Articles | Volume 15, issue 6
https://doi.org/10.5194/cp-15-1939-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-1939-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A South Atlantic island record uncovers shifts in westerlies and hydroclimate during the last glacial
Svante Björck
CORRESPONDING AUTHOR
Department of Geology, Lund University, 22362 Lund, Sweden
Department of Geological Sciences and the Bolin Centre for Climate
Research, Stockholm University, 10691 Stockholm, Sweden
Jesper Sjolte
Department of Geology, Lund University, 22362 Lund, Sweden
Karl Ljung
Department of Geology, Lund University, 22362 Lund, Sweden
Florian Adolphi
Department of Geology, Lund University, 22362 Lund, Sweden
University of Bern, Physics Institute, Climate and Environmental Physics, Sidlerstrasse 5, 3012 Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
Roger Flower
Department of Geography, University College London, London WC1E 6BT, UK
Rienk H. Smittenberg
Department of Geological Sciences and the Bolin Centre for Climate
Research, Stockholm University, 10691 Stockholm, Sweden
Malin E. Kylander
Department of Geological Sciences and the Bolin Centre for Climate
Research, Stockholm University, 10691 Stockholm, Sweden
Thomas F. Stocker
University of Bern, Physics Institute, Climate and Environmental Physics, Sidlerstrasse 5, 3012 Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
Sofia Holmgren
Department of Geology, Lund University, 22362 Lund, Sweden
Hui Jiang
Key Laboratory of Geographic Information Science, East China Normal
University, 200062 Shanghai, PR China
Raimund Muscheler
Department of Geology, Lund University, 22362 Lund, Sweden
Yamoah K. K. Afrifa
School of Geography, Earth and Environmental Sciences, University of
Birmingham, Edgbaston, B15 2TT, UK
Jayne E. Rattray
Department of Biological Sciences, University of Calgary, Calgary,
Canada
Nathalie Van der Putten
Earth and Climate Cluster, Faculty of Science, Vrije Universiteit
Amsterdam, Amsterdam, the Netherlands
Related authors
Florian Mekhaldi, Markus Czymzik, Florian Adolphi, Jesper Sjolte, Svante Björck, Ala Aldahan, Achim Brauer, Celia Martin-Puertas, Göran Possnert, and Raimund Muscheler
Clim. Past, 16, 1145–1157, https://doi.org/10.5194/cp-16-1145-2020, https://doi.org/10.5194/cp-16-1145-2020, 2020
Short summary
Short summary
Due to chronology uncertainties within paleoclimate archives, it is unclear how climate oscillations from different records relate to one another. By using radionuclides to synchronize Greenland ice cores and a German lake record over 11 000 years, we show that two oscillations observed in these records were not synchronous but terminated and began with the onset of a grand solar minimum. Both this and changes in ocean circulation could have played a role in the two climate oscillations.
W. Clymans, L. Barão, N. Van der Putten, S. Wastegård, G. Gísladóttir, S. Björck, B. Moine, E. Struyf, and D. J. Conley
Biogeosciences, 12, 3789–3804, https://doi.org/10.5194/bg-12-3789-2015, https://doi.org/10.5194/bg-12-3789-2015, 2015
Short summary
Short summary
Biogenic silica (BSi) is used as a proxy by soil scientists to identify biological effects on the Si cycle and by palaeoecologists to study environmental changes. We show the presence of tephra constituents can make measurements erroneous at low BSi concentrations, with repercussions for soil and palaeoecological studies. However, we also show that glass shards do not produce an identical dissolution signal to that of BSi, meaning they can be distinguished with appropriate experimental setups.
Christian Wirths, Thomas F. Stocker, and Johannes C. R. Sutter
The Cryosphere, 18, 4435–4462, https://doi.org/10.5194/tc-18-4435-2024, https://doi.org/10.5194/tc-18-4435-2024, 2024
Short summary
Short summary
We investigated the influence of several regional climate models on the Antarctic Ice Sheet when applied as forcing for the Parallel Ice Sheet Model (PISM). Our study shows that the choice of regional climate model forcing results in uncertainties of around a tenth of those in future sea level rise projections and also affects the extent of grounding line retreat in West Antarctica.
Tsai-Wen Lin, Tommaso Tesi, Jens Hefter, Hendrik Grotheer, Jutta Wollenburg, Florian Adolphi, Henning Bauch, Alessio Nogarotto, Juliane Müller, and Gesine Mollenhauer
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-60, https://doi.org/10.5194/cp-2024-60, 2024
Preprint under review for CP
Short summary
Short summary
In order to understand the mechanisms governing permafrost organic matter re-mobilization, we investigated organic matter composition during past intervals of rapid sea-level rise, of inland warming, and of dense sea-ice cover in the Laptev Sea. We find that sea-level rise resulted in wide-spread erosion and transport of permafrost materials to the ocean, but erosion is mitigated by regional dense sea ice cover. Factors like inland warming or floods increase permafrost mobilization locally.
Arnaud Nicolas, Gesine Mollenhauer, Johannes Lachner, Konstanze Stübner, Maylin Malter, Jutta Wollenburg, Hendrik Grotheer, and Florian Adolphi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1992, https://doi.org/10.5194/egusphere-2024-1992, 2024
Short summary
Short summary
We use the authigenic 10Be/9Be record of a Laptev Sea sediment core for the period 8–14 kyr BP and synchronize it with the 10Be records from absolutely dated ice cores. We employed a likelihood function to calculate the ΔR values. A benthic ΔR value of +345±60 14C years was estimated, which corresponds to a marine reservoir age of 848±90 14C years. This new ΔR value was used to refine the age-depth model for core PS2458-4, establishing it as a potential reference chronology for the Laptev Sea.
Markus Adloff, Aurich Jeltsch-Thömmes, Frerk Pöppelmeier, Thomas F. Stocker, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-1754, https://doi.org/10.5194/egusphere-2024-1754, 2024
Short summary
Short summary
We used an Earth system model to simulate how different processes changed the amount of carbon in the ocean and atmosphere over the last eight glacial cycles. We found that the effects of interactive marine sediments enlarge the carbon fluxes that result from these processes, especially in the ocean. Comparison with proxy data showed that no single process explains the global carbon cycle changes over glacial cycles, but individual processes can dominate regional and proxy-specific changes.
Markus Adloff, Frerk Pöppelmeier, Aurich Jeltsch-Thömmes, Thomas F. Stocker, and Fortunat Joos
Clim. Past, 20, 1233–1250, https://doi.org/10.5194/cp-20-1233-2024, https://doi.org/10.5194/cp-20-1233-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an ocean current that transports heat into the North Atlantic. Over the ice age cycles, AMOC strength and its spatial pattern varied. We tested the role of heat forcing for these AMOC changes by simulating the temperature changes of the last eight glacial cycles. In our model, AMOC shifts between four distinct circulation modes caused by heat and salt redistributions that reproduce reconstructed long-term North Atlantic SST changes.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Jakob Schwander, Thomas Franziskus Stocker, Remo Walther, Samuel Marending, Tobias Erhardt, Chantal Zeppenfeld, and Jürg Jost
EGUsphere, https://doi.org/10.5194/egusphere-2024-372, https://doi.org/10.5194/egusphere-2024-372, 2024
Short summary
Short summary
The RADIX optical dust logger is part of the exploratory 20-mm drilling system of the University of Bern. The logger is inserted into the borehole after drilling. The temperature, inclination and compass sensors were successfully tested, but not the dust sensor, because no RADIX hole reached down to the required bubble-free ice. In June 2023, we tested the logger with an adapter for the large East GRIP deep borehole. An excellent dust record was obtained for the Late Glacial/Holocene.
Minjie Zheng, Hongyu Liu, Florian Adolphi, Raimund Muscheler, Zhengyao Lu, Mousong Wu, and Nønne L. Prisle
Geosci. Model Dev., 16, 7037–7057, https://doi.org/10.5194/gmd-16-7037-2023, https://doi.org/10.5194/gmd-16-7037-2023, 2023
Short summary
Short summary
The radionuclides 7Be and 10Be are useful tracers for atmospheric transport studies. Here we use the GEOS-Chem to simulate 7Be and 10Be with different production rates: the default production rate in GEOS-Chem and two from the state-of-the-art beryllium production model. We demonstrate that reduced uncertainties in the production rates can enhance the utility of 7Be and 10Be as tracers for evaluating transport and scavenging processes in global models.
Chiara I. Paleari, Florian Mekhaldi, Tobias Erhardt, Minjie Zheng, Marcus Christl, Florian Adolphi, Maria Hörhold, and Raimund Muscheler
Clim. Past, 19, 2409–2422, https://doi.org/10.5194/cp-19-2409-2023, https://doi.org/10.5194/cp-19-2409-2023, 2023
Short summary
Short summary
In this study, we test the use of excess meltwater from continuous flow analysis from a firn core from Greenland for the measurement of 10Be for solar activity reconstructions. We show that the quality of results is similar to the measurements on clean firn, which opens the possibility to obtain continuous 10Be records without requiring large amounts of clean ice. Furthermore, we investigate the possibility of identifying solar storm signals in 10Be records from Greenland and Antarctica.
