 Myr back in time. Dating such cores will be challenging. One method is to match records from the new core against datasets from existing marine sediment cores. Here we explore the options for doing this and assess how well the ice and marine records match over the existing 800 000-year time period. We are able to recommend a strategy for using marine data to place an age scale on the new ice cores.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Henry Hooghiemstra, Gustavo Sarmiento Pérez, Vladimir Torres Torres, Juan-Carlos Berrío, Lucas Lourens, and Suzette G. A. Flantua
Sci. Dril., 30, 1–15, https://doi.org/10.5194/sd-30-1-2022, https://doi.org/10.5194/sd-30-1-2022, 2022
Short summary
Short summary
This is a brief overview of long continental fossil pollen records globally in relationship with marine records. Specifically, the Northern Andes is a key area in developing and testing hypotheses in the fields of ecology, paleobiogeography, and climate change in tropical regions. We review 60 years of deep drilling experience in this region that have led to landmark records. We also highlight the early development of long continental pollen records from unique, deep, sediment-filled basins.
Bas de Boer, Marit Peters, and Lucas J. Lourens
Clim. Past, 17, 331–344, https://doi.org/10.5194/cp-17-331-2021, https://doi.org/10.5194/cp-17-331-2021, 2021
Cited articles
Badger, M. P. S., Lear, C. H., Pancost, R. D., Foster, G. L., Bailey, T. R.,
Leng, M. J., and Abels, H. A.: CO2 drawdown following the middle Miocene
expansion of the Antarctic Ice Sheet, Paleoceanography, 28, 42–53, https://doi.org/10.1002/palo.20015, 2013.
Bailey, I., Hole, G. M., Foster, G. L., Wilson, P. A., Storey, C. D.,
Trueman, C. N., and Raymo, M. E.: An alternative suggestion for the Pliocene
onset of major northern hemisphere glaciation based on the geochemical
provenance of North Atlantic Ocean ice-rafted debris, Quat. Sci. Rev., 75,
181–194, https://doi.org/10.1016/j.quascirev.2013.06.004, 2013.
Barry, T. L., Kelley, S. P., Reidel, S. P., Camp, V. E., Self, S., Jarboe,
N. A., Duncan, R. A., and Renne, P. R.: Eruption chronology of the Columbia
River Basalt Group, Spec. Pap. Geol. Soc. Am., 497, 45–66,
https://doi.org/10.1130/2013.2497(02), 2013.
Beddow, H. M., Liebrand, D., Sluijs, A., Wade, B. S., and Lourens, L. J.:
Global change across the Oligocene-Miocene transition: High-resolution
stable isotope records from IODP Site U1334 (equatorial Pacific Ocean),
Paleoceanography, 31, 81–97, https://doi.org/10.1002/2015PA002820, 2016.
Beddow, H. M., Liebrand, D., Wilson, D. S., Hilgen, F. J., Sluijs, A., Wade, B. S., and Lourens, L. J.: Astronomical tunings of the Oligocene–Miocene transition from Pacific Ocean Site U1334 and implications for the carbon cycle, Clim. Past, 14, 255–270, https://doi.org/10.5194/cp-14-255-2018, 2018.
Behrensmeyer, A. K., Quade, J., Cerling, T. E., Kappelman, J., Khan, I. A.,
Copeland, P., Roe, L., Hicks, J., Stubblefield, P., Willis, B. J., and
Latorre, C.: The structure and rate of late Miocene expansion of C4 plants:
Evidence from lateral variation in stable isotopes in paleosols of the
Siwalik Group, northern Pakistan, Geol. Soc. Am. Bull., 119,
1486–1505, https://doi.org/10.1130/b26064.1, 2007.
Bell, D. B., Jung, S. J. A., Kroon, D., Lourens, L. J., and Hodell, D. A.:
Local and regional trends in Plio-Pleistocene δ18O records from
benthic foraminifera, Geochem. Geophy. Geosy., 15, 3304–3321,
https://doi.org/10.1002/2014GC005297, 2014.
Bell, D. B., Jung, S. J. A., Kroon, D., Hodell, D. A., Lourens, L. J., and
Raymo, M. E.: Atlantic Deep-water Response to the Early Pliocene Shoaling of
the Central American Seaway., Sci. Rep., 5, 12252, https://doi.org/10.1038/srep12252,
2015.
Berger, W. H.: Biogenous Deep-Sea Sediments: Fractionation by Deep-Sea
Circulation, GSA Bulletin, 81, 1385–1402, https://doi.org/10.1130/0016-7606(1970)81[1385:BDSFBD]2.0.CO;2, 1970.
Billups, K. and Schrag, D. P.: Paleotemperatures and ice volume of the
past 27 Myr revisited with paired Mg Ca and 18O 16O measurements on benthic foraminifera, Paleoceanography, 17, 1003, https://doi.org/10.1029/2000pa000567, 2002.
Bolton, C. T. and Stoll, H. M.: Late Miocene threshold response of marine
algae to carbon dioxide limitation, Nature, 500, 558–62,
https://doi.org/10.1038/nature12448, 2013.
Cahoon, E. B., Streck, M. J., Koppers, A. A. P., and Miggins, D. P.:
Reshuffling the Columbia river basalt chronology-picture gorge basalt, the
earliest-and longest-erupting formation, Geology, 48, 348–352,
https://doi.org/10.1130/G47122.1, 2020.
Carter, S. C., Griffith, E. M., and Penman, D. E.: Peak intervals of
equatorial Pacific export production during the middle Miocene climate
transition, Geology, 44, 923–926, https://doi.org/10.1130/G38290.1, 2016.
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J.,
Eisenmann, V., and Ehleringer, J. R.: Global vegetation change through the
Miocene/Pliocene boundary, Nature, 389, 153–158, https://doi.org/10.1038/38229,
1997.
