Review article
13 Jul 2020
Review article | 13 Jul 2020
An overview on isotopic divergences – causes for instability of tree-ring isotopes and climate correlations
Martine M. Savard and Valérie Daux
Related authors
Modelling tree ring cellulose δ18O variations in two temperature-sensitive tree species from North and South America
Aliénor Lavergne, Fabio Gennaretti, Camille Risi, Valérie Daux, Etienne Boucher, Martine M. Savard, Maud Naulier, Ricardo Villalba, Christian Bégin, and Joël Guiot
Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017,https://doi.org/10.5194/cp-13-1515-2017, 2017
Short summary
Modelling tree ring cellulose δ18O variations in two temperature-sensitive tree species from North and South America
Aliénor Lavergne, Fabio Gennaretti, Camille Risi, Valérie Daux, Etienne Boucher, Martine M. Savard, Maud Naulier, Ricardo Villalba, Christian Bégin, and Joël Guiot
Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017,https://doi.org/10.5194/cp-13-1515-2017, 2017
Short summary
Related subject area
The 4.2 ka event in the central Mediterranean: new data from a Corchia speleothem (Apuan Alps, central Italy)
Ilaria Isola, Giovanni Zanchetta, Russell N. Drysdale, Eleonora Regattieri, Monica Bini, Petra Bajo, John C. Hellstrom, Ilaria Baneschi, Piero Lionello, Jon Woodhead, and Alan Greig
Clim. Past, 15, 135–151, https://doi.org/10.5194/cp-15-135-2019,https://doi.org/10.5194/cp-15-135-2019, 2019
Short summary
Leaf wax n-alkane distributions record ecological changes during the Younger Dryas at Trzechowskie paleolake (northern Poland) without temporal delay
Bernhard Aichner, Florian Ott, Michał Słowiński, Agnieszka M. Noryśkiewicz, Achim Brauer, and Dirk Sachse
Clim. Past, 14, 1607–1624, https://doi.org/10.5194/cp-14-1607-2018,https://doi.org/10.5194/cp-14-1607-2018, 2018
Short summary
Decreasing Indian summer monsoon on the northern Indian sub-continent during the last 180 years: evidence from five tree-ring cellulose oxygen isotope chronologies
Chenxi Xu, Masaki Sano, Ashok Priyadarshan Dimri, Rengaswamy Ramesh, Takeshi Nakatsuka, Feng Shi, and Zhengtang Guo
Clim. Past, 14, 653–664, https://doi.org/10.5194/cp-14-653-2018,https://doi.org/10.5194/cp-14-653-2018, 2018
Short summary
Recent climate variations in Chile: constraints from borehole temperature profiles
Carolyne Pickler, Edmundo Gurza Fausto, Hugo Beltrami, Jean-Claude Mareschal, Francisco Suárez, Arlette Chacon-Oecklers, Nicole Blin, Maria Teresa Cortés Calderón, Alvaro Montenegro, Rob Harris, and Andres Tassara
Clim. Past, 14, 559–575, https://doi.org/10.5194/cp-14-559-2018,https://doi.org/10.5194/cp-14-559-2018, 2018
Short summary
Climate signals in a multispecies tree-ring network from central and southern Italy and reconstruction of the late summer temperatures since the early 1700s
Giovanni Leonelli, Anna Coppola, Maria Cristina Salvatore, Carlo Baroni, Giovanna Battipaglia, Tiziana Gentilesca, Francesco Ripullone, Marco Borghetti, Emanuele Conte, Roberto Tognetti, Marco Marchetti, Fabio Lombardi, Michele Brunetti, Maurizio Maugeri, Manuela Pelfini, Paolo Cherubini, Antonello Provenzale, and Valter Maggi
Clim. Past, 13, 1451–1471, https://doi.org/10.5194/cp-13-1451-2017,https://doi.org/10.5194/cp-13-1451-2017, 2017
Short summary
Low-resolution Australasian palaeoclimate records of the last 2000 years
Bronwyn C. Dixon, Jonathan J. Tyler, Andrew M. Lorrey, Ian D. Goodwin, Joëlle Gergis, and Russell N. Drysdale
Clim. Past, 13, 1403–1433, https://doi.org/10.5194/cp-13-1403-2017,https://doi.org/10.5194/cp-13-1403-2017, 2017
Short summary
Climatic history of the northeastern United States during the past 3000 years
Jennifer R. Marlon, Neil Pederson, Connor Nolan, Simon Goring, Bryan Shuman, Ann Robertson, Robert Booth, Patrick J. Bartlein, Melissa A. Berke, Michael Clifford, Edward Cook, Ann Dieffenbacher-Krall, Michael C. Dietze, Amy Hessl, J. Bradford Hubeny, Stephen T. Jackson, Jeremiah Marsicek, Jason McLachlan, Cary J. Mock, David J. P. Moore, Jonathan Nichols, Dorothy Peteet, Kevin Schaefer, Valerie Trouet, Charles Umbanhowar, John W. Williams, and Zicheng Yu
Clim. Past, 13, 1355–1379, https://doi.org/10.5194/cp-13-1355-2017,https://doi.org/10.5194/cp-13-1355-2017, 2017
Short summary
Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska
Rob Wilson, Rosanne D'Arrigo, Laia Andreu-Hayles, Rose Oelkers, Greg Wiles, Kevin Anchukaitis, and Nicole Davi
Clim. Past, 13, 1007–1022, https://doi.org/10.5194/cp-13-1007-2017,https://doi.org/10.5194/cp-13-1007-2017, 2017
Short summary
Interannual and (multi-)decadal variability in the sedimentary BIT index of Lake Challa, East Africa, over the past 2200 years: assessment of the precipitation proxy
Laura K. Buckles, Dirk Verschuren, Johan W. H. Weijers, Christine Cocquyt, Maarten Blaauw, and Jaap S. Sinninghe Damsté
Clim. Past, 12, 1243–1262, https://doi.org/10.5194/cp-12-1243-2016,https://doi.org/10.5194/cp-12-1243-2016, 2016
Short summary
A tree-ring perspective on temporal changes in the frequency and intensity of hydroclimatic extremes in the territory of the Czech Republic since 761 AD
P. Dobrovolný, M. Rybníček, T. Kolář, R. Brázdil, M. Trnka, and U. Büntgen
Clim. Past, 11, 1453–1466, https://doi.org/10.5194/cp-11-1453-2015,https://doi.org/10.5194/cp-11-1453-2015, 2015
Short summary
New insights into the reconstructed temperature in Portugal over the last 400 years
J. A. Santos, M. F. Carneiro, A. Correia, M. J. Alcoforado, E. Zorita, and J. J. Gómez-Navarro
Clim. Past, 11, 825–834, https://doi.org/10.5194/cp-11-825-2015,https://doi.org/10.5194/cp-11-825-2015, 2015
Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information
J. A. Björklund, B. E. Gunnarson, K. Seftigen, J. Esper, and H. W. Linderholm
Clim. Past, 10, 877–885, https://doi.org/10.5194/cp-10-877-2014,https://doi.org/10.5194/cp-10-877-2014, 2014
Reconstruction of the March–August PDSI since 1703 AD based on tree rings of Chinese pine (Pinus tabulaeformis Carr.) in the Lingkong Mountain, southeast Chinese loess Plateau
Q. Cai, Y. Liu, Y. Lei, G. Bao, and B. Sun
Clim. Past, 10, 509–521, https://doi.org/10.5194/cp-10-509-2014,https://doi.org/10.5194/cp-10-509-2014, 2014
Reconstruction of northeast Asia spring temperature 1784–1990
M. Ohyama, H. Yonenobu, J.-N. Choi, W.-K. Park, M. Hanzawa, and M. Suzuki
Clim. Past, 9, 261–266, https://doi.org/10.5194/cp-9-261-2013,https://doi.org/10.5194/cp-9-261-2013, 2013
COnstructing Proxy Records from Age models (COPRA)
S. F. M. Breitenbach, K. Rehfeld, B. Goswami, J. U. L. Baldini, H. E. Ridley, D. J. Kennett, K. M. Prufer, V. V. Aquino, Y. Asmerom, V. J. Polyak, H. Cheng, J. Kurths, and N. Marwan
Clim. Past, 8, 1765–1779, https://doi.org/10.5194/cp-8-1765-2012,https://doi.org/10.5194/cp-8-1765-2012, 2012
Isotopic and lithologic variations of one precisely-dated stalagmite across the Medieval/LIA period from Heilong Cave, central China
Y. F. Cui, Y. J. Wang, H. Cheng, K. Zhao, and X. G. Kong
Clim. Past, 8, 1541–1550, https://doi.org/10.5194/cp-8-1541-2012,https://doi.org/10.5194/cp-8-1541-2012, 2012
Modelling and climatic interpretation of the length fluctuations of Glaciar Frías (north Patagonian Andes, Argentina) 1639–2009 AD
P. W. Leclercq, P. Pitte, R. H. Giesen, M. H. Masiokas, and J. Oerlemans
Clim. Past, 8, 1385–1402, https://doi.org/10.5194/cp-8-1385-2012,https://doi.org/10.5194/cp-8-1385-2012, 2012
A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia
M. Vuille, S. J. Burns, B. L. Taylor, F. W. Cruz, B. W. Bird, M. B. Abbott, L. C. Kanner, H. Cheng, and V. F. Novello
Clim. Past, 8, 1309–1321, https://doi.org/10.5194/cp-8-1309-2012,https://doi.org/10.5194/cp-8-1309-2012, 2012
Multi-century tree-ring based reconstruction of the Neuquén River streamflow, northern Patagonia, Argentina
I. A. Mundo, M. H. Masiokas, R. Villalba, M. S. Morales, R. Neukom, C. Le Quesne, R. B. Urrutia, and A. Lara
Clim. Past, 8, 815–829, https://doi.org/10.5194/cp-8-815-2012,https://doi.org/10.5194/cp-8-815-2012, 2012
Precipitation changes in the South American Altiplano since 1300 AD reconstructed by tree-rings
M. S. Morales, D. A. Christie, R. Villalba, J. Argollo, J. Pacajes, J. S. Silva, C. A. Alvarez, J. C. Llancabure, and C. C. Soliz Gamboa
Clim. Past, 8, 653–666, https://doi.org/10.5194/cp-8-653-2012,https://doi.org/10.5194/cp-8-653-2012, 2012
Cited articles
Agathokleous, E., Belz, R. G., Calatayud, V., De Marco, A., Hoshika, Y.,
Kitao, M., Saitanis, C. J., Sicard, P., Paoletti, E., and Calabrese, E. J.:
Predicting the effect of ozone on vegetation via linear non-threshold (LNT),
threshold and hormetic dose-response models, Sci. Total
Environ., 649, 61–74, https://doi.org/10.1016/j.scitotenv.2018.08.264, 2019.