Tobias Erhardt, Camilla Marie Jensen, Florian Adolphi, Helle Astrid Kjær, Remi Dallmayr, Birthe Twarloh, Melanie Behrens, Motohiro Hirabayashi, Kaori Fukuda, Jun Ogata, François Burgay, Federico Scoto, Ilaria Crotti, Azzurra Spagnesi, Niccoló Maffezzoli, Delia Segato, Chiara Paleari, Florian Mekhaldi, Raimund Muscheler, Sophie Darfeuil, and Hubertus Fischer
Earth Syst. Sci. Data, 15, 5079–5091, https://doi.org/10.5194/essd-15-5079-2023, https://doi.org/10.5194/essd-15-5079-2023, 2023
Short summary
Short summary
The presented paper provides a 3.8 kyr long dataset of aerosol concentrations from the East Greenland Ice coring Project (EGRIP) ice core. The data consists of 1 mm depth-resolution profiles of calcium, sodium, ammonium, nitrate, and electrolytic conductivity as well as decadal averages of these profiles. Alongside the data a detailed description of the measurement setup as well as a discussion of the uncertainties are given.
Giulia Sinnl, Florian Adolphi, Marcus Christl, Kees C. Welten, Thomas Woodruff, Marc Caffee, Anders Svensson, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 19, 1153–1175, https://doi.org/10.5194/cp-19-1153-2023, https://doi.org/10.5194/cp-19-1153-2023, 2023
Short summary
Short summary
The record of past climate is preserved by several archives from different regions, such as ice cores from Greenland or Antarctica or speleothems from caves such as the Hulu Cave in China. In this study, these archives are aligned by taking advantage of the globally synchronous production of cosmogenic radionuclides. This produces a new perspective on the global climate in the period between 20 000 and 25 000 years ago.
Robert Mulvaney, Eric W. Wolff, Mackenzie M. Grieman, Helene H. Hoffmann, Jack D. Humby, Christoph Nehrbass-Ahles, Rachael H. Rhodes, Isobel F. Rowell, Frédéric Parrenin, Loïc Schmidely, Hubertus Fischer, Thomas F. Stocker, Marcus Christl, Raimund Muscheler, Amaelle Landais, and Frédéric Prié
Clim. Past, 19, 851–864, https://doi.org/10.5194/cp-19-851-2023, https://doi.org/10.5194/cp-19-851-2023, 2023
Short summary
Short summary
We present an age scale for a new ice core drilled at Skytrain Ice Rise, an ice rise facing the Ronne Ice Shelf in Antarctica. Various measurements in the ice and air phases are used to match the ice core to other Antarctic cores that have already been dated, and a new age scale is constructed. The 651 m ice core includes ice that is confidently dated to 117 000–126 000 years ago, in the last interglacial. Older ice is found deeper down, but there are flow disturbances in the deeper ice.
Hongyue Zhang, Jesper Sjolte, Zhengyao Lu, Jian Liu, Weiyi Sun, and Lingfeng Wan
Clim. Past, 19, 665–680, https://doi.org/10.5194/cp-19-665-2023, https://doi.org/10.5194/cp-19-665-2023, 2023
Short summary
Short summary
Based on proxy data and modeling, the Arctic temperature has an asymmetric cooling trend with more cooling over the Atlantic Arctic than the Pacific Arctic during the Holocene, dominated by orbital forcing. There is a seasonal difference in the asymmetric cooling trend, which is dominated by the DJF (December, January, and February) temperature variability. The Arctic dipole mode of sea level pressure and sea ice play a major role in asymmetric temperature changes.
Jakob Schwander, Thomas F. Stocker, Remo Walther, and Samuel Marending
The Cryosphere, 17, 1151–1164, https://doi.org/10.5194/tc-17-1151-2023, https://doi.org/10.5194/tc-17-1151-2023, 2023
Short summary
Short summary
RADIX (Rapid Access Drilling and Ice eXtraction) is a fast-access ice-drilling system for prospecting future deep-drilling sites on glaciers and polar ice sheets. It consists of a 40 mm rapid firn drill, a 20 mm deep drill and a logger. The maximum depth range of RADIX is 3100 m by design. The nominal drilling speed is on the order of 40 m h-1. The 15 mm diameter logger provides data on the hole inclination and direction and measures temperature and dust in the ice surrounding the borehole.
Erica Jaakkola, Antje Gärtner, Anna Maria Jönsson, Karl Ljung, Per-Ola Olsson, and Thomas Holst
Biogeosciences, 20, 803–826, https://doi.org/10.5194/bg-20-803-2023, https://doi.org/10.5194/bg-20-803-2023, 2023
Short summary
Short summary
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees are attacked, they increase their production of VOCs, attempting to kill the beetles. We provide new insights into how the Norway spruce act when infested and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Petter L. Hällberg, Frederik Schenk, Kweku A. Yamoah, Xueyuen Kuang, and Rienk H. Smittenberg
Clim. Past, 18, 1655–1674, https://doi.org/10.5194/cp-18-1655-2022, https://doi.org/10.5194/cp-18-1655-2022, 2022
Short summary
Short summary
Using climate model simulations, we find that SE Asian tropical climate was strongly seasonal under Late Glacial conditions. During Northern Hemisphere winters, it was highly arid in this region that is today humid year-round. The seasonal aridity was driven by orbital forcing and stronger East Asian winter monsoon. A breakdown of deep convection caused a reorganized Walker Circulation and a mean state resembling El Niño conditions.
Janica C. Bühler, Josefine Axelsson, Franziska A. Lechleitner, Jens Fohlmeister, Allegra N. LeGrande, Madhavan Midhun, Jesper Sjolte, Martin Werner, Kei Yoshimura, and Kira Rehfeld
Clim. Past, 18, 1625–1654, https://doi.org/10.5194/cp-18-1625-2022, https://doi.org/10.5194/cp-18-1625-2022, 2022
Short summary
Short summary
We collected and standardized the output of five isotope-enabled simulations for the last millennium and assess differences and similarities to records from a global speleothem database. Modeled isotope variations mostly arise from temperature differences. While lower-resolution speleothems do not capture extreme changes to the extent of models, they show higher variability on multi-decadal timescales. As no model excels in all comparisons, we advise a multi-model approach where possible.
Giulia Sinnl, Mai Winstrup, Tobias Erhardt, Eliza Cook, Camilla Marie Jensen, Anders Svensson, Bo Møllesøe Vinther, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 18, 1125–1150, https://doi.org/10.5194/cp-18-1125-2022, https://doi.org/10.5194/cp-18-1125-2022, 2022
Short summary
Short summary
A new Greenland ice-core timescale, covering the last 3800 years, was produced using the machine learning algorithm StratiCounter. We synchronized the ice cores using volcanic eruptions and wildfires. We compared the new timescale to the tree-ring timescale, finding good alignment both between the common signatures of volcanic eruptions and of solar activity. Our Greenlandic timescales is safe to use for the Late Holocene, provided one uses our uncertainty estimate.
Santos J. González-Rojí, Martina Messmer, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 15, 2859–2879, https://doi.org/10.5194/gmd-15-2859-2022, https://doi.org/10.5194/gmd-15-2859-2022, 2022
Short summary
Short summary
Different configurations of physics parameterizations of a regional climate model are tested over southern Peru at fine resolution. The most challenging regions compared to observational data are the slopes of the Andes. Model configurations for Europe and East Africa are not perfectly suitable for southern Peru. The experiment with the Stony Brook University microphysics scheme and the Grell–Freitas cumulus parameterization provides the most accurate results over Madre de Dios.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Jiamei Lin, Anders Svensson, Christine S. Hvidberg, Johannes Lohmann, Steffen Kristiansen, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Sune Olander Rasmussen, Eliza Cook, Helle Astrid Kjær, Bo M. Vinther, Hubertus Fischer, Thomas Stocker, Michael Sigl, Matthias Bigler, Mirko Severi, Rita Traversi, and Robert Mulvaney
Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, https://doi.org/10.5194/cp-18-485-2022, 2022
Short summary
Short summary
We employ acidity records from Greenland and Antarctic ice cores to estimate the emission strength, frequency and climatic forcing for large volcanic eruptions from the last half of the last glacial period. A total of 25 volcanic eruptions are found to be larger than any eruption in the last 2500 years, and we identify more eruptions than obtained from geological evidence. Towards the end of the glacial period, there is a notable increase in volcanic activity observed for Greenland.
Tanya J. R. Lippmann, Michiel H. in 't Zandt, Nathalie N. L. Van der Putten, Freek S. Busschers, Marc P. Hijma, Pieter van der Velden, Tim de Groot, Zicarlo van Aalderen, Ove H. Meisel, Caroline P. Slomp, Helge Niemann, Mike S. M. Jetten, Han A. J. Dolman, and Cornelia U. Welte
Biogeosciences, 18, 5491–5511, https://doi.org/10.5194/bg-18-5491-2021, https://doi.org/10.5194/bg-18-5491-2021, 2021
Short summary
Short summary
This paper is a step towards understanding the basal peat ecosystem beneath the North Sea. Plant remains followed parallel sequences. Methane concentrations were low with local exceptions, with the source likely being trapped pockets of millennia-old methane. Microbial community structure indicated the absence of a biofilter and was diverse across sites. Large carbon stores in the presence of methanogens and in the absence of methanotrophs have the potential to be metabolized into methane.