Coxall, H. K. and Wilson, P. A.: Early Oligocene glaciation and productivity
in the eastern equatorial Pacific: Insights into global carbon cycling,
Paleoceanography, 26, 1–18, https://doi.org/10.1029/2010PA002021, 2011.
De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., and Pälike, H.:
Alternating Southern and Northern Hemisphere climate response to
astronomical forcing during the past 35 m.y, Geology, 45, 375–378,
https://doi.org/10.1130/G38663.1, 2017.
De Vleeschouwer, D., Drury, A. J., Vahlenkamp, M., Rochholz, F., Liebrand,
D., and Pälike, H.: High-latitude biomes and rock weathering mediate
climate-carbon cycle feedbacks on eccentricity timescales, Nat. Commun.,
11, 1–10, https://doi.org/10.1038/s41467-020-18733-w, 2020.
Dickens, G. R. and Owen, R. M.: The Latest Miocene-Early Pliocene biogenic
bloom: A revised Indian Ocean perspective, Mar. Geol., 161, 75–91,
https://doi.org/10.1016/S0025-3227(99)00057-2, 1999.
Diester-Haass, L., Meyers, P. A., and Vidal, L.: The late Miocene onset of
high productivity in the Benguela Current upwelling system as part of a
global pattern, Mar. Geol., 180, 87–103, https://doi.org/10.1016/S0025-3227(01)00207-9, 2002.
Diester-Haass, L., Meyers, P. A., and Bickert, T.: Carbonate crash and
biogenic bloom in the late Miocene: Evidence from ODP Sites 1085, 1086, and
1087 in the Cape Basin, southeast Atlantic Ocean, Paleoceanography, 19,
1–19, https://doi.org/10.1029/2003PA000933, 2004.
Diester-Haass, L., Billups, K., and Emeis, K. C.: In search of the late
Miocene-early Pliocene “biogenic bloom” in the Atlantic Ocean (Ocean
Drilling Program Sites 982, 925, and 1088), Paleoceanography, 20, 1–13,
https://doi.org/10.1029/2005PA001139, 2005.
Diester-Haass, L., Billups, K., and Emeis, K. C.: Late Miocene carbon isotope
records and marine biological productivity: Was there a (dusty) link?,
Paleoceanography, 21, PA4216, https://doi.org/10.1029/2006pa001267, 2006.
Drury, A. J., John, C. M., and Shevenell, A. E.: Evaluating climatic response
to external radiative forcing during the late Miocene to early Pliocene: New
perspectives from eastern equatorial Pacific (IODP U1338) and North Atlantic
(ODP 982) locations, Paleoceanography, 31, 167–184,
https://doi.org/10.1002/2015PA002881, 2016.
Drury, A. J., Westerhold, T., Frederichs, T., Tian, J., Wilkens, R.,
Channell, J. E. T., Evans, H., John, C. M., Lyle, M., and Röhl, U.: Late
Miocene climate and time scale reconciliation: Accurate orbital calibration
from a deep-sea perspective, Earth Planet. Sci. Lett., 475, 254–266,
https://doi.org/10.1016/j.epsl.2017.07.038, 2017.
Drury, A. J., Lee, G. P., Gray, W. R., Lyle, M., Westerhold, T., Shevenell,
A. E., and John, C. M.: Deciphering the state of the late Miocene to early
Pliocene equatorial Pacific, Paleoceanogr. Paleocl., 33,
246–263, https://doi.org/10.1002/2017PA003245, 2018a.
Drury, A. J., Westerhold, T., Hodell, D., and Röhl, U.: Reinforcing the North Atlantic backbone: revision and extension of the composite splice at ODP Site 982, Clim. Past, 14, 321–338, https://doi.org/10.5194/cp-14-321-2018, 2018b.
Drury, A. J., Liebrand, D., Westerhold, T., Beddow, H. M., Hodell, D. A., Rohlfs, N., Wilkens, R. H., Lyle, M. W., Bell, D. B., Kroon, D., Pälike, H., Lourens, L. J.: Climate, cryosphere and carbon cycle controls on Southeast Atlantic orbital-scale carbonate deposition since the Oligocene (30–0 Ma), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.919489, 2020.
Drury, A. J., Liebrand, D., Westerhold, T., Beddow, H. M., Hodell, D. A., Rohlfs, N., Wilkens, R. H., Lyle, M. W., Bell, D. B., Kroon, D., Pälike, H., and Lourens, L. J.: Disentangling controls and orbital pacing of South-East Atlantic carbonate deposition since the Oligocene (30–0 Ma), EGU General Assembly 2021, online, 19–30 April 2021, EGU21-3152, https://doi.org/10.5194/egusphere-egu21-3152, 2021a.
Drury, A. J., Liebrand, D., Westerhold, T., Beddow, H., Hodell, D. A., Rohlfs, N., Wilkens, R. H., Lyle, M., Bell, D. B., Kroon, D., De Vleeschouwer, D., Vahlenkamp, M., Rochholz, F., Palike, H., and Lourens, L. J.: Disentangling the controls and orbital pacing of South-East Atlantic carbonate deposition since the Oligocene (30–0 Ma), YouTube, available at: https://youtu.be/G30Eo0twx9s, last access: 4 October 2021b.
Dupont, L. M., Rommerskirchen, F., Mollenhauer, G., and Schefuß, E.:
Miocene to Pliocene changes in South African hydrology and vegetation in
relation to the expansion of C4 plants, Earth Planet. Sci. Lett., 375,
408–417, https://doi.org/10.1016/j.epsl.2013.06.005, 2013.
Farrell, J. W., Raffi, I., Janecek, T. R., Murray, D. W., Levitan, M., Dadey, K. A., Emeis, K.-C., Lyle, M., Flores, J.-A., and Hovan, S.: Late Neogene sedimentation patterns in the eastern equatorial Pacific Ocean, edited by: Pisias, N. G., Mayer, L. A., Janecek, T. R., Palmer-Julson, A., and van Andel, T. H., Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 138, 7, https://doi.org/10.2973/odp.proc.sr.138.143.1995, 1995.