An, W., Liu, X., Hou, S., Zeng, X., Sun, W., Wang, W., Wang, Y., Xu, G., and
Ren, J.: Unstable relationships between tree ring
δ18O and
climate variables over southwestern China: possible impacts from increasing
central Pacific SSTs, Theor. Appl. Climatol., 136, 391–402,
https://doi.org/10.1007/s00704-018-2483-8, 2019.
Andreu-Hayles, L., Ummenhofer, C. C., Barriendos, M., Schleser, G. H.,
Helle, G., Leuenberger, M., Gutiérrez, E., and Cook, E. R.: 400 Years of
summer hydroclimate from stable isotopes in Iberian trees, Clim. Dynam.,
49, 143–161, https://doi.org/10.1007/s00382-016-3332-z, 2017.
Andreu-Hayles, L., Levesque, M., Martin-Benito, D., Huang, W., Harris, R.,
Oelkers, R., Leland, C., Martin-Fernández, J., Anchukaitis, K. J., and
Helle, G.: A high yield cellulose extraction system for small whole wood
samples and dual measurement of carbon and oxygen stable isotopes, Chem.
Geol., 504, 53–65, https://doi.org/10.1016/j.chemgeo.2018.09.007, 2019.
Arneth, A., Lloyd, J., Šantrůčková, H., Bird, M., Grigoryev,
S., Kalaschnikov, Y. N., Gleixner, G., and Schulze, E. D.: Response of
central Siberian Scots pine to soil water deficit and long-term trends in
atmospheric
CO2 concentration, Global Biogeochem. Cycles, 16,
5-1–5-13, https://doi.org/10.1029/2000GB001374, 2002.
Aykroyd, R. G., Lucy, D., Pollard, A. M., Carter, A. H. C., and Robertson,
I.: Temporal variability in the strength of proxy-climate correlations,
Geophys. Res. Lett., 28, 1559–1562, https://doi.org/10.1029/2000GL012570, 2001.
Banerjee, T. and Linn, R.: Effect of Vertical Canopy Architecture on
Transpiration, Thermoregulation and Carbon Assimilation, Forests, 9, 198,
https://doi.org/10.3390/f9040198, 2018.
Barbour, M. M.: Stable oxygen isotope composition of plant tissue: a review,
Funct. Plant Biol., 34, 83–94, https://doi.org/10.1071/FP06228, 2007.
Battipaglia, G., Saurer, M., Cherubini, P., Calfapietra, C., McCarthy, H.
R., Norby, R. J., and Francesca Cotrufo, M.: Elevated
CO2 increases
tree-level intrinsic water use efficiency: Insights from carbon and oxygen
isotope analyses in tree rings across three forest FACE sites, New
Phytologist, 197, 544–554, https://doi.org/10.1111/nph.12044, 2013.
Belmecheri, S., Maxwell, R. S., Taylor, A. H., Davis, K. J., Freeman, K. H.,
and Munger, W. J.: Tree-ring
δ13C tracks flux tower ecosystem
productivity estimates in a NE temperate forest, Environ. Res.
Lett., 9, 074011, https://doi.org/10.1088/1748-9326/9/7/074011, 2014.
Belmecheri, S., Wright, W. E., Szejner, P., Morino, K. A., and Monson, R.
K.: Carbon and oxygen isotope fractionations in tree rings reveal
interactions between cambial phenolog
y and seasonal climate, Plant Cell
Environ., 41, 2758–2772, https://doi.org/10.1111/pce.13401, 2018.
Bert, D., Leavitt, S. W., and Dupouey, J.-L.: Variations of wood
δ13C and water use efficiency of
Abies alba during the last century, Ecology, 78,
1588–1596, https://doi.org/10.1890/0012-9658(1997)078[1588:VOWCAW]2.0.CO;2, 1997.
Boettger, T., Haupt, M., Knöller, K., Weise, S. M., Waterhouse, J. S.,
Rinne, K. T., Loader, N. J., Sonninen, E., Jungner, H., Masson-Delmotte, V.,
Stievenard, M., Guillemin, M.-T., Pierre, M., Pazdur, A., Leuenberger, M.,
Filot, M., Saurer, M., Reynolds, C. E., Helle, G., and Schleser, G. H.: Wood
Cellulose Preparation Methods and Mass Spectrometric Analyses of
δ13C,
δ18O, and Nonexchangeable
δ2H Values in
Cellulose, Sugar, and Starch:? An Interlaboratory Comparison, Anal.
Chem., 79, 4603–4612, https://doi.org/10.1021/ac0700023, 2007.
Boettger, T., Haupt, M., Friedrich, M., and Waterhouse, J. S.: Reduced
climate sensitivity of carbon, oxygen and hydrogen stable isotope ratios in
tree-ring cellulose of silver fir (Abies alba Mill.) influenced by
background
SO2 in Franconia (Germany, Central Europe), Environ.
Pollut., 185, 281–294, https://doi.org/10.1016/j.envpol.2013.10.030, 2014.
Boucher, É., Guiot, J., Hatté, C., Daux, V., Danis, P.-A., and Dussouillez, P.: An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric
CO2 concentrations, Biogeosciences, 11, 3245–3258, https://doi.org/10.5194/bg-11-3245-2014, 2014.
Bouillet, J.-P., Laclau, J.-P., Arnaud, M., M'Bou, A. T., Saint-André,
L., and Jourdan, C.: Changes with age in the spatial distribution of roots
of
Eucalyptus clone in Congo: Impact on water and nutrient uptake, Forest Ecol.
Manage., 171, 43–57, https://doi.org/10.1016/S0378-1127(02)00460-7, 2002.
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J.,
Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.:
Evaluation of climate models using palaeoclimatic data, Nat. Clim.
Change, 2, 417–424, https://doi.org/10.1038/nclimate1456, 2012.
Brienen, R. J. W., Gloor, E., Clerici, S., Newton, R., Arppe, L., Boom, A.,
Bottrell, S., Callaghan, M., Heaton, T., Helama, S., Helle, G., Leng, M. J.,
Mielikäinen, K., Oinonen, M., and Timonen, M.: Tree height strongly
affects estimates of water-use efficiency responses to climate and
CO2
using isotopes, Nat. Commun., 8, 288, https://doi.org/10.1038/s41467-017-00225-z,
2017.
Briffa, K. R., Jones, P. D., Pilcher, J. R., and Hughes, M. K.:
Reconstructing Summer Temperatures in Northern Fennoscandinavia Back to A.D.
1700 Using Tree-Ring Data From Scots Pine, Arctic Alpine Res., 20,
385–394, https://doi.org/10.2307/1551336, 1988.
Briffa, K. R., Schweingruber, F. H., Jones, P. D., Osborn, T. J., Shiyatov,
S. G., and Vaganov, E. A.: Reduced sensitivity of recent tree-growth to
temperature at high northern latitudes, Nature, 391, 678–682, https://doi.org/10.1038/35596,
1998.
Brugnoli, E., Solomina, O., Spaccino, L., and Dolgova, E.: Climate signal in
the ring width, density and carbon stable isotopes in pine (
Pinus silvestris L.) in central
Caucasus, Geogr. Environ. Sustainabil., 3, 4–16,
https://doi.org/10.24057/2071-9388-2010-3-4-4-16, 2010.
Brunner, I., Herzog, C., Dawes, M. A., Arend, M., and Sperisen, C.: How tree
roots respond to drought, Frontiers, 6, 547, https://doi.org/10.3389/fpls.2015.00547, 2015.
Carbone, M. S., Czimczik, C. I., Keenan, T. F., Murakami, P. F., Pederson,
N., Schaberg, P. G., Xu, X., and Richardson, A. D.: Age, allocation and
availability of nonstructural carbon in mature red maple trees, New
Phytologist, 200, 1145–1155, https://doi.org/10.1111/nph.12448, 2013.