Frerk Pöppelmeier, David J. Janssen, Samuel L. Jaccard, and Thomas F. Stocker
Biogeosciences, 18, 5447–5463, https://doi.org/10.5194/bg-18-5447-2021, https://doi.org/10.5194/bg-18-5447-2021, 2021
Short summary
Short summary
Chromium (Cr) is a redox-sensitive element that holds promise as a tracer of ocean oxygenation and biological activity. We here implemented the oxidation states Cr(III) and Cr(VI) in the Bern3D model to investigate the processes that shape the global Cr distribution. We find a Cr ocean residence time of 5–8 kyr and that the benthic source dominates the tracer budget. Further, regional model–data mismatches suggest strong Cr removal in oxygen minimum zones and a spatially variable benthic source.
Loïc Schmidely, Christoph Nehrbass-Ahles, Jochen Schmitt, Juhyeong Han, Lucas Silva, Jinwha Shin, Fortunat Joos, Jérôme Chappellaz, Hubertus Fischer, and Thomas F. Stocker
Clim. Past, 17, 1627–1643, https://doi.org/10.5194/cp-17-1627-2021, https://doi.org/10.5194/cp-17-1627-2021, 2021
Short summary
Short summary
Using ancient gas trapped in polar glaciers, we reconstructed the atmospheric concentrations of methane and nitrous oxide over the penultimate deglaciation to study their response to major climate changes. We show this deglaciation to be characterized by modes of methane and nitrous oxide variability that are also found during the last deglaciation and glacial cycle.
Nathalie Van der Putten, Florian Adolphi, Anette Mellström, Jesper Sjolte, Cyriel Verbruggen, Jan-Berend Stuut, Tobias Erhardt, Yves Frenot, and Raimund Muscheler
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-69, https://doi.org/10.5194/cp-2021-69, 2021
Manuscript not accepted for further review
Short summary
Short summary
In recent decades, Southern Hemisphere westerlies (SHW) moved equator-ward during periods of low solar activity leading to increased winds/precipitation at 46° S, Indian Ocean. We present a terrestrial SHW proxy-record and find stronger SHW influence at Crozet, shortly after 2.8 ka BP, synchronous with a climate shift in the Northern Hemisphere, attributed to a major decline in solar activity. The bipolar response to solar forcing is supported by a climate model forced by solar irradiance only.
Martina Messmer, Santos J. González-Rojí, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 14, 2691–2711, https://doi.org/10.5194/gmd-14-2691-2021, https://doi.org/10.5194/gmd-14-2691-2021, 2021
Short summary
Short summary
Sensitivity experiments with the WRF model are run to find an optimal parameterization setup for precipitation around Mount Kenya at a scale that resolves convection (1 km). Precipitation is compared against many weather stations and gridded observational data sets. Both the temporal correlation of precipitation sums and pattern correlations show that fewer nests lead to a more constrained simulation with higher correlation. The Grell–Freitas cumulus scheme obtains the most accurate results.
Frerk Pöppelmeier, Jeemijn Scheen, Aurich Jeltsch-Thömmes, and Thomas F. Stocker
Clim. Past, 17, 615–632, https://doi.org/10.5194/cp-17-615-2021, https://doi.org/10.5194/cp-17-615-2021, 2021
Short summary
Short summary
The stability of the Atlantic Meridional Overturning Circulation (AMOC) critically depends on its mean state. We simulate the response of the AMOC to North Atlantic freshwater perturbations under different glacial boundary conditions. We find that a closed Bering Strait greatly increases the AMOC's sensitivity to freshwater hosing. Further, the shift from mono- to bistability strongly depends on the chosen boundary conditions, with weaker circulation states exhibiting more abrupt transitions.
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Leonie Peti, Kathryn E. Fitzsimmons, Jenni L. Hopkins, Andreas Nilsson, Toshiyuki Fujioka, David Fink, Charles Mifsud, Marcus Christl, Raimund Muscheler, and Paul C. Augustinus
Geochronology, 2, 367–410, https://doi.org/10.5194/gchron-2-367-2020, https://doi.org/10.5194/gchron-2-367-2020, 2020
Short summary
Short summary
Orakei Basin – a former maar lake in Auckland, New Zealand – provides an outstanding sediment record over the last ca. 130 000 years, but an age model is required to allow the reconstruction of climate change and volcanic eruptions contained in the sequence. To construct a relationship between depth in the sediment core and age of deposition, we combined tephrochronology, radiocarbon dating, luminescence dating, and the relative intensity of the paleomagnetic field in a Bayesian age–depth model.
Jinhwa Shin, Christoph Nehrbass-Ahles, Roberto Grilli, Jai Chowdhry Beeman, Frédéric Parrenin, Grégory Teste, Amaelle Landais, Loïc Schmidely, Lucas Silva, Jochen Schmitt, Bernhard Bereiter, Thomas F. Stocker, Hubertus Fischer, and Jérôme Chappellaz
Clim. Past, 16, 2203–2219, https://doi.org/10.5194/cp-16-2203-2020, https://doi.org/10.5194/cp-16-2203-2020, 2020
Short summary
Short summary
We reconstruct atmospheric CO2 from the EPICA Dome C ice core during Marine Isotope Stage 6 (185–135 ka) to understand carbon mechanisms under the different boundary conditions of the climate system. The amplitude of CO2 is highly determined by the Northern Hemisphere stadial duration. Carbon dioxide maxima show different lags with respect to the corresponding abrupt CH4 jumps, the latter reflecting rapid warming in the Northern Hemisphere.
Jeemijn Scheen and Thomas F. Stocker
Earth Syst. Dynam., 11, 925–951, https://doi.org/10.5194/esd-11-925-2020, https://doi.org/10.5194/esd-11-925-2020, 2020
Short summary
Short summary
Variability of sea surface temperatures (SST) in 1200–2000 CE is quite well-known, but the history of deep ocean temperatures is not. Forcing an ocean model with these SSTs, we simulate temperatures in the ocean interior. The circulation changes alter the amplitude and timing of deep ocean temperature fluctuations below 2 km depth, e.g. delaying the atmospheric signal by ~ 200 years in the deep Atlantic. Thus ocean circulation changes are shown to be as important as SST changes at these depths.
Jesper Sjolte, Florian Adolphi, Bo M. Vinther, Raimund Muscheler, Christophe Sturm, Martin Werner, and Gerrit Lohmann
Clim. Past, 16, 1737–1758, https://doi.org/10.5194/cp-16-1737-2020, https://doi.org/10.5194/cp-16-1737-2020, 2020
Short summary
Short summary
In this study we investigate seasonal climate reconstructions produced by matching climate model output to ice core and tree-ring data, and we evaluate the model–data reconstructions against meteorological observations. The reconstructions capture the main patterns of variability in sea level pressure and temperature in summer and winter. The performance of the reconstructions depends on seasonal climate variability itself, and definitions of seasons can be optimized to capture this variability.
Anders Svensson, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Thomas Blunier, Sune O. Rasmussen, Bo M. Vinther, Paul Vallelonga, Emilie Capron, Vasileios Gkinis, Eliza Cook, Helle Astrid Kjær, Raimund Muscheler, Sepp Kipfstuhl, Frank Wilhelms, Thomas F. Stocker, Hubertus Fischer, Florian Adolphi, Tobias Erhardt, Michael Sigl, Amaelle Landais, Frédéric Parrenin, Christo Buizert, Joseph R. McConnell, Mirko Severi, Robert Mulvaney, and Matthias Bigler
Clim. Past, 16, 1565–1580, https://doi.org/10.5194/cp-16-1565-2020, https://doi.org/10.5194/cp-16-1565-2020, 2020
Short summary
Short summary
We identify signatures of large bipolar volcanic eruptions in Greenland and Antarctic ice cores during the last glacial period, which allows for a precise temporal alignment of the ice cores. Thereby the exact timing of unexplained, abrupt climatic changes occurring during the last glacial period can be determined in a global context. The study thus provides a step towards a full understanding of elements of the climate system that may also play an important role in the future.
Ashley Dinauer, Florian Adolphi, and Fortunat Joos
Clim. Past, 16, 1159–1185, https://doi.org/10.5194/cp-16-1159-2020, https://doi.org/10.5194/cp-16-1159-2020, 2020
Short summary
Short summary
Despite intense focus on the ~ 190 ‰ drop in Δ14C across the deglacial
mystery interval, the specific mechanisms responsible for the apparent Δ14C excess in the glacial atmosphere have received considerably less attention. Sensitivity experiments with the computationally efficient Bern3D Earth system model suggest that our inability to reproduce the elevated Δ14C levels during the last glacial may reflect an underestimation of 14C production and/or a biased-high reconstruction of Δ14C.