Filippelli, G. M.: Intensification of the Asian monsoon and a chemical
weathering event in the late Miocene-early Pliocene: Implications for late
Neogene climate change, Geology, 25, 27–30,
https://doi.org/10.1130/0091-7613(1997)025<0027:IOTAMA>2.3.CO;2, 1997.
Foster, G. L., Lear, C. H., and Rae, J. W. B.: The evolution of pCO2, ice volume and climate during the middle Miocene, Earth Planet. Sci. Lett.,
341–344, 243–254, 2012.
Fronval, T. and Jansen, E.: Late Neogene paleoclimates and paleoceanography
in the Iceland-Norwegian Sea: evidence from the Iceland and Vøring
Plateaus, Proceedings of the Ocean Drilling Program, Scientific Results, 151, 455–468,
https://doi.org/10.2973/odp.proc.sr.151.134.1996, 1996.
Gasson, E., Deconto, R. M., Pollard, D., and Levy, R. H.: Dynamic Antarctic
ice sheet during the early to mid-Miocene, Proc. Natl. Acad. Sci. USA,
113, 3459–3464, https://doi.org/10.1073/pnas.1516130113, 2016.
Grant, K. M. and Dickens, G. R.: Coupled productivity and carbon isotope
records in the southwest Pacific Ocean during the late Miocene-early
Pliocene biogenic bloom, Palaeogeogr. Palaeocl.,
187, 61–82, https://doi.org/10.1016/S0031-0182(02)00508-4, 2002.
Greenop, R., Foster, G. L., Wilson, P. A., and Lear, C. H.: Middle Miocene
climate instability associated with high-amplitude CO2 variability, Paleoceanography, 29, 845–853, https://doi.org/10.1002/2014PA002653, 2014.
Greenop, R., Sosdian, S. M., Henehan, M. J., Wilson, P. A., Lear, C. H., and
Foster, G. L.: Orbital Forcing, Ice Volume, and CO2 Across the
Oligocene-Miocene Transition, Paleoceanogr. Paleocl., 34,
316–328, https://doi.org/10.1029/2018PA003420, 2019.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Haq, B., Worsley, T., and Burckle, L.: Late Miocene marine carbon-isotopic
shift and synchroneity of some phytoplanktonic biostratigraphic events,
Geology, 8, 427–431, https://doi.org/10.1130/0091-7613(1980)8<427:LMMCSA>2.0.CO;2,
1980.
Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C.,
Caballero-Gill, R., and Kelly, C. S.: Late Miocene global cooling and the
rise of modern ecosystems, Nat. Geosci., 9, 843–847,
https://doi.org/10.1038/ngeo2813, 2016.
Hermoyian, C. S. and Owen, R. M.: Late miocene-early pliocene biogenic
bloom: Evidence from low-productivity regions of the Indian and Atlantic
Oceans, Paleoceanography, 16, 95–100, https://doi.org/10.1029/2000pa000501, 2001.
Hodell, D. A. and Venz-Curtis, K. A.: Late Neogene history of deepwater
ventilation in the Southern Ocean, Geochem. Geophy. Geosy., 7, Q09001, https://doi.org/10.1029/2005GC001211, 2006.
Hodell, D. A., Curtis, J. H., Sierro, F. J., and Raymo, M. E.: Correlation of
late Miocene to early Pliocene sequences between the Mediterranean and North
Atlantic, Paleoceanography, 16, 164–178, https://doi.org/10.1029/1999pa000487, 2001.
Holbourn, A., Kuhnt, W., Schulz, M., and Erlenkeuser, H.: Impacts of orbital
forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion,
Nature, 438, 483–487, https://doi.org/10.1038/nature04123, 2005.
Holbourn, A., Kuhnt, W., Clemens, S., Prell, W., and Andersen, N.: Middle to
late Miocene stepwise climate cooling: Evidence from a high-resolution deep
water isotope curve spanning 8 million years, Paleoceanography, 28,
688–699, https://doi.org/10.1002/2013PA002538, 2013.
Holbourn, A., Kuhnt, W., Lyle, M., Schneider, L., Romero, O., and Andersen,
N.: Middle Miocene climate cooling linked to intensification of eastern
equatorial Pacific upwelling, Geology, 42, 19–22,
https://doi.org/10.1017/CBO9781107415324.004, 2014.
Holbourn, A., Kuhnt, W., Kochhann, K. G. D., Andersen, N., and Sebastian
Meier, K. J.: Global perturbation of the carbon cycle at the onset of the
Miocene Climatic Optimum, Geology, 43, 123–126, https://doi.org/10.1130/G36317.1,
2015.
Holbourn, A. E., Kuhnt, W., Clemens, S. C., Kochhann, K. G. D. D.,
Jöhnck, J., Lübbers, J., and Andersen, N.: Late Miocene climate
cooling and intensification of southeast Asian winter monsoon, Nat. Commun.,
9, 1584, https://doi.org/10.1038/s41467-018-03950-1, 2018.
Hovan, S. A.: Late Cenozoic Atmospheric Circulation Intensity and Climatic
History Recorded by Eolian Deposition in the Eastern Equatorial Pacific
Ocean, Leg 138, Proc. Ocean Drill. Program, 138 Sci. Results, 138, 615–625,
https://doi.org/10.2973/odp.proc.sr.138.132.1995, 1995.
John, C. M., Karner, G. D., Browning, E., Leckie, R. M., Mateo, Z., Carson,
B., and Lowery, C.: Timing and magnitude of Miocene eustasy derived from the
mixed siliciclastic-carbonate stratigraphic record of the northeastern
Australian margin, Earth Planet. Sci. Lett., 304, 455–467,
https://doi.org/10.1016/j.epsl.2011.02.013, 2011.