Castagneri, D., Battipaglia, G., von Arx, G., Pacheco, A., and Carrer, M.:
Tree-ring anatomy and carbon isotope ratio show both direct and legacy
effects of climate on bimodal xylem formation in Pinus pinea, Tree
Physiol., 38, 1098–1109, https://doi.org/10.1093/treephys/tpy036, 2018.
Cernusak, L. A., Tcherkez, G., Keitel, C., Cornwell, W. K., Santiago, L. S.,
Knohl, A., Barbour, M. M., Williams, D. G., Reich, P. B., Ellsworth, D. S.,
Dawson, T. E., Griffiths, H. G., Farquhar, G. D., and Wright, I. J.: Why are
non-photosynthetic tissues generally
13C enriched compared with leaves
in C
3 plants? Review and synthesis of current hypotheses, Funct.
Plant Biol., 36, 199–213, 2009.
Cernusak, L. A., Barbour, M. M., Arndt, S. K., Cheesman, A. W., English, N.
B., Feild, T. S., Helliker, B. R., Holloway-Phillips, M. M., Holtum, J. A.
M., Kahmen, A., McInerney, F. A., Munksgaard, N. C., Simonin, K. A., Song,
X., Stuart-Williams, H., West, J. B., and Farquhar, G. D.: Stable isotopes
in leaf water of terrestrial plants, Plant Cell Environ., 39,
1087–1102, https://doi.org/10.1111/pce.12703, 2016.
Cheesman, A. W. and Cernusak, L. A.: Infidelity in the outback: climate
signal recorded in
δ18O of leaf but not branch cellulose of
eucalypts across an Australian aridity gradient, Tree Physiol., 37,
554–564, https://doi.org/10.1093/treephys/tpw121, 2016.
Cornic, G.: Drought stress inhibits photosynthesis by decreasing stomatal
aperture – Not by affecting ATP synthesis, Trends Plant Sci., 5, 187–188, https://doi.org/10.1016/S1360-1385(00)01625-3, 2000.
Cuny, H. E. and Rathgeber, C. B. K.: Xylogenesis: Coniferous Trees of
Temperate Forests Are Listening to the Climate Tale during the Growing
Season But Only Remember the Last Words!, Plant Physiol., 171, 306,
https://doi.org/10.1104/pp.16.00037, 2016.
Damesin, C. and Lelarge, C.: Carbon isotope composition of current-year
shoots from
Fagus sylvatica in relation to growth, respiration and use of reserves, Plant
Cell Environ., 26, 207–219, https://doi.org/10.1046/j.1365-3040.2003.00951.x, 2003.
Danis, P. A., Hatté, C., Misson, L., and Guiot, J.: MAIDENiso: a
multiproxy biophysical model of tree-ring width and oxygen and carbon
isotopes, Can. J. Forest Res., 42, 1697–1713,
https://doi.org/10.1139/x2012-089, 2012.
Darrall, N. M.: The effect of air pollutants on physiological processes in
plants, Plant Cell Environ., 12, 1–30,
https://doi.org/10.1111/j.1365-3040.1989.tb01913.x, 1989.
D'Arrigo, R., Wilson, R., Liepert, B., and Cherubini, P.: On the `Divergence
Problem' in Northern Forests: A review of the tree-ring evidence and
possible causes, Global Planet. Change, 60, 289–305, https://doi.org/10.1016/j.gloplacha.2007.03.004, 2008.
Daux, V., Edouard, J. L., Masson-Delmotte, V., Stievenard, M., Hoffmann, G.,
Pierre, M., Mestre, O., Danis, P. A., and Guibal, F.: Can climate variations
be inferred from tree-ring parameters and stable isotopes from Larix
decidua? Juvenile effects
, budmoth outbreaks, and divergence issue, Earth
Planet. Sc. Lett., 309, 221–233, https://doi.org/10.1016/j.epsl.2011.07.003, 2011.
Daux, V., Michelot-Antalik, A., Lavergne, A., Pierre, M., Stievenard, M.,
Bréda, N., and Damesin, C.: Comparisons of the Performance of
δ13C and
δ18O of
Fagus sylvatica,
Pinus sylvestris, and
Quercus petraea in the Record of Past Climate
Variations, J. Geophys. Res.-Biogeo., 123, 1145–1160,
https://doi.org/10.1002/2017JG004203, 2018.
Dawson, T. E.: Determining water use by trees and forests from isotopic,
energy balance and transpiration analyses: the roles of tree size and
hydraulic lift, Tree Physiol., 16, 263–272, https://doi.org/10.1093/treephys/16.1-2.263,
1996.
Dee, S. G., Steiger, N. J., Emile-Geay, J., and Hakim, G. J.: On the utility
of proxy system models for estimating climate states over the common era,
J. Adv. Model. Earth Syst., 8, 1164–1179,
https://doi.org/10.1002/2016MS000677, 2016.
Defila, C. and Clot, B.: Phytophenological trends in the Swiss Alps,
1951–2002, Meteorol. Z., 14, 191–196,
https://doi.org/10.1127/0941-2948/2005/0021, 2005.
de Vries, W., Dobbertin, M. H., Solberg, S., van Dobben, H. F., and Schaub,
M.: Impacts of acid deposition, ozone exposure and weather conditions on
forest ecosystems in Europe: an overview, Plant Soil, 380, 1–45,
https://doi.org/10.1007/s11104-014-2056-2, 2014.
Di Matteo, G., De Angelis, P., Brugnoli, E., Cherubini, P., and
Scarascia-Mugnozza, G.: Tree-ring
δ13C reveals the impact of
past forest management on water-use efficiency in a Mediterranean oak
coppice in Tuscany (Italy), Ann. Forest Sci., 67, 510–510,
https://doi.org/10.1051/forest/2010012, 2010.
Dinis, L., Bégin, C., Savard, M. M., Marion, J., Brigode, P., and
Alvarez, C. J. C. D.: Tree-ring stable isotopes for regional discharge
reconstruction in eastern Labrador and teleconnection with the Arctic
Oscillation, Clim. Dynam., 53, 3625–3640, https://doi.org/10.1007/s00382-019-04731-2,
2019.
Dorado-Liñán, I., Sanchez-Lorenzo, A., Gutiérrez Merino, E.,
Planells, O., Heinrich, I., Helle, G., and Zorita, E.: Changes in surface
solar radiation in Northeastern Spain over the past six centuries recorded
by tree-ring
δ13C, Clim. Dynam., 47, 937–950,
https://doi.org/10.1007/s00382-015-2881-x, 2016.
Doucet, A., Savard, M. M., Bégin, C., Marion, J., Smirnoff, A., and
Ouarda, T. B. M. J.: Combining tree-ring metal concentrations and lead,
carbon and oxygen isotopes to reconstruct peri-urban atmospheric pollution,
Tellus B, 64, 19005,
https://doi.org/10.3402/tellusb.v64i0.19005, 2012.
Duan, J., Fu, B., Kang, H., Song, Z., Jia, M., Cao, D., and Wei, A.:
Response of gas-exchange characteristics and chlorophyll fluorescence to
acute sulfur dioxide exposure in landscape plants, Ecotox.
Environ. Safe., 171, 122–129, https://doi.org/10.1016/j.ecoenv.2018.12.064, 2019.
Duffy, J. E., McCarroll, D., Barnes, A., Bronk Ramsey, C., Davies, D.,
Loader, N. J., Miles, D., and Young, G. H. F.: Short-lived juvenile effects
observed in stable carbon and oxygen isotopes of UK oak trees and historic
building timbers, Chem. Geol., 472, 1–7, https://doi.org/10.1016/j.chemgeo.2017.09.007, 2017.
Duquesnay, A., Bréda, N., Stievenard, M., and Dupouey, J. L.: Changes of
tree-ring
δ13C and water-use efficiency of beech (
Fagus sylvatica L.) in
north-eastern France during the past century, Plant Cell Enviro.,
21, 565–572, https://doi.org/10.1046/j.1365-3040.1998.00304.x, 1998.
Edwards, T. W. D., Graf, W., Trimborn, P., Stichler, W., Lipp, J., and
Payer, H. D.:
δ13C response surface resolves humidity and
temperature signals in trees, Geochim. Cosmochim. Ac., 64, 161–167,
https://doi.org/10.1016/S0016-7037(99)00289-6, 2000.
Emile-Geay, J. and Tingley, M.: Inferring climate variability from nonlinear proxies: application to palaeo-ENSO studies, Clim. Past, 12, 31–50, https://doi.org/10.5194/cp-12-31-2016, 2016.
Esper, J. and Frank, D.: Divergence pitfalls in tree-ring research,
Clim. Change, 94, 261, https://doi.org/10.1007/s10584-009-9594-2, 2009.
Esper, J., Frank, D., Büntgen, U., Verstege, A., Hantemirov, R., and
Kirdyanov, A. V.: Trends and uncertainties in Siberian indicators of 20th
century warming, Global Change Biol., 16, 386–398,
https://doi.org/10.1111/j.1365-2486.2009.01913.x, 2010a.