Florian Mekhaldi, Markus Czymzik, Florian Adolphi, Jesper Sjolte, Svante Björck, Ala Aldahan, Achim Brauer, Celia Martin-Puertas, Göran Possnert, and Raimund Muscheler
Clim. Past, 16, 1145–1157, https://doi.org/10.5194/cp-16-1145-2020, https://doi.org/10.5194/cp-16-1145-2020, 2020
Short summary
Short summary
Due to chronology uncertainties within paleoclimate archives, it is unclear how climate oscillations from different records relate to one another. By using radionuclides to synchronize Greenland ice cores and a German lake record over 11 000 years, we show that two oscillations observed in these records were not synchronous but terminated and began with the onset of a grand solar minimum. Both this and changes in ocean circulation could have played a role in the two climate oscillations.
Laurie M. Charrieau, Karl Ljung, Frederik Schenk, Ute Daewel, Emma Kritzberg, and Helena L. Filipsson
Biogeosciences, 16, 3835–3852, https://doi.org/10.5194/bg-16-3835-2019, https://doi.org/10.5194/bg-16-3835-2019, 2019
Short summary
Short summary
We reconstructed environmental changes in the Öresund during the last 200 years, using foraminifera (microfossils), sediment, and climate data. Five zones were identified, reflecting oxygen, salinity, food content, and pollution levels for each period. The largest changes occurred ~ 1950, towards stronger currents. The foraminifera responded quickly (< 10 years) to the changes. Moreover, they did not rebound when the system returned to the previous pattern, but displayed a new equilibrium state.
Hera Guðlaugsdóttir, Jesper Sjolte, Árný Erla Sveinbjörnsdóttir, and Hans Christian Steen-Larsen
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-99, https://doi.org/10.5194/cp-2019-99, 2019
Revised manuscript not accepted
Short summary
Short summary
In the North Atlantic four modes of climate variability dominate weather. Here we assess how these modes are affected after both equatorial and high latitude eruptions, known to influence temperature in the atmosphere. Main results show that the modes associated with extreme weather events tend to follow high latitude eruptions as opposed to equatorial eruptions. These modes have also become more frequent as a result of anthropogenic warming, providing an insight into the dominating mechanism.
Andreas Born, Michael A. Imhof, and Thomas F. Stocker
The Cryosphere, 13, 1529–1546, https://doi.org/10.5194/tc-13-1529-2019, https://doi.org/10.5194/tc-13-1529-2019, 2019
Short summary
Short summary
We present a new numerical model to simulate the surface energy and mass balance of snow and ice. While similar models exist and cover a wide range of complexity from empirical models to those that simulate the microscopic structure of individual snow grains, we aim to strike a balance between physical completeness and numerical efficiency. This new model will enable physically accurate simulations over timescales of hundreds of millennia, a key requirement of investigating ice age cycles.
Tobias Erhardt, Emilie Capron, Sune Olander Rasmussen, Simon Schüpbach, Matthias Bigler, Florian Adolphi, and Hubertus Fischer
Clim. Past, 15, 811–825, https://doi.org/10.5194/cp-15-811-2019, https://doi.org/10.5194/cp-15-811-2019, 2019
Short summary
Short summary
The cause of the rapid warming events documented in proxy records across the Northern Hemisphere during the last glacial has been a long-standing puzzle in paleo-climate research. Here, we use high-resolution ice-core data from to cores in Greenland to investigate the progression during the onset of these events on multi-annual timescales to test their plausible triggers. We show that atmospheric circulation changes preceded the warming in Greenland and the collapse of the sea ice by a decade.
François Klein, Nerilie J. Abram, Mark A. J. Curran, Hugues Goosse, Sentia Goursaud, Valérie Masson-Delmotte, Andrew Moy, Raphael Neukom, Anaïs Orsi, Jesper Sjolte, Nathan Steiger, Barbara Stenni, and Martin Werner
Clim. Past, 15, 661–684, https://doi.org/10.5194/cp-15-661-2019, https://doi.org/10.5194/cp-15-661-2019, 2019
Short summary
Short summary
Antarctic temperature changes over the past millennia have been reconstructed from isotope records in ice cores in several studies. However, the link between both variables is complex. Here, we investigate the extent to which this affects the robustness of temperature reconstructions using pseudoproxy and data assimilation experiments. We show that the reconstruction skill is limited, especially at the regional scale, due to a weak and nonstationary covariance between δ18O and temperature.
Florian Adolphi, Christopher Bronk Ramsey, Tobias Erhardt, R. Lawrence Edwards, Hai Cheng, Chris S. M. Turney, Alan Cooper, Anders Svensson, Sune O. Rasmussen, Hubertus Fischer, and Raimund Muscheler
Clim. Past, 14, 1755–1781, https://doi.org/10.5194/cp-14-1755-2018, https://doi.org/10.5194/cp-14-1755-2018, 2018
Short summary
Short summary
The last glacial period was characterized by a number of rapid climate changes seen, for example, as abrupt warmings in Greenland and changes in monsoon rainfall intensity. However, due to chronological uncertainties it is challenging to know how tightly coupled these changes were. Here we exploit cosmogenic signals caused by changes in the Sun and Earth magnetic fields to link different climate archives and improve our understanding of the dynamics of abrupt climate change.
Christoph C. Raible, Martina Messmer, Flavio Lehner, Thomas F. Stocker, and Richard Blender
Clim. Past, 14, 1499–1514, https://doi.org/10.5194/cp-14-1499-2018, https://doi.org/10.5194/cp-14-1499-2018, 2018
Short summary
Short summary
Extratropical cyclones in winter and their characteristics are investigated in depth for the Atlantic European region from 850 to 2100 CE. During the Common Era, cyclone characteristics show pronounced variations mainly caused by internal variability of the coupled climate system. When anthropogenic forcing becomes dominant, a strong increase of extreme cyclone-related precipitation is found due to thermodynamics, though dynamical processes can play an important role during the last millennium.
Andreas Plach, Kerim H. Nisancioglu, Sébastien Le clec'h, Andreas Born, Petra M. Langebroek, Chuncheng Guo, Michael Imhof, and Thomas F. Stocker
Clim. Past, 14, 1463–1485, https://doi.org/10.5194/cp-14-1463-2018, https://doi.org/10.5194/cp-14-1463-2018, 2018
Short summary
Short summary
The Greenland ice sheet is a huge frozen water reservoir which is crucial for predictions of sea level in a warming future climate. Therefore, computer models are needed to reliably simulate the melt of ice sheets. In this study, we use climate model simulations of the last period where it was warmer than today in Greenland. We test different melt models under these climatic conditions and show that the melt models show very different results under these warmer conditions.
Jesper Sjolte, Christophe Sturm, Florian Adolphi, Bo M. Vinther, Martin Werner, Gerrit Lohmann, and Raimund Muscheler
Clim. Past, 14, 1179–1194, https://doi.org/10.5194/cp-14-1179-2018, https://doi.org/10.5194/cp-14-1179-2018, 2018
Short summary
Short summary
Tropical volcanic eruptions and variations in solar activity have been suggested to influence the strength of westerly winds across the North Atlantic. We use Greenland ice core records together with a climate model simulation, and find stronger westerly winds for five winters following tropical volcanic eruptions. We see a delayed response to solar activity of 5 years, and the response to solar minima corresponds well to the cooling pattern during the period known as the Little Ice Age.
Minjie Zheng, Jesper Sjolte, Florian Adolphi, Bo Møllesøe Vinther, Hans Christian Steen-Larsen, Trevor James Popp, and Raimund Muscheler
Clim. Past, 14, 1067–1078, https://doi.org/10.5194/cp-14-1067-2018, https://doi.org/10.5194/cp-14-1067-2018, 2018
Short summary
Short summary
We show the seasonal δ18O data from the NEEM site in northwestern Greenland over the last 150 years. We found that the NEEM summer δ18O signal correlates well with summer temperature in western coastal Greenland, while the NEEM winter δ18O signal correlates well with sea ice concentration in Baffin Bay. In contrast with the winter δ18O data from central/southern Greenland, we find no linkage of NEEM winter δ18O to winter NAO.
Markus Czymzik, Raimund Muscheler, Florian Adolphi, Florian Mekhaldi, Nadine Dräger, Florian Ott, Michał Słowinski, Mirosław Błaszkiewicz, Ala Aldahan, Göran Possnert, and Achim Brauer
Clim. Past, 14, 687–696, https://doi.org/10.5194/cp-14-687-2018, https://doi.org/10.5194/cp-14-687-2018, 2018
Short summary
Short summary
Our results provide a proof of concept for facilitating 10Be in varved lake sediments as a novel synchronization tool required for investigating leads and lags of proxy responses to climate variability. They also point to some limitations of 10Be in these archives mainly connected to in-lake sediment resuspension processes.