Kasbohm, J. and Schoene, B.: Rapid eruption of the Columbia River flood
basalt and correlation with the mid-Miocene climate optimum, Sci. Adv.,
4, 1–9, https://doi.org/10.1126/sciadv.aat8223, 2018.
Keating-Bitonti, C. R. and Peters, S. E.: Influence of increasing carbonate
saturation in Atlantic bottom water during the late Miocene, Palaeogeogr.
Palaeocl., 518, 134–142, https://doi.org/10.1016/j.palaeo.2019.01.006, 2019.
Kender, S., Yu, J., and Peck, V. L.: Deep ocean carbonate ion increase during
mid Miocene CO2 decline, Sci. Rep., 4, 1–6, https://doi.org/10.1038/srep04187,
2014.
Kirtland Turner, S.: Pliocene switch in orbital-scale carbon cycle/climate
dynamics, Paleoceanography, 29, 1256–1266, https://doi.org/10.1002/2014PA002651,
2014.
Kochhann, K. G. D., Holbourn, A., Kuhnt, W., Channell, J. E. T., Lyle, M.,
Shackford, J. K., Wilkens, R. H., and Andersen, N.: Eccentricity pacing of
eastern equatorial Pacific carbonate dissolution cycles during the Miocene
Climatic Optimum, Paleoceanography, 31, 1176–1192,
https://doi.org/10.1002/2016PA002988, 2016.
Kong, P., Huang, F., Liu, X., Fink, D., Ding, L., and Lai, Q.: Late Miocene
ice sheet elevation in the Grove Mountains, East Antarctica, inferred from
cosmogenic 21Ne–10Be–26Al, Glob. Planet. Change, 72, 50–54,
https://doi.org/10.1016/j.gloplacha.2010.03.005, 2010.
Kroon, D., Steens, T., and Troelstra, S. R.: Onset of monsoonal related
upwelling in the western Arabian Sea as revealed by planktonic foraminifers,
edited by: Prell, W. L., Niitsuma, N., Emeis, K.-C., and Meyers, P. A., Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 117, 257—263,
https://doi.org/10.2973/odp.proc.sr.117.126.1991, 1991.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 261–285,
https://doi.org/10.1051/0004-6361:20041335, 2004.
Laskar, J., Gastineau, M., Delisle, J.-B., Farrés, a., and Fienga, A.:
Strong chaos induced by close encounters with Ceres and Vesta, Astron.
Astrophys., 532, L4, https://doi.org/10.1051/0004-6361/201117504, 2011.
Lear, C. H., Elderfield, H., and Wilson, P. A.: Cenozoic deep-sea
temperatures and global ice volumes from Mg Ca in benthic foraminiferal
calcite, Science, 287, 269–272,
https://doi.org/10.1126/science.287.5451.269, 2000.
Lear, C. H., Coxall, H. K., Foster, G. L., Lunt, D. J., Mawbey, E. M.,
Rosenthal, Y., Sosdian, S. M., Thomas, E., and Wilson, P. A.: Neogene ice
volume and ocean temperatures: Insights from infaunal foraminiferal Mg Ca paleothermometry, Paleoceanography, 30,1437–1454, https://doi.org/10.1002/2015PA002833, 2015.
Levy, R., Harwood, D. M., Florindo, F., Sangiorgi, F., Tripati, R.,
Eynatten, H. Von, von Eynatten, H., Gasson, E., Kuhn, G., Tripati, A.,
DeConto, R., Fielding, C., Field, B., Golledge, N., McKay, R., Naish, T.,
Olney, M. M., Pollard, D., Schouten, S., Talarico, F., Warny, S., Willmott,
V., Acton, G., Panter, K., Paulsen, T., Taviani, M., Askin, R., Atkins, C.,
Bassett, K., Beu, A., Blackstone, B., Browne, G., Ceregato, A., Cody, R.,
Cornamusini, G., Corrado, S., Del Carlo, P., Di Vincenzo, G., Dunbar, G.,
Falk, C., Frank, T., Giorgetti, G., Grelle, T., Gui, Z., Handwerger, D.,
Hannah, M., Harwood, D. M., Hauptvogel, D., Hayden, T., Henrys, S.,
Hoffmann, S., Iacoviello, F., Ishman, S., Jarrard, R., Johnson, K., Jovane,
L., Judge, S., Kominz, M., Konfirst, M., Krissek, L., Lacy, L., Maffioli,
P., Magens, D., Marcano, M. C., Millan, C., Mohr, B., Montone, P., Mukasa,
S., Niessen, F., Ohneiser, C., Passchier, S., Patterson, M., Pekar, S.,
Pierdominici, S., Raine, I., Reed, J., Reichelt, L., Riesselman, C., Rocchi,
S., Sagnotti, L., Sandroni, S., Schmitt, D., Speece, M., Storey, B., Strada,
E., Tuzzi, E., Verosub, K., Wilson, G., Wilson, T., Wonik, T., and Zattin,
M.: Antarctic ice sheet sensitivity to atmospheric CO2 variations in the
early to mid-Miocene, Proc. Natl. Acad. Sci. USA, 113, 3453–3458,
https://doi.org/10.1073/pnas.1516030113, 2016.
Levy, R. H., Meyers, S. R., Naish, T. R., Golledge, N. R., McKay, R. M.,
Crampton, J. S., DeConto, R. M., De Santis, L., Florindo, F., Gasson, E. G.
W., Harwood, D. M., Luyendyk, B. P., Powell, R. D., Clowes, C., and Kulhanek,
D. K.: Antarctic ice-sheet sensitivity to obliquity forcing enhanced through
ocean connections, Nat. Geosci., 12, 132–137,
https://doi.org/10.1038/s41561-018-0284-4, 2019.