Esper, J., Frank, D. C., Battipaglia, G., Büntgen, U., Holert, C.,
Treydte, K., Siegwolf, R., and Saurer, M.: Low-frequency noise in
δ13C and
δ18O tree ring data: A case study of Pinus
uncinata in the Spanish Pyrenees, Global Biogeochem. Cycles, 24, GB4018,
https://doi.org/10.1029/2010GB003772, 2010b.
Esper, J., Riechelmann, F. C. D., and Holzkämper, S.: Circumferential
and Longitudinal
δ13C Variability in a Larix decidua Trunk from
the Swiss Alps, Forests, 11, 117, https://doi.org/10.3390/f11010117, 2020.
Etien, N., Daux, V., Masson-Delmotte, V., Stievenard, M., Bernard, V., Durost, S., Guillemin, M. T., Mestre, O., and Pierre, M.: A bi-proxy reconstruction of Fontainebleau (France) growing season temperature from A.D. 1596 to 2000, Clim. Past, 4, 91–106, https://doi.org/10.5194/cp-4-91-2008, 2008.
Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K.
J.: Applications of proxy system modeling in high resolution
paleoclimatology, Quaternary Sci. Rev., 76, 16–28, https://doi.org/10.1016/j.quascirev.2013.05.024, 2013.
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., and
Otero-Casal, C.: Hydrologic regulation of plant rooting depth, P. Natl. Acad. Sci. USA, 114, 10572, https://doi.org/10.1073/pnas.1712381114,
2017.
Feng, X. and Epstein, S.: Carbon isotopes of trees from arid environments
and implications for reconstructing atmospheric
CO2 concentration,
Geochim. Cosmochim. Ac., 59, 2599–2608, https://doi.org/10.1016/0016-7037(95)00152-2, 1995.
Foroozan, Z., Grießinger, J., Pourtahmasi, K., and Bräuning, A.:
Evaluation of Different Pooling Methods to Establish a Multi-Century
δ18O Chronology for Paleoclimate Reconstruction, Geosciences, 9, 270,
https://doi.org/10.3390/geosciences9060270, 2019.
Franks, P. J., Adams, M. A., Amthor, J. S., Barbour, M. M., Berry, J. A.,
Ellsworth, D. S., Farquhar, G. D., Ghannoum, O., Lloyd, J., McDowell, N.,
Norby, R. J., Tissue, D. T., and von Caemmerer, S.: Sensitivity of plants to
changing atmospheric
CO2 concentration: from the geological past to the
next century, New Phytologist, 197, 1077–1094, https://doi.org/10.1111/nph.12104, 2013.
Freiberg, M.: Spatial and temporal pattern of temperature and humidity of a
tropical premontane rain forest tree in Costa Rica, Selbyana, 18, 77–84,
1997.
Fu, Y. H., Piao, S., Op de Beeck, M., Cong, N., Zhao, H., Zhang, Y., Menzel,
A., and Janssens, I. A.: Recent spring phenology shifts in western Central
Europe based on multiscale observations, Global Ecol. Biogeogr.,
23, 1255–1263, https://doi.org/10.1111/geb.12210, 2014.
Gagen, M.: Do tree ring
δ13C series from Pinus sylvestris in
northern Fennoscandia contain long-term non-climatic trends?, Chem.
Geol., 252, 42–51, https://doi.org/10.1016/j.chemgeo.2008.01.013, 2008.
Gagen, M., McCarroll, D., and Edouard, J.-L.: Combining Ring Width, Density
and Stable Carbon Isotope Proxies to Enhance the Climate Signal in
Tree-Rings: An Example from the Southern French Alps, Clim. Change, 78,
363–379, https://doi.org/10.1007/s10584-006-9097-3, 2006.
Gagen, M., McCarroll, D., Loader, N. J., Robertson, I., Jalkanen, R., and
Anchukaitis, K. J.: Exorcising the “segment length curse”: summer
temperature reconstruction since AD 1640 using non-detrended stable carbon
isotope ratios from pine trees in northern Finland, Holocene, 17,
435–446, https://doi.org/10.1177/0959683607077012, 2007.
Gagen, M., Zorita, E., McCarroll, D., Young, G. H. F., Grudd, H., Jalkanen,
R., Loader, N. J., Robertson, I., and Kirchhefer, A.: Cloud response to
summer temperatures in Fennoscandia over the last thousand years,
Geophys. Res. Lett., 38, L05701, https://doi.org/10.1029/2010GL046216, 2011.
Gagen, M., McCarroll, D., Jalkanen, R., Loader, N. J., Robertson, I., and
Young, G. H. F.: A rapid method for the production of robust millennial
length stable isotope tree ring series for climate reconstruction, Global
Planet. Change, 82–83, 96–103, https://doi.org/10.1016/j.gloplacha.2011.11.006, 2012.
Gennaretti, F., Huard, D., Naulier, M., Savard, M., Bégin, C.,
Arseneault, D., and Guiot, J.: Bayesian multiproxy temperature
reconstruction with black spruce ring widths and stable isotopes from the
northern Quebec taiga, Clim. Dynam., 49, 4107–4119,
https://doi.org/10.1007/s00382-017-3565-5, 2017.
Gessler, A. and Treydte, K.: The fate and age of carbon – insights into
the storage and remobilization dynamics in trees, New Phytologist, 209,
1338–1340, https://doi.org/10.1111/nph.13863, 2016.
Gessler, A., Brandes, E., Buchmann, N., Helle, G., Rennenberg, H., and
Barnard, R. L.: Tracing carbon and oxygen isotope signals from newly
assimilated sugars in the leaves to the tree-ring archive, Plant Cell
Environ., 32, 780–795, https://doi.org/10.1111/j.1365-3040.2009.01957.x, 2009.
Gessler, A., Brandes, E., Keitel, C., Boda, S., Kayler, Z. E., Granier, A.,
Barbour, M., Farquhar, G. D., and Treydte, K.: The oxygen isotope enrichment
of leaf-exported assimilates – does it always reflect lamina leaf water
enrichment?, New Phytologist, 200, 144–157, https://doi.org/10.1111/nph.12359, 2013.
Gessler, A., Ferrio, J. P., Hommel, R., Treydte, K., Werner, R. A., and
Monson, R. K.: Stable isotopes in tree rings: towards a mechanistic
understanding of isotope fractionation and mixing processes from the leaves
to the wood, Tree Physiol., 34, 796–818, https://doi.org/10.1093/treephys/tpu040, 2014.
Giguère-Croteau, C., Boucher, É., Bergeron, Y., Girardin, M. P.,
Drobyshev, I., Silva, L. C. R., Hélie, J.-F., and Garneau, M.: North
America's oldest boreal trees are more efficient water users due to
increased [
CO2], but do not grow faster, P. Natl.
Acad. Sci. USA, 116, 2749, https://doi.org/10.1073/pnas.1816686116, 2019.
Gori, Y., Camin, F., Porta, N. L., Carrer, M., and Battisti, A.: Tree rings
and stable isotopes reveal the tree-history prior to insect defoliation on
Norway spruce (Picea abies (L.) Karst.), Forest Ecol. Managem., 319,
99–106, https://doi.org/10.1016/j.foreco.2014.02.009, 2014.
Grams, T. E. E., Kozovits, A. R., HÄBerle, K.-H., Matyssek, R., and
Dawson, T. E.: Combining
δ13C and
δ18O analyses to
unravel competition,
CO2 and
O3 effects on the physiological
performance of different-aged trees, Plant Cell Environ., 30,
1023–1034, https://doi.org/10.1111/j.1365-3040.2007.01696.x, 2007.
Guiot, J., Boucher, E., and Gea-Izquierdo, G.: Process models and model-data
fusion in dendroecology, Front. Ecol. Evol., 2, 52,
https://doi.org/10.3389/fevo.2014.00052, 2014.
Hangartner, S., Kress, A., Saurer, M., Frank, D., and Leuenberger, M.:
Methods to merge overlapping tree-ring isotope series to generate
multi-centennial chronologies, Chem. Geol., 294–295, 127–134,
https://doi.org/10.1016/j.chemgeo.2011.11.032, 2012.
Helama, S., Arppe, L., Timonen, M., Mielikäinen, K., and Oinonen, M.:
Age-related trends in subfossil tree-ring
δ13C data, Chem.
Geol., 416, 28–35, https://doi.org/10.1016/j.chemgeo.2015.10.019, 2015.
Helama, S., Arppe, L., Timonen, M., Mielikäinen, K., and Oinonen, M.: A
7.5 ka chronology of stable carbon isotopes from tree rings with
implications for their use in palaeo-cloud reconstruction, Global
Planet. Change, 170, 20–33, https://doi.org/10.1016/j.gloplacha.2018.08.002, 2018.
Hilasvuori, E., Berninger, F., Sonninen, E., Tuomenvirta, H., and Jungner,
H.: Stability of climate signal in carbon and oxygen isotope records and
ring width from Scots pine (
Pinus sylvestris L.) in Finland, J.
Quaternary Sci., 24, 469–480, https://doi.org/10.1002/jqs.1260, 2009.
Hu, Y., Bellaloui, N., Tigabu, M., Wang, J., Diao, J., Wang, K., Yang, R.,
and Sun, G.: Gaseous
NO2 effects on stomatal behavior, photosynthesis
and respiration of hybrid poplar leaves, Acta Physiol. Plant., 37,
39, https://doi.org/10.1007/s11738-014-1749-8, 2015.