Ernest Chi Fru, Stephanos Kilias, Magnus Ivarsson, Jayne E. Rattray, Katerina Gkika, Iain McDonald, Qian He, and Curt Broman
Solid Earth, 9, 573–598, https://doi.org/10.5194/se-9-573-2018, https://doi.org/10.5194/se-9-573-2018, 2018
Short summary
Short summary
Banded iron formations (BIFs) are chemical sediments last seen in the marine sedimentary record ca. 600 million years ago. Here, we report on the formation mechanisms of a modern BIF analog in the Cape Vani sedimentary basin (CVSB) on Milos Island, Greece, demonstrating that rare environmental redox conditions, coupled to submarine hydrothermal activity and microbial processes, are required for these types of rocks to form in the modern marine biosphere.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Peter Köhler, Christoph Nehrbass-Ahles, Jochen Schmitt, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 9, 363–387, https://doi.org/10.5194/essd-9-363-2017, https://doi.org/10.5194/essd-9-363-2017, 2017
Short summary
Short summary
We document our best available data compilation of published ice core records of the greenhouse gases CO2, CH4, and N2O and recent measurements on firn air and atmospheric samples covering the time window from 156 000 years BP to the beginning of the year 2016 CE. A smoothing spline method is applied to translate the discrete and irregularly spaced data points into continuous time series. The radiative forcing for each greenhouse gas is computed using well-established, simple formulations.
Kathrin M. Keller, Sebastian Lienert, Anil Bozbiyik, Thomas F. Stocker, Olga V. Churakova (Sidorova), David C. Frank, Stefan Klesse, Charles D. Koven, Markus Leuenberger, William J. Riley, Matthias Saurer, Rolf Siegwolf, Rosemarie B. Weigt, and Fortunat Joos
Biogeosciences, 14, 2641–2673, https://doi.org/10.5194/bg-14-2641-2017, https://doi.org/10.5194/bg-14-2641-2017, 2017
Anne-Katrine Faber, Bo Møllesøe Vinther, Jesper Sjolte, and Rasmus Anker Pedersen
Atmos. Chem. Phys., 17, 5865–5876, https://doi.org/10.5194/acp-17-5865-2017, https://doi.org/10.5194/acp-17-5865-2017, 2017
Short summary
Short summary
The recent decades loss of Arctic sea ice provide an interesting opportunity to study the impact of sea ice changes on the isotopic composition of Arctic precipitation. Using a climate model that can simulate water isotopes, we find that reduced sea ice extent yields more enriched isotope values while increased sea ice extent yields more
depleted isotope values. Results also show that the spatial distribution of the sea ice extent are important.
Stefan Muthers, Christoph C. Raible, Eugene Rozanov, and Thomas F. Stocker
Earth Syst. Dynam., 7, 877–892, https://doi.org/10.5194/esd-7-877-2016, https://doi.org/10.5194/esd-7-877-2016, 2016
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important oceanic circulation system which transports large amounts of heat from the tropics to the north. This circulation is strengthened when less solar irradiance reaches the Earth, e.g. due to reduced solar activity or geoengineering techniques. In climate models, however, this response is overestimated when chemistry–climate interactions and the following shift in the atmospheric circulation systems are not considered.
Niklaus Merz, Andreas Born, Christoph C. Raible, and Thomas F. Stocker
Clim. Past, 12, 2011–2031, https://doi.org/10.5194/cp-12-2011-2016, https://doi.org/10.5194/cp-12-2011-2016, 2016
Short summary
Short summary
The last (Eemian) interglacial is studied with a global climate model focusing on Greenland and the adjacent high latitudes. A set of model experiments demonstrates the crucial role of changes in sea ice and sea surface temperatures for the magnitude of Eemian atmospheric warming. Greenland temperatures are found highly sensitive to sea ice changes in the Nordic Seas but rather insensitive to changes in the Labrador Sea. This behavior has important implications for Greenland ice core signals.
Olivier Eicher, Matthias Baumgartner, Adrian Schilt, Jochen Schmitt, Jakob Schwander, Thomas F. Stocker, and Hubertus Fischer
Clim. Past, 12, 1979–1993, https://doi.org/10.5194/cp-12-1979-2016, https://doi.org/10.5194/cp-12-1979-2016, 2016
Short summary
Short summary
A new high-resolution total air content record over the NGRIP ice core, spanning 0.3–120 kyr is presented. In agreement with Antarctic ice cores, we find a strong local insolation signature but also 3–5 % decreases in total air content as a local response to Dansgaard–Oeschger events, which can only partly be explained by changes in surface pressure and temperature. Accordingly, a dynamic response of firnification to rapid climate changes on the Greenland ice sheet must have occurred.
Kweku Afrifa Yamoah, Nolwenn Callac, Ernest Chi Fru, Barbara Wohlfarth, Alan Wiech, Akkaneewut Chabangborn, and Rienk H. Smittenberg
Biogeosciences, 13, 3971–3980, https://doi.org/10.5194/bg-13-3971-2016, https://doi.org/10.5194/bg-13-3971-2016, 2016
Short summary
Short summary
Predicting the effects of changing climate on microbial community shifts on longer timescales can be challenging. This study exploits the power of combining organic geochemistry, molecular microbial ecology, and geochemistry to unravel trends in microbial community induced by climatic variability. Our results show that climate-induced variability on decadal timescales can trigger changes in both lake trophic status and phytoplankton communities.
Basil Neff, Andreas Born, and Thomas F. Stocker
Earth Syst. Dynam., 7, 397–418, https://doi.org/10.5194/esd-7-397-2016, https://doi.org/10.5194/esd-7-397-2016, 2016
Markus Czymzik, Raimund Muscheler, and Achim Brauer
Clim. Past, 12, 799–805, https://doi.org/10.5194/cp-12-799-2016, https://doi.org/10.5194/cp-12-799-2016, 2016
Short summary
Short summary
Integrating discharge data of the River Ammer back to 1926 and a 5500-year flood layer record from an annually laminated sediment core of the downstream Ammersee allowed investigating changes in the frequency of major floods in Central Europe on interannual to multi-centennial timescales. Significant correlations between flood frequency variations in both archives and changes in the activity of the Sun suggest a solar influence on the frequency of these hydrometeorological extremes.
Michael Sigl, Tyler J. Fudge, Mai Winstrup, Jihong Cole-Dai, David Ferris, Joseph R. McConnell, Ken C. Taylor, Kees C. Welten, Thomas E. Woodruff, Florian Adolphi, Marion Bisiaux, Edward J. Brook, Christo Buizert, Marc W. Caffee, Nelia W. Dunbar, Ross Edwards, Lei Geng, Nels Iverson, Bess Koffman, Lawrence Layman, Olivia J. Maselli, Kenneth McGwire, Raimund Muscheler, Kunihiko Nishiizumi, Daniel R. Pasteris, Rachael H. Rhodes, and Todd A. Sowers
Clim. Past, 12, 769–786, https://doi.org/10.5194/cp-12-769-2016, https://doi.org/10.5194/cp-12-769-2016, 2016
Short summary
Short summary
Here we present a chronology (WD2014) for the upper part (0–2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide ice core, which is based on layer counting of distinctive annual cycles preserved in the elemental, chemical and electrical conductivity records. We validated the chronology by comparing it to independent high-accuracy, absolutely dated chronologies. Given its demonstrated high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere.
F. Adolphi and R. Muscheler
Clim. Past, 12, 15–30, https://doi.org/10.5194/cp-12-15-2016, https://doi.org/10.5194/cp-12-15-2016, 2016
Short summary
Short summary
Here we employ common variations in tree-ring 14C and Greenland ice core 10Be records to synchronize the Greenland ice core (GICC05) and the radiocarbon (IntCal13) timescale over the Holocene. We propose a transfer function between both timescales that allows continuous comparisons between radiocarbon dated and ice core climate records at unprecedented chronological precision.
F. Lehner, F. Joos, C. C. Raible, J. Mignot, A. Born, K. M. Keller, and T. F. Stocker
Earth Syst. Dynam., 6, 411–434, https://doi.org/10.5194/esd-6-411-2015, https://doi.org/10.5194/esd-6-411-2015, 2015
Short summary
Short summary
We present the first last-millennium simulation with the Community Earth System Model (CESM) including an interactive carbon cycle in both ocean and land component. Volcanic eruptions emerge as the strongest forcing factor for the preindustrial climate and carbon cycle. We estimate the climate-carbon-cycle feedback in CESM to be at the lower bounds of empirical estimates (1.3ppm/°C). The time of emergence for interannual global land and ocean carbon uptake rates are 1947 and 1877, respectively.
W. Clymans, L. Barão, N. Van der Putten, S. Wastegård, G. Gísladóttir, S. Björck, B. Moine, E. Struyf, and D. J. Conley
Biogeosciences, 12, 3789–3804, https://doi.org/10.5194/bg-12-3789-2015, https://doi.org/10.5194/bg-12-3789-2015, 2015
Short summary
Short summary
Biogenic silica (BSi) is used as a proxy by soil scientists to identify biological effects on the Si cycle and by palaeoecologists to study environmental changes. We show the presence of tephra constituents can make measurements erroneous at low BSi concentrations, with repercussions for soil and palaeoecological studies. However, we also show that glass shards do not produce an identical dissolution signal to that of BSi, meaning they can be distinguished with appropriate experimental setups.