Liao, Y. and Lyle, M.: Late Miocene to Pleistocene sedimentation and
sediment transport on the Cocos Ridge, eastern tropical Pacific Ocean, Mar.
Geol., 355, 1–14, https://doi.org/10.1016/j.margeo.2014.05.007, 2014.
Liebrand, D., Lourens, L. J., Hodell, D. A., de Boer, B., van de Wal, R. S. W., and Pälike, H.: Antarctic ice sheet and oceanographic response to eccentricity forcing during the early Miocene, Clim. Past, 7, 869–880, https://doi.org/10.5194/cp-7-869-2011, 2011.
Liebrand, D., Beddow, H. M., Lourens, L. J., Pälike, H., Raffi, I.,
Bohaty, S. M., Hilgen, F. J., Saes, M. J. M. M., Wilson, P. A., van Dijk, A.
E., Hodell, D. A., Kroon, D., Huck, C. E., and Batenburg, S. J.:
Cyclostratigraphy and eccentricity tuning of the early Oligocene through
early Miocene (30.1–17.1 Ma): Cibicides mundulus stable oxygen and carbon
isotope records from Walvis Ridge Site 1264, Earth Planet. Sci. Lett., 450,
392–405, https://doi.org/10.1016/j.epsl.2016.06.007, 2016.
Liebrand, D., De Bakker, A. T. M. M., Beddow, H. M., Wilson, P. A., Bohaty,
S. M., Ruessink, G., Pälike, H., Batenburg, S. J., Hilgen, F. J.,
Hodell, D. A., Huck, C. E., Kroon, D., Raffi, I., Saes, M. J. M. M., Van
Dijk, A. E., and Lourens, L. J.: Evolution of the early Antarctic ice ages,
Proc. Natl. Acad. Sci. USA, 114, 3867–3872,
https://doi.org/10.1073/pnas.1615440114, 2017.
Liebrand, D., Raffi, I., Fraguas, Á., Laxenaire, R., Bosmans, J. H. C.,
Hilgen, F. J., Wilson, P. A., Batenburg, S. J., Beddow, H. M., Bohaty, S.
M., Bown, P. R., Crocker, A. J., Huck, C. E., Lourens, L. J., and Sabia, L.:
Orbitally Forced Hyperstratification of the Oligocene South Atlantic Ocean,
Paleoceanogr. Paleocl., 33, 511–529, https://doi.org/10.1002/2017PA003222,
2018.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography,
20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Littler, K., Westerhold, T., Drury, A. J., Liebrand, D., Lisiecki, L., and Pälike, H.: Astronomical time keeping of earth history: An
invaluable contribution of scientific ocean drilling, Oceanography, 32,
72–76, https://doi.org/10.5670/oceanog.2019.122, 2019.
Lourens, L., Hilgen, F. J., Shackleton, N. J., Laskar, J., and Wilson, D.:
The Neogene Period, in: A Geologic Time Scale 2004, edited by:
Gradstein, F. M., Ogg, J. G., and Smith, A. G., Cambridge University
Press, Cambridge, UK, 409–440, https://doi.org/10.1017/CBO9780511536045.022, 2005.
Lyle, M.: Neogene carbonate burial in the Pacific Ocean, Paleoceanography,
18, 1–19, https://doi.org/10.1029/2002PA000777, 2003.
Lyle, M. and Baldauf, J.: Biogenic sediment regimes in the Neogene
equatorial Pacific, IODP Site U1338: Burial, production, and diatom
community, Palaeogeogr. Palaeocl., 433, 106–128,
https://doi.org/10.1016/j.palaeo.2015.04.001, 2015.
Lyle, M., Dadey, K. A., and Farrell, J. W.: The late Miocene (11–8 Ma) eastern Pacific carbonate crash: evidence
for reorganization of deep-water circulation by the closure of the Panama
Gateway, edited by: Pisias, N. G., Mayer, L. A., Janecek, T. R., Palmer-Julson, A., and van Andel, T. H., Proc. Ocean Drill. Program, Sci. Results, 138,
821–838, https://doi.org/10.2973/odp.proc.sr.138.157.1995, 1995.
Lyle, M., Barron, J., Bralower, T. J., Huber, M., Lyle, A. O., Ravelo, A.
C., Rea, D. K., and Wilson, P. A.: Pacific ocean and Cenozoic evolution of
climate, Rev. Geophys., 46, RG2002, https://doi.org/10.1029/2005rg000190, 2008.
Lyle, M., Drury, A. J., Tian, J., Wilkens, R., and Westerhold, T.: Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity, Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, 2019.
Marcantonio, F., Lyle, M., and Ibrahim, R.: Particle sorting during sediment
redistribution processes and the effect on 230Th-normalized mass
accumulation rates, Geophys. Res. Lett., 41, 5547–5554,
https://doi.org/10.1002/2014GL060477, 2014.
Mayer, L. A., Shipley, T. H., Theyer, F., Wilkens, R. H., and Winterer, E.
L.: Seismic modeling and paleoceanography at Deep Sea Drilling Project Site 574, edited by: Mayer, L., Theyer, E., et al., Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 85, 947–970, https://doi.org/10.2973/dsdp.proc.85.132.1985, 1985.
Mejía, L. M., Méndez-Vicente, A., Abrevaya, L., Lawrence, K. T.,
Ladlow, C., Bolton, C., Cacho, I., and Stoll, H.: A diatom record of CO2
decline since the late Miocene, Earth Planet. Sci. Lett., 479, 18–33,
https://doi.org/10.1016/j.epsl.2017.08.034, 2017.
Miller, K. G., Wright, J. D., and Fairbanks, R. G.: Unlocking the ice house:
Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion, J. Geophys.
Res.-Sol. Ea., 96, 6829–6848, https://doi.org/10.1029/90JB02015, 1991.