Irvine, J., Law, B. E., Anthoni, P. M., and Meinzer, F. C.: Water
limitations to carbon exchange in old-growth and young ponderosa pine
stands, Tree Physiol., 22, 189–196, https://doi.org/10.1093/treephys/22.2-3.189, 2002.
Ishida, A., Toma, T., and Marjenah: Limitation of leaf carbon gain by
stomatal and photochemical processes in the top canopy of Macaranga
conifera, a tropical pioneer tree, Tree Physiol., 19, 467–473,
https://doi.org/10.1093/treephys/19.7.467, 1999.
Jacoby, G. C. and D'Arrigo, R. D.: Tree ring width and density evidence of
climatic and potential forest change in Alaska, Global Biogeochem.
Cycles, 9, 227–234, https://doi.org/10.1029/95GB00321, 1995.
Kagawa, A., Sugimoto, A., and Maximov, T. C.:
13CO2
pulse-labelling of photoassimilates reveals carbon allocation within and
between tree rings, Plant Cell Environ., 29, 1571–1584,
https://doi.org/10.1111/j.1365-3040.2006.01533.x, 2006.
Kagawa, A., Sano, M., Nakatsuka, T., Ikeda, T., and Kubo, S.: An optimized
method for stable isotope analysis of tree rings by extracting cellulose
directly from cross-sectional laths, Chem. Geol., 393–394, 16–25,
https://doi.org/10.1016/j.chemgeo.2014.11.019, 2015.
Kamakura, M., Kosugi, Y., Muramatsu, K., and Muraoka, H.: Simulations and
observations of patchy stomatal behavior in leaves of
Quercus crispula, a cool-temperate
deciduous broad-leaved tree species, J. Plant Res., 125,
339–349, https://doi.org/10.1007/s10265-011-0460-8, 2012.
Kets, K., Darbah, J. N. T., Sober, A., Riikonen, J., Sober, J., and
Karnosky, D. F.: Diurnal changes in photosynthetic parameters of
Populus tremuloides, modulated
by elevated concentrations of
CO2 and/or
O3 and daily climatic
variation, Environ. Pollut., 158, 1000–1007, https://doi.org/10.1016/j.envpol.2009.09.001, 2010.
Kilroy, E., McCarroll, D., Young, G., Loader, N., and Bale, R.: Absence of
juvenile effects confirmed in stable carbon and oxygen isotopes of European
larch trees, Acta Silvae et Ligni, 27–33, https://doi.org/10.20315/ASetL.111.3, 2016.
Kimak, A. and Leuenberger, M.: Are carbohydrate storage strategies of trees
traceable by early–latewood carbon isotope differences?, Trees, 29,
859–870, https://doi.org/10.1007/s00468-015-1167-6, 2015.
Klesse, S., Weigt, R., Treydte, K., Saurer, M., Schmid, L., Siegwolf, R. T.
W., and Frank, D. C.: Oxygen isotopes in tree rings are less sensitive to
changes in tree size and relative canopy position than carbon isotopes,
Plant Cell Environ., 41, 2899–2914, https://doi.org/10.1111/pce.13424, 2018.
Kłusek, M., Grabner, M., Pawełczyk, S., and Pawlyta, J.: An 1800-year
stable carbon isotope chronology based on sub-fossil wood from Lake
Schwarzensee, Austria, Palaeogeogr. Palaeocl.,
514, 65–76, https://doi.org/10.1016/j.palaeo.2018.10.003, 2019.
Kolb, T. E. and Matyssek, R.: Limitations and perspectives about scaling
ozone impacts in trees, Environ. Pollut., 115, 373–393, https://doi.org/10.1016/S0269-7491(01)00228-7, 2001.
Konter, O., Holzkämper, S., Helle, G., Büntgen, U., Saurer, M., and
Esper, J.: Climate sensitivity and parameter coherency in annually resolved
δ13C and
δ18O from Pinus uncinata tree-ring data
in the Spanish Pyrenees, Chem. Geol., 377, 12–19, https://doi.org/10.1016/j.chemgeo.2014.03.021, 2014.
Kress, A., Hangartner, S., Bugmann, H., Büntgen, U., Frank, D. C.,
Leuenberger, M., Siegwolf, R. T. W., and Saurer, M.: Swiss tree rings reveal
warm and wet summers during medieval times, Geophys. Res. Lett.,
41, 1732–1737, https://doi.org/10.1002/2013GL059081, 2014.
Kruschke, J. K.: Doing Bayesian Data Analysis (Second Edition), in: Doing
Bayesian Data Analysis: A tutorial with R and bugs, Second
edn., edited by: Kruschke, J. K., Academic Press, Boston, 529, 2010.
Kürschner, W. M.: Leaf stomata as biosensors of palaeoatmospheric
CO2 levels, PhD thesis, ISBN/ISSN 90-393-1085-8, University of Groningen, Rijksuniversiteit Utrecht, 1996.
Labuhn, I., Daux, V., Pierre, M., Stievenard, M., Girardclos, O., Féron,
A., Genty, D., Masson-Delmotte, V., and Mestre, O.: Tree age, site and
climate controls on tree ring cellulose
δ18O: A case study on
oak trees from south-western France, Dendrochronologia, 32, 78–89,
https://doi.org/10.1016/j.dendro.2013.11.001, 2014.
Labuhn, I., Daux, V., Girardclos, O., Stievenard, M., Pierre, M., and Masson-Delmotte, V.: French summer droughts since 1326 CE: a reconstruction based on tree ring cellulose
δ18O, Clim. Past, 12, 1101–1117, https://doi.org/10.5194/cp-12-1101-2016, 2016.
Lavergne, A., Daux, V., Villalba, R., Pierre, M., Stievenard, M., Vimeux,
F., and Srur, A. M.: Are the oxygen isotopic compositions of
Fitzroya cupressoides and
Nothofagus pumilio cellulose promising proxies for climate reconstructions in northern
Patagonia?, J. Geophys. Res.-Biogeo., 121, 767–776,
https://doi.org/10.1002/2015JG003260, 2016.
Lavergne, A., Gennaretti, F., Risi, C., Daux, V., Boucher, E., Savard, M. M., Naulier, M., Villalba, R., Bégin, C., and Guiot, J.: Modelling tree ring cellulose
δ18O variations in two temperature-sensitive tree species from North and South America, Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017, 2017.
Leavitt, S. W.: Tree-ring isotopic pooling without regard to mass: No
difference from averaging
δ13C values of each tree, Chem.
Geol., 252, 52–55, https://doi.org/10.1016/j.chemgeo.2008.01.014, 2008.
Lee, E. H., Beedlow, P. A., Waschmann, R. S., Tingey, D. T., Cline, S.,
Bollman, M., Wickham, C., and Carlile, C.: Regional patterns of increasing
Swiss needle cast impacts on Douglas-fir growth with warming temperatures,
Ecol. Evol., 7, 11167–11196, https://doi.org/10.1002/ece3.3573, 2017.
Leonelli, G., Battipaglia, G., Siegwolf, R. T. W., Saurer, M., Morra di
Cella, U., Cherubini, P., and Pelfini, M.: Climatic isotope signals in tree
rings masked by air pollution: A case study conducted along the Mont Blanc
Tunnel access road (Western Alps, Italy), Atmos. Environ., 61,
169–179, https://doi.org/10.1016/j.atmosenv.2012.07.023, 2012.
Li, Z., Nakatsuka, T., and Sano, M.: Tree-ring cellulose
δ18O
variability in pine and oak and its potential to reconstruct precipitation
and relative humidity in central Japan, Geochem. J., 49, 125–137,
https://doi.org/10.2343/geochemj.2.0336, 2015.
Li, Z.-H., Leavitt, S. W., Mora, C. I., and Liu, R.-M.: Influence of
earlywood–latewood size and isotope differences on long-term tree-ring
δ13C trends, Chem. Geol., 216, 191–201, https://doi.org/10.1016/j.chemgeo.2004.11.007, 2005.
Liu, X., An, W., Leavitt, S. W., Wang, W., Xu, G., Zeng, X., and Qin, D.:
Recent strengthening of correlations between tree-ring
δ13C and
δ18O in mesic western China: Implications to climatic
reconstruction and physiological responses, Global Planet. Change,
113, 23–33, https://doi.org/10.1016/j.gloplacha.2013.12.005,
2014.
Loader, N. J., Robertson, I., Barker, A. C., Switsur, V. R., and Waterhouse,
J. S.: An improved technique for the batch processing of small wholewood
samples to
α-cellulose, Chem. Geol., 136, 313–317, https://doi.org/10.1016/S0009-2541(96)00133-7, 1997.
Loader, N. J., Robertson, I., and McCarroll, D.: Comparison of stable carbon
isotope ratios in the whole wood, cellulose and lignin of oak tree-rings,
Palaeogeogr. Palaeocl., 196, 395–407, https://doi.org/10.1016/S0031-0182(03)00466-8, 2003.
Loader, N. J., Young, G. H. F., Grudd, H., and McCarroll, D.: Stable carbon
isotopes from Torneträsk, northern Sweden provide a millennial length
reconstruction of summer sunshine and its relationship to Arctic
circulation, Quaternary Sci. Rev., 62, 97–113, https://doi.org/10.1016/j.quascirev.2012.11.014, 2013a.