N. Merz, A. Born, C. C. Raible, H. Fischer, and T. F. Stocker
Clim. Past, 10, 1221–1238, https://doi.org/10.5194/cp-10-1221-2014, https://doi.org/10.5194/cp-10-1221-2014, 2014
M. Baumgartner, P. Kindler, O. Eicher, G. Floch, A. Schilt, J. Schwander, R. Spahni, E. Capron, J. Chappellaz, M. Leuenberger, H. Fischer, and T. F. Stocker
Clim. Past, 10, 903–920, https://doi.org/10.5194/cp-10-903-2014, https://doi.org/10.5194/cp-10-903-2014, 2014
B. Bereiter, H. Fischer, J. Schwander, and T. F. Stocker
The Cryosphere, 8, 245–256, https://doi.org/10.5194/tc-8-245-2014, https://doi.org/10.5194/tc-8-245-2014, 2014
S. Schüpbach, U. Federer, P. R. Kaufmann, S. Albani, C. Barbante, T. F. Stocker, and H. Fischer
Clim. Past, 9, 2789–2807, https://doi.org/10.5194/cp-9-2789-2013, https://doi.org/10.5194/cp-9-2789-2013, 2013
N. Merz, C. C. Raible, H. Fischer, V. Varma, M. Prange, and T. F. Stocker
Clim. Past, 9, 2433–2450, https://doi.org/10.5194/cp-9-2433-2013, https://doi.org/10.5194/cp-9-2433-2013, 2013
H. C. Steen-Larsen, S. J. Johnsen, V. Masson-Delmotte, B. Stenni, C. Risi, H. Sodemann, D. Balslev-Clausen, T. Blunier, D. Dahl-Jensen, M. D. Ellehøj, S. Falourd, A. Grindsted, V. Gkinis, J. Jouzel, T. Popp, S. Sheldon, S. B. Simonsen, J. Sjolte, J. P. Steffensen, P. Sperlich, A. E. Sveinbjörnsdóttir, B. M. Vinther, and J. W. C. White
Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, https://doi.org/10.5194/acp-13-4815-2013, 2013
A. Born, T. F. Stocker, and A. B. Sandø
Ocean Sci. Discuss., https://doi.org/10.5194/osd-10-555-2013, https://doi.org/10.5194/osd-10-555-2013, 2013
Revised manuscript not accepted
B. Bereiter, T. F. Stocker, and H. Fischer
Atmos. Meas. Tech., 6, 251–262, https://doi.org/10.5194/amt-6-251-2013, https://doi.org/10.5194/amt-6-251-2013, 2013
Related subject area
Subject: Teleconnections | Archive: Terrestrial Archives | Timescale: Millenial/D-O
Abrupt warming and alpine glacial retreat through the last deglaciation in Alaska interrupted by modest Northern Hemisphere cooling
Aridity synthesis for eight selected key regions of the global climate system during the last 60 000 years
NALPS19: sub-orbital-scale climate variability recorded in northern Alpine speleothems during the last glacial period
Annual proxy data from Lago Grande di Monticchio (southern Italy) between 76 and 112 ka: new chronological constraints and insights on abrupt climatic oscillations
NALPS: a precisely dated European climate record 120–60 ka
Joseph P. Tulenko, Jason P. Briner, Nicolás E. Young, and Joerg M. Schaefer
Clim. Past, 20, 625–636, https://doi.org/10.5194/cp-20-625-2024, https://doi.org/10.5194/cp-20-625-2024, 2024
Short summary
Short summary
We take advantage of a site in Alaska – where climate records are limited and a former alpine glacier deposited a dense sequence of moraines spanning the full deglaciation – to construct a proxy summer temperature record. Building on age constraints for moraines in the valley, we reconstruct paleo-glacier surfaces and estimate the summer temperatures (relative to the Little Ice Age) for each moraine. The record suggests that the influence of North Atlantic climate forcing extended to Alaska.
Florian Fuhrmann, Benedikt Diensberg, Xun Gong, Gerrit Lohmann, and Frank Sirocko
Clim. Past, 16, 2221–2238, https://doi.org/10.5194/cp-16-2221-2020, https://doi.org/10.5194/cp-16-2221-2020, 2020
Short summary
Short summary
Proxy data of sediment cores, speleothem, pollen and isotope data were used to reconstruct past aridity of eight regions of the world over the last 60 000 years. These regions show humid conditions during the early MIS3 (60 to 45 ka). Also the early Holocene (14 to 6 ka) was humid throughout the regions. In contrast, MIS2 and the LGM were arid in Northern Nemisphere records. On- and offsets of aridity/humidity differ between the regions. All this is in good agreement with recent model results.
Gina E. Moseley, Christoph Spötl, Susanne Brandstätter, Tobias Erhardt, Marc Luetscher, and R. Lawrence Edwards
Clim. Past, 16, 29–50, https://doi.org/10.5194/cp-16-29-2020, https://doi.org/10.5194/cp-16-29-2020, 2020
Short summary
Short summary
Abrupt climate change during the last ice age can be used to provide important insights into the timescales on which the climate is capable of changing and the mechanisms that drive those changes. In this study, we construct climate records for the period 60 to 120 ka using stalagmites that formed in caves along the northern rim of the European Alps and find good agreement with the timing of climate changes in Greenland and the Asian monsoon.
C. Martin-Puertas, A. Brauer, S. Wulf, F. Ott, S. Lauterbach, and P. Dulski
Clim. Past, 10, 2099–2114, https://doi.org/10.5194/cp-10-2099-2014, https://doi.org/10.5194/cp-10-2099-2014, 2014
R. Boch, H. Cheng, C. Spötl, R. L. Edwards, X. Wang, and Ph. Häuselmann
Clim. Past, 7, 1247–1259, https://doi.org/10.5194/cp-7-1247-2011, https://doi.org/10.5194/cp-7-1247-2011, 2011
Cited articles
Ahn, J. and Brook, E. J.: Siple Dome ice reveals two modes of millennial CO2
change during the last ice age, Nat. Commun., 5, 3723, https://doi.org/10.1038/ncomms4723, 2014.
Andersen, K. K., Svensson, A., Johnsen, S., Rasmussen, S. O., Bigler, M.,
Röthlisberger, R., Ruth, U., Siggaard-Andersen, M. L., Steffensen, J.
P., Dahl-Jensen, D., Vinther, B. M., and Clausen, H. B.: The Greenland Ice
Core Chronology 2005, 15–42 ka. Part 1: Constructing the time scale,
Quaternary Sci. Rev. 25, 3246–3257,
https://doi.org/10.1016/j.quascirev.2006.08.002, 2006.
Anker Björk, A., Björck, S., Cronholm, A., Haile, J., Ljung, K., and
Porter, C.: Possible Late Pleistocene volcanic activity on Nightingale
Island, South Atlantic ocean, based on geoelectrical resistivity
measurements, sediment corings and 14C dating, GFF, 133, 1–7, https://doi.org/10.1080/11035897.2011.618275, 2011.
Bard, E. and Rickaby, R. E. M.: Migration of the subtropical front as a
modulator of glacial climate, Nature, 460, 380–383,
https://doi.org/10.1038/nature08189, 2009.
Barker, S. and Diz, P.: Timing of the descent into the last Ice Age
determined by the bipolar seesaw, Paleoceanography, 29, 489–507,
https://doi.org/10.1002/2014PA002623, 2014.
Battarbee, R. W. and Keen, M. J.: The use of electronically counted
microspheres in absolute diatom analysis, Limnol. Oceanogr., 27, 184–188,
1982.
Battarbee, R. W., Jones, V. J., Flower, R. J., Cameron, N. G., Bennion, H.,
Carvalho, L., and Juggins, S.: Diatoms, in: Tracking environmental change using lake sediments, edited by: Smol, J. P., Birks, H. J. B., and Last, W. M., volume 3: Terrestrial, algal, and siliceous indicators, 155–202, Kluwer, Dordrecht, 2001.
Berglund, B. E. and Ralska-Jasiewiczowa, M.: Pollen analysis and pollen
diagrams, in: Handbook of palaeoecology and palaeohydrology, edited by:
Berglund, B. E., 455–484, John Wiley and sons, Chichester, 1986.
Broecker, W. S.: Paleocean circulation during the Last Deglaciation: A
bipolar seesaw?, Paleoceanography, 13, 119–121, https://doi.org/10.1029/97PA0370,
1998.
Bronk Ramsey, C.: Radiocarbon Calibration and Analysis of Stratigraphy: The
OxCal Program, Radiocarbon, 37, 425–430, https://doi.org/10.1017/S0033822200030903,
1995.
Bronk Ramsey, C.: Deposition models for chronological records, Quaternary
Sci. Rev., 27, 42–60, 2008.