Molnar, P.: Mio-pliocene growth of the Tibetan plateau and evolution of East
Asian climate, Palaeontol. Electron., 8, 1–23, 2005.
Moore, N. E., Grunder, A. L., and Bohrson, W. A.: The three-stage
petrochemical evolution of the Steens Basalt (southeast Oregon, USA)
compared to large igneous provinces and layered mafic intrusions, Geosphere, 14, 2505–2532, 2018.
Moore, N. E., Grunder, A. L., Bohrson, W. A., Carlson, R. W., and Bindeman,
I. N.: Changing mantle sources and the effects of crustal passage on the
Steens Basalt, SE Oregon: Chemical and isotopic constraints, Geochem.
Geophy. Geosy., 21, e2020GC008910 https://doi.org/10.1029/2020gc008910, 2020.
O'Connell, S., Wolf-Welling, T. C. W., Cremer, M., and Stein, R.: Neogene Paleoceanography and Paleoclimate history from Fram Strait:
changes in accumulation rates, edited by: Thiede, J., Myhre, A. M., Firth, J. V., Johson, G. I., and Ruddiman, W. F., Proc. ODP, Sci. Results, 151: College Station, TX (Ocean Drilling Program), 569–582, https://doi.org/10.2973/odp.proc.sr.151.140.1996, 1996.
Ohneiser, C. and Wilson, G. S.: Eccentricity-Paced Southern Hemisphere
Glacial-Interglacial Cyclicity Preceding the Middle Miocene Climatic
Transition, Paleoceanogr. Paleocl., 33, 795–806,
https://doi.org/10.1029/2017PA003278, 2018.
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K.,
Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The
heartbeat of the Oligocene climate system, Science, 314, 1894–8,
https://doi.org/10.1126/science.1133822, 2006.
Pälike, H., Lyle, M. W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K.,
Klaus, A., Acton, G., Anderson, L., Backman, J., Baldauf, J., Beltran, C.,
Bohaty, S. M., Bown, P., Busch, W., Channell, J. E. T. T., Chun, C. O. J.
J., Delaney, M., Dewangan, P., Dunkley Jones, T., Edgar, K. M., Evans, H.,
Fitch, P., Foster, G. L., Gussone, N., Hasegawa, H., Hathorne, E. C.,
Hayashi, H., Herrle, J. O., Holbourn, A., Hovan, S., Hyeong, K., Iijima, K.,
Ito, T., Kamikuri, S. I., Kimoto, K., Kuroda, J., Leon-Rodriguez, L.,
Malinverno, A., Moore, T. C., Murphy, B. H., Murphy, D. P., Nakamura, H.,
Ogane, K., Ohneiser, C., Richter, C., Robinson, R., Rohling, E. J., Romero,
O., Sawada, K., Scher, H., Schneider, L., Sluijs, A., Takata, H., Tian, J.,
Tsujimoto, A., Wade, B. S., Westerhold, T., Wilkens, R., Williams, T.,
Wilson, P. A., Yamamoto, Y., Yamamoto, S., Yamazaki, T., and Zeebe, R. E.: A
Cenozoic record of the equatorial Pacific carbonate compensation depth,
Nature, 488, 609–614, https://doi.org/10.1038/nature11360, 2012.
Piela, C., Lyle, M., Marcantonio, F., Baldauf, J., and Olivarez Lyle, A.:
Biogenic sedimentation in the equatorial Pacific: Carbon cycling and
paleoproduction, 12–24 Ma, Paleoceanography, 27, 12–24,
https://doi.org/10.1029/2011PA002236, 2012.
Pound, M. J., Haywood, A. M., Salzmann, U., Riding, J. B., Lunt, D. J., and
Hunter, S. J.: A Tortonian (Late Miocene, 11.61–7.25 Ma) global vegetation
reconstruction, Palaeogeogr. Palaeocl., 300, 29–45,
https://doi.org/10.1016/j.palaeo.2010.11.029, 2011.
Pound, M. J., Haywood, A. M., Salzmann, U., and Riding, J. B.: Global
vegetation dynamics and latitudinal temperature gradients during the Mid to
Late Miocene (15.97–5.33 Ma), Earth-Sci. Rev., 112, 1–22,
https://doi.org/10.1016/j.earscirev.2012.02.005, 2012.
Reghellin, D., Coxall, H. K., Dickens, G. R., and Backman, J.: Carbon and
oxygen isotopes of bulk carbonate in sediment deposited beneath the eastern
equatorial Pacific over the last 8 million years, Paleoceanography, 30,
1261–1286, https://doi.org/10.1002/2015PA002825, 2015.
Reghellin, D., Dickens, G. R., Coxall, H. K., and Backman, J.: Understanding
Bulk Sediment Stable Isotope Records in the Eastern Equatorial Pacific, From
Seven Million Years Ago to Present Day, Paleoceanogr. Paleocl.,
35, 1–22, https://doi.org/10.1029/2019PA003586, 2020.
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., and Zemsky, R.: Global Multi-Resolution Topography synthesis, Geochem. Geophy. Geosy., 10, Q03014, https://doi.org/10.1029/2008GC002332, 2009.
Schuster, M., Duringer, P., Ghienne, J. F., Vignaud, P., Mackaye, H. T.,
Likius, A., and Brunet, M.: The age of the Sahara desert, Science, 311, 821 pp., https://doi.org/10.1126/science.1120161, 2006.
Seidov, D. A. N. and Maslin, M.: Atlantic Ocean heat piracy and the bipolar
climate see-saw during Heinrich and Dansgaard–Oeschger events, J. Quaternary Sci., 16, 321–328, https://doi.org/10.1002/jqs.595, 2001.
Shackleton, N., Moore Jr., T. C., Rabinowitz, P. D., Boersma, A., Borella, P.
