the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Distorted Pacific–North American teleconnection at the Last Glacial Maximum
Zhengyu Liu
Yuchen Wang
Zhengyao Lu
Related authors
For 1 century, the hemispheric summer insolation is proposed as a key pacemaker of astronomical climate change. However, an increasing number of geologic records reveal that the low-latitude hydrological cycle shows asynchronous precessional evolutions that are very often out of phase with the summer insolation. Here, we propose that the astronomically driven low-latitude hydrological cycle is not paced by summer insolation but by shifting perihelion.
For 1 century, the hemispheric summer insolation is proposed as a key pacemaker of astronomical climate change. However, an increasing number of geologic records reveal that the low-latitude hydrological cycle shows asynchronous precessional evolutions that are very often out of phase with the summer insolation. Here, we propose that the astronomically driven low-latitude hydrological cycle is not paced by summer insolation but by shifting perihelion.
Related subject area
Scientists study past climate change using proxies (e.g. pollen) and models. Proxies offer detailed snapshots but are limited in number, while models provide broader coverage but at low resolution. Models are typically downscaled to 30 arcmin, but it is unclear if this is sufficient. We found that increasing models to 5 arcmin does not improve their coherence with climate reconstructed from pollen data. Optimal model resolution depends on research need, balancing detail with error.