Bronk Ramsey, C.: Bayesian Analysis of Radiocarbon Dates, Radiocarbon, 51,
337–360, https://doi.org/10.1017/S0033822200033865, 2009a.
Bronk Ramsey, C.: Dealing with Outliers and Offsets in Radiocarbon Dating,
Radiocarbon, 51, 1023–1045, https://doi.org/10.1017/S0033822200034093, 2009b.
Caut, S., Angulo, E., Pisanu, B., Ruffino, L., Faulquier, L., Lorvelec, O.,
Chapuis, J-L., Pascal, M., Vidal, E., and Courchamp, F.: Seabird modulation of
isotopic nitrogen on islands, PLoS ONE, 7, e39125, https://doi.org/10.1371/journal.pone.0039125, 2012.
Ceppi, P., Hwang, Y.-T., Liu, X., Frierson, D. M. W., and Hartmann, D. L.:
The relationship between the ITCZ and the Southern Hemispheric eddy-driven
jet, J. Geophys. Res.-Atmos., 118, 5136–5146, https://doi.org/10.1002/jgrd.50461, 2013.
Chase, B. M. and Meadows, M. E.: Late Quaternary dynamics of southern
Africa's winter rainfall zone, Earth Sci. Rev., 84, 103–138,
https://doi.org/10.1016/j.earscirev.2007.06.002, 2007.
Chiang, J. C. H., Lee, S.-Y., Putnam, A. E., and Wang, X.: South Pacific
Split Jet, ITCZ shifts, and atmospheric North–South linkages during abrupt
climate changes of the last glacial period, Earth Planet. Sc. Lett., 406,
233–246, https://doi.org/10.1016/j.epsl.2014.09.012, 2014.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J.,
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P.,
Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman,
P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri,
M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L.,
Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis Project,
Q. J. Roy. Metor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Conley, D. and Schelske, C. L.: Biogenic silica, in: Tracking environmental
change using lake sediments; terrestrial, algal, and siliceous
indicators, vol. 3, Kluwer Academic Publishers, Dordrecht, 2001.
De Jonge, C., Hopmans, E. C., Zell, C. I., Kim, J.-H., Schouten, S., and
Sinninghe Damsté, J. S.: Occurrence and abundance of 6-methyl branched
glycerol dialkyl glycerol tetraethers in soils: Implications for
palaeoclimate reconstruction, Geochim. Cosmochim. Ac., 141, 97–112,
https://doi.org/10.1016/j.gca.2014.06.013, 2014.
EPICA Community Members: One-to-one coupling of glacial climate variability
in Greenland and Antarctica, Nature, 444, 195–198, https://doi.org/10.1038/nature05301, 2006.
Fogwill, C. J., Phipps, S. J., Turney, C. S. M., and Golledge, N. R.:
Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet
meltwater input, Earth. Future, 3, 317–329, https://doi.org/10.1002/2015EF000306, 2015.
Gersonde, R., Crosta, X., Abelmann, A., and Armand, L.: Sea-surface
temperature and sea ice distribution of the Southern Ocean at the EPILOG
Last Glacial Maximum – a circum-Antarctic view based on siliceous
microfossil records, Quaternary Sci. Rev., 24, 869–896,
https://doi.org/10.1016/j.quascirev.2004.07.015, 2005.
Gottschalk, J., Skinner, L. C., Misra, S., Waelbroeck, C., Menviel, L., and
Timmermann, A.: Abrupt changes in the southern extent of North Atlantic Deep
Water during Dansgaard–Oeschger events, Nat. Geosci., 8, 950–954,
https://doi.org/10.1038/ngeo2558, 2015.
Grasshoff, P., Ehrhardt, M., and Kremling, K.: Methods of seawater analysis. Verlag Chemie, 314 pp, 1983.
Hafsten, U.: Pleistocene development of vegetation and climate on Tristan da Cunha and Gough Island. Årbok för Universitet i Bergen, Mat-Naturv. Serie, 20, 1–48, 1960
Helfert, M., Mecking, O., Lang, F., and von Kaenel, H.-M.: Neue Perspektiven
für die Keramikanalytik. Zur Evaluation der portablen energiedispersiven
Röntgenfluoreszenzanalyse (P-ED-RFA) als neues Verfahren für die
geochemische Analyse von Keramik in der Archäologie, Frankfurter
elektronische Rundschau zur Altertumskunde, 14, 1–30, 2011.
Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T.
P., Heaton, T. J., Palmer, J. G., Reimer, P. J., Reimer, R. W., Turney, C.
S. M., and Zimmerman, S. R. H.: SHCal13 Southern Hemisphere Calibration,
0–50 000 Years cal BP, Radiocarbon, 55, 1889–1903, 2013.
Johnsen, S. J., Dahl-Jensen, D., Dansgaard, W., and Gundestrup, N.: Greenland
palaeotemperatures derived from GRIP bore hole temperature and ice core
isotope profiles, Tellus B, 47, 624–629,
https://doi.org/10.3402/tellusb.v47i5.16077, 1995.
Juggins, S.: User guide. Software for ecological and palaeoecological data
analysis and visualisation, Newcastle University, Newcastle upon Tyne, UK,
2007.
Kaiser, J., Lamy, F., and Hebbeln, D.: A 70-kyr sea surface temperature
record off southern Chile (Ocean Drilling Program Site 1233),
Paleoceanography, 20, PA4009, https://doi.org/10.1029/2005PA001146, 2005.
Krammer, K. and Lange-Bertalot, H.: Süsswasserflora von Mitteleuropa
Bacillariophyceae Teil 1–4, Gustav Fisher, Stuttgart, 1986.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene, P. Natl. Acad. Sci. USA,
111, 15296–15303, https://doi.org/10.1073/pnas.1411762111, 2014.
Lamy, F., Kilian, R., Arz, H. W., Francois, J.-P., Kaiser, J., Prange, M.,
and Steinke, T.: Holocene changes in the position and intensity of the
southern westerly wind belt, Nat. Geosci., 3, 695–699, https://doi.org/10.1038/ngeo959, 2010.
Lamy, F., Gersonde, R., Winckler, G., Esper, O., Jaeschke, A., Kuhn, G.,
Ullermann, J., Martinez-Garcia, A., Lambert, F., and Kilian, R.: Increased
Dust Deposition in the Pacific Southern Ocean During Glacial Periods,
Science, 343, 403–407, https://doi.org/10.1126/science.1245424, 2014.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335,
2004.
Le Cohu, R. and Maillard, R.: Les diatomées monoraphidées des
îles Kerguelen, Annal. Limnol., 19, 143–167, 1983.
Ljung, K. and Björck, S.: Holocene climate and vegetation dynamics on
Nightingale Island, South Atlantic–an apparent interglacial bipolar seesaw
in action, Quaternary Sci. Rev., 26, 3150–3166,
https://doi.org/10.1016/j.quascirev.2007.08.003, 2007.
Ljung, K., Holmgren, S., Kylander, M., Sjolte, J., Van der Putten, N.,
Kageyama, M., Porter, C. T., and Björck, S.: The last termination in the
central South Atlantic, Quaternary Sci. Rev., 123, 193–214,
https://doi.org/10.1016/j.quascirev.2015.07.003, 2015.
Loomis, S. E., Russell, J. M., Ladd, B., Street-Perrott, F. A., and Sinninghe
Damsté, J. S.: Calibration and application of the branched GDGT
temperature proxy on East African lake sediments, Earth Planet. Sc. Lett.,
357–358, 277–288, https://doi.org/10.1016/j.epsl.2012.09.031, 2012.
Markle, B. R., Bitz, C. M., Buizert, C., Steig, E. J., White, J. W. C.,
Pedro, J. B., Ding, Q., Schoenemann, S. W., Fudge, T. J., Sowers, T., and
Jones, T. R.: Global atmospheric teleconnections during Dansgaard–Oeschger
events, Nat. Geosci., 10, 36–40, https://doi.org/10.1038/ngeo2848, 2016.
Martin, J. H. and Fitzwater, S. E.: Iron deficiency limits phytoplankton
growth in the north-east Pacific subarctic, Nature, 331, 341–343,
https://doi.org/10.1038/331341a0, 1988.
Martínez-García, A., Sigman, D. M., Ren, H., Anderson, R. F.,
Straub, M., Hodell, D. A., Jaccard, S. L., Eglinton, T. I., and Haug, G. H.:
Iron Fertilization of the Subantarctic Ocean During the Last Ice Age,
Science, 343, 1347–1350, https://doi.org/10.1126/science.1246848, 2014.
McGee, D., Donohoe, A., Marshall, J., and Ferreira, D.: Changes in ITCZ
location and cross-equatorial heat transport at the Last Glacial Maximum,
Heinrich Stadial 1, and the mid-Holocene, Earth Planet. Sc. Lett., 390,
69–79, https://doi.org/10.1016/j.epsl.2013.12.043, 2014.