E., Chave, A. D., Due'e, G., Fütterer, D., Jiang, M.-J.,
Kleinert, K., Lever, A., Manivit, H., O'Connell, S., and Richardson, S. H.:
Accumulation Rates in Leg 74 Sediments, edited by: Moore Jr., T, C., Rabinowitz, P. D., et al., Initial Reports of the Deep Sea Drilling Project (U.S. Govt. Printing Office), 74, 621–644, https://doi.org/10.2973/dsdp.proc.74.117.1984, 1984.
Shackleton, N. J. and Hall, M. A.: The Late Miocene Stable Isotope Record,
Site 926, in: Proceedings of the Ocean Drilling Program, Scientific Results, edited by: Shackleton, N. J., Curry, W. B., Richter, C., and Bralower, T. J., College Station, TX (Ocean Drilling Program), vol. 154, 367–373, 1997.
Shackleton, N. J., Hall, M. A., and Pate, D.: Pliocene Stable Isotope
Stratigraphy of Site 846, edited by: Pisias, N. G., Mayer, L. A.,
Janecek, T. R., Palmer-Julson, A., and van Andel, T. H., Proc. Ocean Drill. Program, Sci. Results, 138, 337–355, 1995.
Shevenell, A. E., Kennett, J. P., and Lea, D. W.: Middle Miocene Southern
Ocean Cooling and Antarctic Cryosphere Expansion, Science,
305, 1766–1770, https://doi.org/10.1126/science.1100061, 2004.
Shevenell, A. E., Kennett, J. P., and Lea, D. W.: Middle Miocene ice sheet
dynamics, deep-sea temperatures, and carbon cycling: A Southern Ocean
perspective, Geochem. Geophy. Geosy., 9, Q02006,
https://doi.org/10.1029/2007gc001736, 2008.
Shipboard Scientific Party Leg 208: Site 1264, in: Proceedings of the Ocean
Drilling Program, Initial Reports, edited by: Zachos, J. C.,
Kroon, D., Blum, P., and Shipboard Scientific Party Leg 208, College
Station, TX (Ocean Drilling Program), vol. 208, 1–73, 2004a.
Shipboard Scientific Party Leg 208: Site 1265, in: Proceedings of the Ocean
Drilling Program, Initial Reports, edited by: Zachos, J. C.,
Kroon, D., Blum, P., and Shipboard Scientific Party Leg 208, College
Station, TX (Ocean Drilling Program), vol. 208, 1–87, 2004b.
Shipboard Scientific Party Leg 208: Site 1267, in: Proceedings of the Ocean
Drilling Program, Initial Reports, edited by: Zachos, J. C.,
Kroon, D., Blum, P., and Shipboard Scientific Party Leg 208, College
Station, TX (Ocean Drilling Program), vol. 208, 1–87, 2004c.
Sinnesael, M., De Vleeschouwer, D., Zeeden, C., Batenburg, S. J., Da
Silva, A.-C., de Winter, N. J., Dinarès-Turell, J., Drury,
A. J., Gambacorta, G., Hilgen, F. J., Hinnov, L. A.,
Hudson, A. J. L., Kemp, D. B., Lantink, M. L., Laurin,
J., Li, M., Liebrand, D., Ma, C., Meyers, S. R., Monkenbusch, J.,
Montanari, A., Nohl, T., Pälike, H., Pas, D., Ruhl, M., Thibault, N.,
Vahlenkamp, M., Valero, L., Wouters, S., Wu, H., and Claeys, P.: The
Cyclostratigraphy Intercomparison Project (CIP): consistency, merits and
pitfalls, Earth-Sci. Rev., 199, 102965,
https://doi.org/10.1016/j.earscirev.2019.102965, 2019.
Sosdian, S. M., Babila, T. L., Greenop, R., Foster, G. L., and Lear, C. H.:
Ocean Carbon Storage across the middle Miocene: a new interpretation for the
Monterey Event, Nat. Commun., 11, 1–11, https://doi.org/10.1038/s41467-019-13792-0,
2020.
Super, J. R., Thomas, E., Pagani, M., Huber, M., Brien, C. O., and Hull, P.
M.: North Atlantic temperature and pCO2 coupling in the early-middle
Miocene, Geology, 46, 519–522, https://doi.org/10.1130/G40228.1, 2018.
Super, J. R., Thomas, E., Pagani, M., Huber, M., O'Brien, C. L., and Hull, P.
M.: Miocene Evolution of North Atlantic Sea Surface Temperature,
Paleoceanogr. Paleocl., 35, e2019PA003748,
https://doi.org/10.1029/2019pa003748, 2020.
Sutherland, R., Dickens, G. R., Blum, P., Agnini, C., Alegret, L., Asatryan, G., Bhattacharya, J., Bordenave, A., Chang, L., Collot, J., Cramwinckel, M. J., Dallanave, E., Drake, M. K., Etienne, S. J. G., Giorgioni, M., Gurnis, M., Harper, D. T., Huang, H.-H. M., Keller, A. L., Lam, A. R., Li, H., Matsui, H., Morgans, H. E. G., Newsam, C., Park, Y.-H., Pascher, K. M., Pekar, S. F., Penman, D. E., Saito, S., Stratford, W. R., Westerhold, T., and Zhou, X.: Expedition 371 Summary, 2019, Proceedings of the International Ocean Discovery Program, volume 371, https://doi.org/10.14379/iodp.proc.371.101.2019, 2019.
Tanner, T., Hernández-Almeida, I., Drury, A. J., Guitián, J., and
Stoll, H.: Decreasing Atmospheric CO2 During the Late Miocene Cooling,
Paleoceanogr. Paleocl., 35, 1–25, https://doi.org/10.1029/2020PA003925,
2020.
Tauxe, L. and Feakins, S. J.: A re-assessment of the chronostratigraphy of
late Miocene C3–C4 transitions, Paleoceanography and Paleoclimatology, 35, e2020PA003857, https://doi.org/10.1029/2020PA003857, 2020.