Loader, N. J., Young, G. H. F., McCarroll, D., and Wilson, R. J. S.:
Quantifying uncertainty in isotope dendroclimatology, Holocene, 23,
1221–1226, https://doi.org/10.1177/0959683613486945, 2013b.
Ma, L.-H., Liu, X.-L., Wang, Y.-K., and Wu, P.-T.: Effects of drip
irrigation on deep root distribution, rooting depth, and soil water profile
of jujube in a semiarid region, Plant Soil, 373, 995–1006,
https://doi.org/10.1007/s11104-013-1880-0, 2013.
Martin, B. and Sutherland, E. K.: Air pollution in the past recorded in
width and stable carbon isotope composition of annual growth rings of
Douglas-fir, Plant Cell Environ., 13, 839–844,
https://doi.org/10.1111/j.1365-3040.1990.tb01101.x, 1990.
Mathias, J. M. and Thomas, R. B.: Disentangling the effects of acidic air
pollution, atmospheric
CO2, and climate change on recent growth of red
spruce trees in the Central Appalachian Mountains, Global Change Biol.,
24, 3938–3953, https://doi.org/10.1111/gcb.14273, 2018.
Matyssek, R., Sandermann, H., Wieser, G., Booker, F., Cieslik, S.,
Musselman, R., and Ernst, D.: The challenge of making ozone risk assessment
for forest trees more mechanistic, Environ. Pollut., 156, 567–582,
https://doi.org/10.1016/j.envpol.2008.04.017, 2008.
Matyssek, R., Karnosky, D. F., Wieser, G., Percy, K., Oksanen, E., Grams, T.
E. E., Kubiske, M., Hanke, D., and Pretzsch, H.: Advances in understanding
ozone impact on forest trees: Messages from novel phytotron and free-air
fumigation studies, Environ. Pollut., 158, 1990–2006, https://doi.org/10.1016/j.envpol.2009.11.033, 2010.
Mayfield III, A. E., Allen, D. C., and Briggs, R. D.: Radial growth impact
of pine false webworm defoliation on eastern white pine, Can. J.
Forest Res., 35, 1071–1086, https://doi.org/10.1139/x05-040, 2005.
McCarroll, D., Gagen, M. H., Loader, N. J., Robertson, I., Anchukaitis, K.
J., Los, S., Young, G. H. F., Jalkanen, R., Kirchhefer, A., and Waterhouse,
J. S.: Correction of tree ring stable carbon isotope chronologies for
changes in the carbon dioxide content of the atmosphere, Geochim.
Cosmochim. Ac., 73, 1539–1547, https://doi.org/10.1016/j.gca.2008.11.041, 2009.
McCarroll, D., Tuovinen, M., Campbell, R., Gagen, M., Grudd, H., Jalkanen,
R., Loader, N. J., and Robertson, I.: A critical evaluation of multi-proxy
dendroclimatology in northern Finland, J. Quaternary Sci., 26,
7–14, https://doi.org/10.1002/jqs.1408, 2011.
Meng, F.-R., Bourque, C. P. A., Belczewski, R. F., Whitney, N. J., and Arp,
P. A.: Foliage responses of spruce trees to long-term low-grade sulfur
dioxide deposition, Environ. Pollut., 90, 143–152, https://doi.org/10.1016/0269-7491(94)00101-I, 1995.
Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R.,
Alm-KÜBler, K., Bissolli, P., BraslavskÁ, O. G., Briede, A.,
Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, Å., Defila, C.,
Donnelly, A., Filella, Y., Jatczak, K., MÅGe, F., Mestre, A., Nordli,
Ø., PeÑUelas, J., Pirinen, P., RemiŠOvÁ, V., Scheifinger, H.,
Striz, M., Susnik, A., Van Vliet, A. J. H., Wielgolaski, F.-E., Zach, S.,
and Zust, A. N. A.: European phenological response to climate change matches
the warming pattern, Global Change Biol., 12, 1969–1976,
https://doi.org/10.1111/j.1365-2486.2006.01193.x, 2006.
Miller, D. L., Mora, C. I., Grissino-Mayer, H. D., Mock, C. J., Uhle, M. E.,
and Sharp, Z.: Tree-ring isotope records of tropical cyclone activity,
P. Natl. Acad. Sci., 103, 14294,
https://doi.org/10.1073/pnas.0606549103, 2006.
Muangsong, C., Cai, B., Pumijumnong, N., Lei, G., and Wang, F.: A
preliminary study on teak tree ring cellulose
δ18O from
northwestern Thailand: the potential for developing multiproxy records of
Thailand summer monsoon variability, Theor. Appl. Climatol.,
136, 575–586, https://doi.org/10.1007/s00704-018-2499-0, 2019.
Naulier, M., Savard, M. M., Bégin, C., Gennaretti, F., Arseneault, D., Marion, J., Nicault, A., and Bégin, Y.: A millennial summer temperature reconstruction for northeastern Canada using oxygen isotopes in subfossil trees, Clim. Past, 11, 1153–1164, https://doi.org/10.5194/cp-11-1153-2015, 2015a.
Naulier, M., Savard, M. M., Bégin, C., Marion, J., Nicault, A., and
Bégin, Y.: Temporal instability of isotopes–climate statistical
relationships – A study of black spruce trees in northeastern Canada,
Dendrochronologia, 34, 33–42, https://doi.org/10.1016/j.dendro.2015.04.001, 2015b.
Offermann, C., Ferrio, J. P., Holst, J., Grote, R., Siegwolf, R., Kayler,
Z., and Gessler, A.: The long way down – are carbon and oxygen isotope
signals in the tree ring uncoupled from canopy physiological processes?,
Tree Physiol., 31, 1088–1102, https://doi.org/10.1093/treephys/tpr093, 2011.
Ogée, J., Barbour, M. M., Wingate, L., Bert, D., Bosc, A., Stievenard,
M., Lambrot, C., Pierre, M., Bariac, T., Loustau, D., and Dewar, R. C.: A
single-substrate model to interpret intra-annual stable isotope signals in
tree-ring cellulose, Plant Cell Environ., 32, 1071–1090,
https://doi.org/10.1111/j.1365-3040.2009.01989.x, 2009.
Okazaki, A. and Yoshimura, K.: Global Evaluation of Proxy System Models for
Stable Water Isotopes With Realistic Atmospheric Forcing, J.
Geophys. Res.-Atmos., 124, 8972–8993, https://doi.org/10.1029/2018jd029463,
2019.
Ooi, L., Matsuura, T., Munemasa, S., Murata, Y., Katsuhara, M., Hirayama,
T., and Mori, I. C.: The mechanism of
SO2-induced stomatal closure
differs from
O3 and
CO2 responses and is mediated by nonapoptotic
cell death in guard cells, Plant Cell Environ., 42, 437–447,
https://doi.org/10.1111/pce.13406, 2019.
Porter, T. J., Pisaric, M. F. J., Kokelj, S. V., and Edwards, T. W. D.:
Climatic Signals in
δ13C and
δ18O of Tree-rings
from White Spruce in the Mackenzie Delta Region, Northern Canada, Arct.
Antarct. Alp. Res., 41, 497–505, https://doi.org/10.1657/1938-4246-41.4.497,
2009.
Raffalli-Delerce, G., Masson-Delmotte, V., Dupouey, J. L., Stievenard, M.,
Breda, N., and Moisselin, J. M.: Reconstruction of summer droughts using
tree-ring cellulose isotopes: a calibration study with living oaks from
Brittany (western France), Tellus B, 56, 160–174,
https://doi.org/10.1111/j.1600-0889.2004.00086.x, 2004.
Raschke, K. and Resemann, A.: The midday depression of
CO2
assimilation in leaves of
Arbutus unedo L.: diurnal changes in photosynthetic capacity
related to changes in temperature and humidity, Planta, 168, 546–558,
https://doi.org/10.1007/BF00392275, 1986.
Rathgeber, C. B. K., Cuny, H. E., and Fonti, P.: Biological Basis of
Tree-Ring Formation: A Crash Course, Front. Plant Sci., 7, 734,
https://doi.org/10.3389/fpls.2016.00734, 2016.
Reynolds-Henne, C. E., Siegwolf, R. T. W., Treydte, K. S., Esper, J., Henne,
S., and Saurer, M.: Temporal stability o
f climate-isotope relationships in
tree rings of oak and pine (Ticino, Switzerland), Global Biogeochem.
Cycles, 21, GB4009, https://doi.org/10.1029/2007gb002945, 2007.
Rinne, K. T., Loader, N. J., Switsur, V. R., Treydte, K. S., and Waterhouse,
J. S.: Investigating the influence of sulphur dioxide (
SO2) on the
stable isotope ratios (
δ13C and
δ18O) of tree
rings, Geochim. Cosmochim. Ac., 74, 2327–2339, https://doi.org/10.1016/j.gca.2010.01.021, 2010.
Roden, J. S., Lin, G., and Ehleringer, J. R.: A mechanistic model for
interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose,
Geochim. Cosmochim. Ac., 64, 21–35, https://doi.org/10.1016/S0016-7037(99)00195-7, 2000.
Saffell, B. J., Meinzer, F. C., Voelker, S. L., Shaw, D. C., Brooks, J. R.,
Lachenbruch, B., and McKay, J.: Tree-ring stable isotopes record the impact
of a foliar fungal pathogen on
CO2 assimilation and growth in
Douglas-fir, Plant Cell Environ., 37, 1536–1547, https://doi.org/10.1111/pce.12256,
2014.
Sakashita, W., Yokoyama, Y., Miyahara, H., Aze, T., Obrochta, S. P., Ohyama,
M., and Yonenobu, H.: Assessment of Northeastern Japan Tree-Ring Oxygen
Isotopes for Reconstructing Early Summer Hydroclimate and Spring Arctic
Oscillation, Geochem. Geophys. Geosyst., 19, 3520–3528,
https://doi.org/10.1029/2018gc007634, 2018.
Sánchez-Salguero, R., Camarero, J. J., Gutiérrez, E., González
Rouco, F., Gazol, A., Sangüesa-Barreda, G., Andreu-Hayles, L., Linares,
J. C., and Seftigen, K.: Assessing forest vulnerability to climate warming
using a process-based model of tree growth: bad prospects for rear-edges,
Global Change Biol., 23, 2705–2719, https://doi.org/10.1111/gcb.13541, 2017.
Sarris, D., Siegwolf, R., and Körner, C.: Inter- and intra-annual stable
carbon and oxygen isotope signals in response to drought in Mediterranean
pines, Agric. Forest Meteorol., 168, 59–68, https://doi.org/10.1016/j.agrformet.2012.08.007, 2013.
Saurer, M., Cherubini, P., Bonani, G., and Siegwolf, R.: Tracing carbon
uptake from a natural
CO2 spring into tree rings: an isotope approach,
Tree Physiol., 23, 997–1004, https://doi.org/10.1093/treephys/23.14.997, 2003.
Saurer, M., Siegwolf, R. T. W., and Schweingruber, F. H.: Carbon isotope
discrimination indicates improving water-use efficiency of trees in northern
Eurasia over the last 100 years, Global Change Biol., 10, 2109–2120,
https://doi.org/10.1111/j.1365-2486.2004.00869.x, 2004.
Saurer, M., Cherubini, P., Reynolds-Henne, C. E., Treydte, K. S., Anderson,
W. T., and Siegwolf, R. T. W.: An investigation of the common signal in tree
ring stable isotope chronologies at temperate sites, J. Geophys.
Res.-Biogeo., 113, G04035, https://doi.org/10.1029/2008JG000689, 2008.
Saurer, M., Kress, A., Leuenberger, M., Rinne, K. T., Treydte, K. S., and
Siegwolf, R. T. W.: Influence of atmospheric circulation patterns on the
oxygen isotope ratio of tree rings in the Alpine region, J.
Geophys. Res.-Atmos., 117, D05118, https://doi.org/10.1029/2011JD016861, 2012.
Savard, M., Bégin, C., Parent, M., Smirnoff, A., and Marion, J.: Effects
of Smelter Sulfur Dioxide Emissions: A Spatiotemporal Perspective Using
Carbon Isotopes in Tree Rings, J. Environ. Qual., 33, 13–26,
https://doi.org/10.2134/jeq2004.1300, 2004.
Savard, M. M.: Tree-ring stable isotopes and historical perspectives on
pollution – An overview, Environ. Pollut., 158, 2007–2013,
https://doi.org/10.1016/j.envpol.2009.11.031, 2010.
Savard, M. M., Bégin, C., Smirnoff, A., Marion, J., Sharp, Z., and
Parent, M.: Fractionation change of hydrogen isotopes in trees due to
atmospheric pollutants, Geochim. Cosmochim. Ac., 69, 3723–3731,
https://doi.org/10.1016/j.gca.2005.03.046, 2005.
Savard, M. M., Bégin, C., and Marion, J.: Modelling carbon isotopes in
spruce trees reproduces air quality changes due to oil sands operations,
Ecol. Indic., 45, 1–8, https://doi.org/10.1016/j.ecolind.2014.03.005, 2014.
Savard, M. M., Bégin, C., and Marion, J.: Response strategies of boreal
spruce trees to anthropogenic changes in air quality and rising
pCO2,
Environ. Pollut., 114209, https://doi.org/10.1016/j.envpol.2020.114209, 2020.
Scheidegger, Y., Saurer, M., Bahn, M., and Siegwolf, R.: Linking stable
oxygen and carbon isotopes with stomatal conductance and photosynthetic
capacity: A conceptual model, Oecologia, 125, 350–357,
https://doi.org/10.1007/s004420000466, 2000.
Schleser, G. H. and Jayasekera, R.:
δ13C-variations of leaves
in forests as an indication of reassimilated
CO2 from the soil,
Oecologia, 65, 536–542, https://doi.org/10.1007/BF00379669, 1985.
Schleser, G. H., Helle, G., Lücke, A., and Vos, H.: Isotope signals as
climate proxies: the role of transfer functions in the study of terrestrial
archives, Quaternary Sci. Rev., 18, 927–943, https://doi.org/10.1016/S0277-3791(99)00006-2, 1999.
Schubert, B. A. and Jahren, A. H.: The effect of atmospheric
CO2
concentration on carbon isotope fractionation in C
3 land plants,
Geochim. Cosmochim. Ac., 96, 29–43, https://doi.org/10.1016/j.gca.2012.08.003, 2012.
Seftigen, K., Linderholm, H. W., Loader, N. J., Liu, Y., and Young, G. H.
F.: The influence of climate on
13C∕12C and
18O∕16O
ratios in tree ring cellulose of Pinus sylvestris L. growing in the central
Scandinavian Mountains, Chem. Geol., 286, 84–93, https://doi.org/10.1016/j.chemgeo.2011.04.006, 2011.
Sensuła, B. M.: Spatial and Short-Temporal Variability of
δ13C and
δ15N and Water-Use Efficiency in Pine Needles of
the Three Forests Along the Most Industrialized Part of Poland, Water Air
Soil Pollut., 226, 362, https://doi.org/10.1007/s11270-015-2623-z, 2015.
Siegwolf, R., Matyssek, R., Saurer, M., Maurer, S., Günthardt-Goerg, M.,
Schmutz, P., and Bucher, J.: Stable isotope analysis reveals differential
effects of soil nitrogen and nitrogen dioxide on the water use efficiency in
hybrid poplar leaves, New Phytologist, 149, 233–246,
https://doi.org/10.1046/j.1469-8137.2001.00032.x, 2001.
Silva, L. C. R. and Horwath, W. R.: Explaining Global Increases in Water
Use Efficiency: Why Have We Overestimated Responses to Rising Atmospheric
CO2 in Natural Forest Ecosystems?, PLoS ONE, 8, e53089,
https://doi.org/10.1371/journal.pone.0053089, 2013.
Simard, S., Elhani, S., Morin, H., Krause, C., and Cherubini, P.: Carbon and
oxygen stable isotopes from tree-rings to identify spruce budworm outbreaks
in the boreal forest of Québec, Chem. Geol., 252, 80–87, https://doi.org/10.1016/j.chemgeo.2008.01.018, 2008.
Sternberg, L. D. S. L., Deniro, M. J., and Savidge, R. A.: Oxygen Isotope
Exchange between Metabolites and Water during Biochemical Reactions Leading
to Cellulose Synthesis, Plant Physiol., 82, 423, https://doi.org/10.1104/pp.82.2.423,
1986.
Szejner, P., Wright, W. E., Belmecheri, S., Meko, D., Leavitt, S. W.,
Ehleringer, J. R., and Monson, R. K.: Disentangling seasonal and interannual
legacies from inferred patterns of forest water and carbon cycling using
tree-ring stable isotopes, Global Change Biol., 24, 5332–5347,
https://doi.org/10.1111/gcb.14395, 2018.
Szejner, P., Belmecheri, S., Ehleringer, J. R., and Monson, R. K.: Recent
increases in drought frequency cause observed multi-year drought legacies in
the tree rings of semi-arid forests, Oecologia, 192, 241–259, https://doi.org/10.1007/s00442-019-04550-6,
2020a.
Szejner, P., Clute, T., Anderson, E., Evans, M. N., and Hu, J.: Reduction in
lumen area is associated with the
δ18O exchange between sugars
and source water during cellulose synthesis, New Phytologist, 226, 1583–1593,
https://doi.org/10.1111/nph.16484, 2020b.
Thomas, R. B., Spal, S. E., Smith, K. R., and Nippert, J. B.: Evidence of
recovery of
Juniperus virginiana trees from sulfur pollution after the Clean Air Act,
P. Natl. Acad. Sci. USA, 110, 15319,
https://doi.org/10.1073/pnas.1308115110, 2013.
Tingley, M. P. and Huybers, P.: A Bayesian Algorithm for Reconstructing
Climate Anomalies in Space and Time. Part I: Development and Applications to
Paleoclimate Reconstruction Problems, J. Climate, 23, 2759–2781,
https://doi.org/10.1175/2009JCLI3015.1, 2009.
Tolwinski-Ward, S. E., Anchukaitis, K. J., and Evans, M. N.: Bayesian parameter estimation and interpretation for an intermediate model of tree-ring width, Clim. Past, 9, 1481–1493, https://doi.org/10.5194/cp-9-1481-2013, 2013.
Treydte, K., Schleser, G., Helle, G., Frank, D., Winiger, M., Haug, G., and
Esper, J.: The twentieth century was the wettest period in northern Pakistan
over the past Millennium, Nature, 440, 1179–1182, https://doi.org/10.1038/nature04743, 2006.
Treydte, K., Frank, D., Esper, J., Andreu, L., Bednarz, Z., Berninger, F.,
Boettger, T., D'Alessandro, C. M., Etien, N., Filot, M., Grabner, M.,
Guillemin, M. T., Gutierrez, E., Haupt, M., Helle, G., Hilasvuori, E.,
Jungner, H., Kalela-Brundin, M., Krapiec, M., Leuenberger, M., Loader, N.
J., Masson-Delmotte, V., Pazdur, A., Pawelczyk, S., Pierre, M., Planells,
O., Pukiene, R., Reynolds-Henne, C. E., Rinne, K. T., Saracino, A., Saurer,
M., Sonninen, E., Stievenard, M., Switsur, V. R., Szczepanek, M.,
Szychowska-Krapiec, E., Todaro, L., Waterhouse, J. S., Weigl, M., and
Schleser, G. H.: Signal strength and climate calibration of a European
tree-ring isotope network, Geophys. Res. Lett., 34, L24302,
https://doi.org/10.1029/2007GL031106, 2007.
Treydte, K. S., Frank, D. C., Saurer, M., Helle, G., Schleser, G. H., and
Esper, J.: Impact of climate and
CO2 on a millennium-long tree-ring
carbon isotope record, Geochim. Cosmochim. Ac., 73, 4635–4647,
https://doi.org/10.1016/j.gca.2009.05.057, 2009.
Vaganov, E. A., Anchukaitis, K. J., and Evans, M. N.: How Well Understood Are the Processes that Create Dendroclimatic Records? A Mechanistic Model of the Climatic Control on Conifer Tree-Ring Growth Dynamics, in: Dendroclimatology. Developments in Paleoenvironmental Research, edited by: Hughes, M., Swetnam, T., and Diaz, H., vol. 11, Springer, Dordrecht, 2011.
Verheyden, A., Roggeman, M., Bouillon, S., Elskens, M., Beeckman, H., and
Koedam, N.: Comparison between
δ13C of
α-cellulose and
bulk wood in the mangrove tree
Rhizophora mucronata: Implications for dendrochemistry, Chem.
Geol., 219, 275–282, https://doi.org/10.1016/j.chemgeo.2005.02.015, 2005.
Voelker, S. L., Brooks, J. R., Meinzer, F. C., Anderson, R., Bader, M. K.
F., Battipaglia, G., Becklin, K. M., Beerling, D., Bert, D., Betancourt, J.
L., Dawson, T. E., Domec, J.-C., Guyette, R. P., Körner, C., Leavitt, S.
W., Linder, S., Marshall, J. D., Mildner, M., Ogée, J., Panyushkina, I.,
Plumpton, H. J., Pregitzer, K. S., Saurer, M., Smith, A. R., Siegwolf, R. T.
W., Stambaugh, M. C., Talhelm, A. F., Tardif, J. C., Van de Water, P. K.,
Ward, J. K., and Wingate, L.: A dynamic leaf gas-exchange strategy is
conserved in woody plants under changing ambient
CO2: evidence from
carbon isotope discrimination in paleo and
CO2 enrichment studies,
Global Change Biol., 22, 889–902, https://doi.org/10.1111/gcb.13102, 2016.
von Arx, G., Arzac, A., Fonti, P., Frank, D., Zweifel, R., Rigling, A.,
Galiano, L., Gessler, A., and Olano, J. M.: Responses of sapwood ray
parenchyma and non-structural carbohydrates of Pinus sylvestris to drought
and long-term irrigation, Funct. Ecol., 31, 1371–1382,
https://doi.org/10.1111/1365-2435.12860, 2017.
Wagner, R. and Wagner, E.: Influence of air pollution and site conditions
on trends of carbon and oxygen isotope ratios in tree ring cellulose,
Isotopes in environmental and health studies, Isot. Environ. Health S., 42, 351–365,
https://doi.org/10.1080/10256010600991078, 2006.
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.
J. C., Fromentin, J.-M., Hoegh-Guldberg, O., and Bairlein, F.: Ecological
responses to recent climate change, Nature, 416, 389–395, https://doi.org/10.1038/416389a,
2002.
Wang, W., Liu, X., Xu, G., Zeng, X., Wu, G., Zhang, X., and Qin, D.:
Temperature signal instability of tree-ring
δ13C chronology in
the northeastern Qinghai–Tibetan Plateau, Global Planet. Change, 139,
165–172, https://doi.org/10.1016/j.gloplacha.2016.02.006, 2016.
Wang, W., Liu, X., Xu, G., Treydte, K., Shao, X., Qin, D., Wang, G., and
McDowell, N. G.:
CO2 Fertilization Confounds Tree-Ring Records of
Regional Hydroclimate at Northeastern Qinghai-Tibetan Plateau, Earth
Space Sci., 6, 730–740, https://doi.org/10.1029/2018ea000529, 2019.
Waterhouse, J. S., Switsur, V. R., Barker, A. C., Carter, A. H. C., Hemming,
D. L., Loader, N. J., and Robertson, I.: Northern European trees show a
progressively diminishing response to increasing atmospheric carbon dioxide
concentrations, Quaternary Sci. Rev., 23, 803–810, https://doi.org/10.1016/j.quascirev.2003.06.011, 2004.
Weltzin, J. F. and McPherson, G. R.: Spatial and temporal soil moisture
resource partitioning by trees and grasses in a temperate savanna, Arizona,
USA, Oecologia, 112, 156–164, https://doi.org/10.1007/s004420050295, 1997.
Werner, C. and Gessler, A.: Diel variations in the carbon isotope composition of respired
CO2 and associated carbon sources: a review of dynamics and mechanisms, Biogeosciences, 8, 2437–2459, https://doi.org/10.5194/bg-8-2437-2011, 2011.
Wieloch, T., Helle, G., Heinrich, I., Voigt, M., and Schyma, P.: A novel
device for batch-wise isolation of
α-cellulose from small-amount
wholewood samples, Dendrochronologia, 29, 115–117, https://doi.org/10.1016/j.dendro.2010.08.008, 2011.
Wieser, G., Oberhuber, W., Gruber, A., Leo, M., Matyssek, R., and Grams, T.
E. E.: Stable Water Use Efficiency under Climate Change of Three Sympatric
Conifer Species at the Alpine Treeline, Front. Plant Sci., 7, 799,
https://doi.org/10.3389/fpls.2016.00799, 2016.
Xu, C., Ge, J., Nakatsuka, T., Yi, L., Zheng, H., and Sano, M.: Potential
utility of tree ring
δ18O series for reconstructing
precipitation records from the lower reaches of the Yangtze River, southeast
China, J. Geophys. Res.-Atmos., 121, 3954–3968,
https://doi.org/10.1002/2015JD023610, 2016.
Xu, G., Wu, G., Liu, X., Chen, T., Wang, B., Hudson, A., and Trouet, V.:
Age-related climate response of tree-ring
δ13C and
δ18O from spruce in northwestern China, with implications for relative
humidity reconstructions, J. Geophys. Res.-Biogeo.,
121, e2019JG005513, https://doi.org/10.1029/2019JG005513, 2020.
Yang, H. I., Park, H.-J., Lee, K.-S., Lim, S.-S., Kwak, J.-H., Lee, S.-I.,
Chang, S. X., Lee, S.-M., and Choi, W.-J.:
δ13C,
δ15N, N concentration,
C∕N, and
Ca∕Al of Pinus densiflora foliage in
Korean cities of different precipitation pH and atmospheric
NO2 and
SO2 levels, Ecol. Indic., 88, 27–36, https://doi.org/10.1016/j.ecolind.2018.01.020, 2018.
Yang, Y., Yang, R., Cao, J., Zhao, J., Cheng, H., and Wang, J. J. C. D.:
Relationship between the Asian summer monsoon circulation and speleothem
δ18O of Xiaobailong cave, Clim. Dynam., 53, 6351–6362,
https://doi.org/10.1007/s00382-019-04935-6, 2019.
Young, G. H. F., McCarroll, D., Loader, N. J., and Kirchhefer, A. J.: A
500-year record of summer near-ground solar radiation from tree-ring stable
carbon isotopes, Holocene, 20, 315–324, https://doi.org/10.1177/0959683609351902, 2010.
Young, G. H. F., Demmler, J. C., Gunnarson, B. E., Kirchhefer, A. J.,
Loader, N. J., and McCarroll, D.: Age trends in tree ring growth and
isotopic archives: A case study of Pinus sylvestris L. from northwestern
Norway, Global Biogeochem. Cycles, 25, GB2020, https://doi.org/10.1029/2010GB003913, 2011.
Zweifel, R., Böhm, J. P., and Häsler, R.: Midday stomatal closure in
Norway spruce – reactions in the upper and lower crown, Tree Physiol., 22,
1125–1136, https://doi.org/10.1093/treephys/22.15-16.1125, 2002.