Millo, C., Strikis, N. M., Vonhof, H. B., Deininger, M., da Cruz, F. W.,
Wang, X., Cheng, H., and Edwards, R. L.: Last glacial and Holocene stable
isotope record of fossil dripwater from subtropical Brazil based on analysis
of fluid inclusions in stalagmites, Chem. Geol., 468, 84–96,
https://doi.org/10.1016/j.chemgeo.2017.08.018, 2017.
Moore, P. D., Webb, J. A., and Collinson, M. E.: Pollen analysis, 2nd ed.,
Blackwell Scientific, Oxford, 1991.
Moser, G., Steindorf, A., and Lange-Bertalot, H.: Neukaledonien
Diatomeenflora einer Tropeninsel. Revision der Collection Maillard und
Untersuchung neuen Materials, Bibliotheca Diatomologia, 32, 1–340, 1995.
Naafs, B. D. A., Inglis, G. N., Zheng, Y., Amesbury, M. J., Biester, H.,
Bindler, R., Blewett, J., Burrows, M. A., Torres, D. del C., Chambers, F.
M., Cohen, A. D., Evershed, R. P., Feakins, S. J., Gał ka, M.,
Gallego-Sala, A., Gandois, L., Gray, D. M., Hatcher, P. G., Coronado, E. N.
H., Hughes, P. D. M., Huguet, A., Könönen, M., Laggoun-Défarge,
F., Lähteenoja, O., Lamentowicz, M., Marchant, R., McClymont, E.,
Pontevedra-Pombal, X., Ponton, C., Pourmand, A., Rizzuti, A. M., Rochefort,
L., Schellekens, J., Vleeschouwer, F. D., and Pancost, R. D.: Introducing
global peat-specific temperature and pH calibrations based on brGDGT
bacterial lipids, Goechim. Cosmochim. Ac., 208, 285–301,
https://doi.org/10.1016/j.gca.2017.01.038, 2017.
Nesbitt, H. W. and Young, G. M.: Early Proterozoic climate and plate motions
inferred from major element chemistry of lutites, Nature, 299, 715–717,
1982.
Pearson, E. J., Juggins, S., Talbot, H. M., Weckström, J., Rosén,
P., Ryves, D. B., Roberts, S. J., and Schmidt, R.: A lacustrine
GDGT-temperature calibration from the Scandinavian Arctic to Antarctic:
Renewed potential for the application of GDGT-paleothermometry in lakes,
Geochim. Cosmochim. Ac., 75, 6225–6238, https://doi.org/10.1016/j.gca.2011.07.042,
2011.
Pedro, J. B., Martin, T., Steig, E. J., Jochum, M., Park, W., and Rasmussen,
S. O.: Southern Ocean deep convection as a driver of Antarctic warming
events, Geophys. Res. Lett., 43, 2016GL067861, https://doi.org/10.1002/2016GL067861,
2016.
Pedro, J. B., Jochum, M., Buizert, C., He, F., Barker, S., and Rasmussen, S.
O.: Beyond the bipolar seesaw: Toward a process understanding of
interhemispheric coupling, Quaternary Sci. Rev., 192, 27–46,
https://doi.org/10.1016/j.quascirev.2018.05.005, 2018.
Ryan, P.: Field guide to the animals and plants of Tristan da Cunha and
Gough Island, Pisces publications, Newbury, 2007.
Saunders, K. M., Roberts, S. J., Perren, B., Butz, C., Sime, L., Davies, S.,
Van Nieuwenhuyze, W., Grosjean, M., and Hodgson, D. A.: Holocene dynamics of
the Southern Hemisphere westerly winds and possible links to CO2 outgassing,
Nat. Geosci., 11, 650–655, https://doi.org/10.1038/s41561-018-0186-5, 2018.
Sime, L. C., Kohfeld, K. E., Le Quéré, C., Wolff, E. W., de Boer, A.
M., Graham, R. M., and Bopp, L.: Southern Hemisphere westerly wind changes
during the Last Glacial Maximum: model-data comparison, Quaternary Sci.
Rev., 64, 104–120, https://doi.org/10.1016/j.quascirev.2012.12.008, 2013.
Sime, L. C., Hodgson, D., Bracegirdle, T. J., Allen, C., Perren, B., Roberts, S., and de Boer, A. M.: Sea ice led to poleward-shifted winds at the Last Glacial Maximum: the influence of state dependency on CMIP5 and PMIP3 models, Clim. Past, 12, 2241–2253, https://doi.org/10.5194/cp-12-2241-2016, 2016.
Sjolte, J., Sturm, C., Adolphi, F., Vinther, B. M., Werner, M., Lohmann, G., and Muscheler, R.: Solar and volcanic forcing of North Atlantic climate inferred from a process-based reconstruction, Clim. Past, 14, 1179–1194, https://doi.org/10.5194/cp-14-1179-2018, 2018.
Stenni, B., Masson-Delmotte, V., Selmo, E., Oerter, H., Meyer, H.,
Röthlisberger, R., Jouzel, J., Cattani, O., Falourd, S., Fischer, H.,
Hoffman, G., Iacumin, P., Johnsen, S. J., Minster, B., and Udisti, R.: The
deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores
(East Antarctica), Quaternary Sci. Rev., 29, 146–159, https://doi.org/10.1016/j.quascirev.2009.10.009,
2010.
Stocker, T. F. and Johnsen, S. J.: A minimum thermodynamic model for the
bipolar seesaw, Paleoceanography, 18, PA000920,
https://doi.org/10.1029/2003PA000920, 2003.
Tierney, J. E. and deMenocal, P. B.: Abrupt Shifts in Horn of Africa
Hydroclimate Since the Last Glacial Maximum, Science, 342, 843–846,
https://doi.org/10.1126/science.1240411, 2013.
Toggweiler, J. R. and Lea, D. W.: Temperature differences between the
hemispheres and ice age climate variability, Paleoceanography, 25, PA2212,
https://doi.org/10.1029/2009PA001758, 2010.
Toggweiler, J. R., Russell, J. L., and Carson, S. R.: Midlatitude westerlies,
atmospheric CO2, and climate change during the ice ages, Paleoceanography,
21, PA2005, https://doi.org/10.1029/2005PA001154, 2006.
Van de Vijver, B., Beyens, L., and Lange-Bertalot, H.: Freshwater diatoms
from Ile de la Possession (Crozet Archipelago, Subantarctic), J. Cramer,
Berlin, 2002.
Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S. O., Severi, M., Svensson, A., Vinther, B., and Wolff, E. W.: The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years, Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, 2013.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F.,
Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water
temperature changes derived from benthic foraminifera isotopic records,
Quaternary Sci. Rev., 21, 295–305, https://doi.org/10.1016/S0277-3791(01)00101-9, 2002.
WAIS Divide Project Members: Precise interpolar phasing of abrupt climate
change during the last ice age, Nature, 520, 661–665,
https://doi.org/10.1038/nature14401, 2015.
Weber, M. E., Clark, P. U., Kuhn, G., Timmermann, A., Sprenk, D., Gladstone,
R., Zhang, X., Lohmann, G., Menviel, L., Chikamoto, M. O., Friedrich, T., and
Ohlwein, C.: Millennial-scale variability in Antarctic ice-sheet discharge
during the last deglaciation, Nature, 510, 134–138, https://doi.org/10.1038/nature13397,
2014.
Weijers, J. W. H., Schefuss, E., Schouten, S., and Damste, J. S. S.: Coupled
Thermal and Hydrological Evolution of Tropical Africa over the Last
Deglaciation, Science, 315, 1701–1704, https://doi.org/10.1126/science.1138131, 2007.
Werner, M., Haese, B., Xu, X., Zhang, X., Butzin, M., and Lohmann, G.: Glacial–interglacial changes in , HDO and deuterium excess – results from the fully coupled ECHAM5/MPI-OM Earth system model, Geosci. Model Dev., 9, 647–670, https://doi.org/10.5194/gmd-9-647-2016, 2016.
Yamoah, K. A., Chabangborn, A., Chawchai, S., Schenk, F., Wohlfarth, B., and
Smittenberg, R. H.: A 2000-year leaf wax-based hydrogen isotope record from
Southeast Asia suggests low frequency ENSO-like teleconnections on a
centennial timescale, Quaternary Sci. Rev., 148, 44–53, 2016.
Zhu, C., Lipp, J. S., Wörmer, L., Becker, K. B., Schröder, J. M., and
Hinrichs, K.-U.: Comprehensive glycerol ether lipid fingerprints through a
novel reversed phase liquid chromatography–mass spectrometry protocol, Org.
Geochem., 65, 53–62, https://doi.org/10.1016/j.orggeochem.2013.09.012, 2013.
Short summary
Southern Hemisphere westerlies play a key role in regulating global climate. A lake sediment record on a mid-South Atlantic island shows changes in the westerlies and hydroclimate 36.4–18.6 ka. Before 31 ka the westerlies shifted in concert with the bipolar seesaw mechanism in a fairly warm climate, followed by southerly westerlies and falling temperatures. After 27.5 ka temperatures dropped 3 °C with drier conditions and with shifting westerlies possibly triggering the variable LGM CO2 levels.
Southern Hemisphere westerlies play a key role in regulating global climate. A lake sediment...