Tian, J., Yang, M., Lyle, M. W., Wilkens, R., and Shackford, J. K.: Obliquity
and long eccentricity pacing of the Middle Miocene climate transition,
Geochem. Geophy. Geosy., 14, 1740–1755,
https://doi.org/10.1002/ggge.20108, 2013.
Tian, J., Ma, W., Lyle, M. W., and Shackford, J. K.: Synchronous mid-Miocene
upper and deep oceanic δ13C changes in the east equatorial
Pacific linked to ocean cooling and ice sheet expansion, Earth Planet. Sci.
Lett., 406, 72–80, https://doi.org/10.1016/j.epsl.2014.09.013, 2014.
Tian, J., Ma, X., Zhou, J., Jiang, X., Lyle, M., Shackford, J., and Wilkens,
R.: Paleoceanography of the east equatorial Pacific over the past 16 Myr and
Pacific–Atlantic comparison: High resolution benthic foraminiferal δ18O and δ13C records at IODP Site U1337, Earth Planet. Sci. Lett., 499, 185–196, https://doi.org/10.1016/j.epsl.2018.07.025, 2018.
Tipple, B. J. and Pagani, M.: The Early Origins of Terrestrial C4
Photosynthesis, Annu. Rev. Earth Planet. Sci., 35, 435–461,
https://doi.org/10.1146/annurev.earth.35.031306.140150, 2007.
Torrence, C. and Compo, G. P. G. P.: A practical guide to wavelet analysis,
Bull. Am. Meteorol. Soc., 79, 61–78,
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2,
1998.
Uno, K. T., Polissar, P. J., Jackson, K. E., and deMenocal, P. B.: Neogene
biomarker record of vegetation change in eastern Africa, Proc. Natl. Acad.
Sci. USA, 113, 6355–6363, https://doi.org/10.1073/pnas.1521267113, 2016.
Van Andel, T. H., Heath, G. R., and Moore, T. C.: Cenozoic History and
Paleoceanography of the Central Equatorial Pacific Ocean, Mem. Geol. Soc.
Am., 143, 1–223, https://doi.org/10.1130/MEM143-p1, 1975.
Voigt, J., Hathorne, E. C., Frank, M., and Holbourn, A.: Minimal influence of
recrystallization on middle Miocene benthic foraminiferal stable isotope
stratigraphy in the eastern equatorial Pacific, Paleoceanography, 31,
98–114, https://doi.org/10.1002/2015PA002822, 2016.
Wade, B. S. and Pälike, H.: Oligocene climate dynamics, Paleoceanography, 19, PA4019, https://doi.org/10.1029/2004PA001042, 2004.
Westerhold, T., Röhl, U., Frederichs, T., Agnini, C., Raffi, I., Zachos, J. C., and Wilkens, R. H.: Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system?, Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, 2017.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D.,
Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D.,
Laurentano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H.,
Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An
astronomically dated record of Earth's climate and its predictability over
the last 66 Million Years, Science, 369, 1383–1388,
https://doi.org/10.1126/SCIENCE.ABA6853, 2020.
Wilkens, R. H., Westerhold, T., Drury, A. J., Lyle, M., Gorgas, T., and Tian, J.: Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154 from 0 to 5 Ma, Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, 2017.
Williams, T., van de Flierdt, T., Hemming, S. R., Chung, E., Roy, M., and
Goldstein, S. L.: Evidence for iceberg armadas from East Antarctica in the
Southern Ocean during the late Miocene and early Pliocene, Earth Planet.
Sci. Lett., 290, 351–361, https://doi.org/10.1016/j.epsl.2009.12.031, 2010.
Wolf-Welling, T. C. W., Cremer, M. M., O'Connell, S., Winkler, A., and Thiede, J.: Cenozoic Arctic Gateway paleoclimate variability: indications from changes in coarse-fraction composition, edited by: Thiede, J., Myhre, A. M., Firth, J. V., Johnson, G. L., and Ruddiman, W. F., Proc. ODP, Sci. Results, College Station, TX (Ocean Drilling Program), 151, 515–567 https://doi.org/10.2973/odp.proc.sr.151.139.1996, 1996.
Yang, R., Yang, Y., Fang, X., Ruan, X., Galy, A., Ye, C., Meng, Q., and Han,
W.: Late Miocene Intensified Tectonic Uplift and Climatic Aridification on
the Northeastern Tibetan Plateau: Evidence From Clay Mineralogical and
Geochemical Records in the Xining Basin, Geochem. Geophy. Geosy.,
20, 829–851, https://doi.org/10.1029/2018GC007917, 2019.
Zachos, J., Pagani, H., Sloan, L., Thomas, E., Billups, K., Pagani, M.,
Sloan, L., Thomas, E., Billups, K., Pagani, H., Sloan, L., Thomas, E., and
Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to
present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412,
2001.
Zeeden, C., Hilgen, F., Westerhold, T., Lourens, L., Röhl, U., and
Bickert, T.: Revised Miocene splice, astronomical tuning and calcareous
plankton biochronology of ODP Site 926 between 5 and 14.4 Ma, Palaeogeogr.
Palaeocl., 369, 430–451,
https://doi.org/10.1016/j.palaeo.2012.11.009, 2013.
Zeeden, C., Hilgen, F. J., Hüsing, S. K., and Lourens, L. L.: The Miocene
astronomical time scale 9-12-Ma: New constraints on tidal dissipation and
their implications for paleoclimatic investigations, Paleoceanography,
29, 296–307, https://doi.org/10.1002/2014PA002615, 2014.
Zhisheng, A., Kutzbach, J. E., Prell, W. L., and Porter, S. C.: Evolution of
Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late
Miocene times., Nature, 411, 62–66, https://doi.org/10.1038/35075035, 2001.
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics...