Articles | Volume 15, issue 3
https://doi.org/10.5194/cp-15-1025-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-1025-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Lignin oxidation products as a potential proxy for vegetation and environmental changes in speleothems and cave drip water – a first record from the Herbstlabyrinth, central Germany
Inken Heidke
Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz,
Duesbergweg 10–14, 55128 Mainz, Germany
Denis Scholz
Institute of Geosciences, Johannes Gutenberg University of Mainz,
J.-J.-Becher-Weg 21, 55128 Mainz, Germany
Thorsten Hoffmann
CORRESPONDING AUTHOR
Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz,
Duesbergweg 10–14, 55128 Mainz, Germany
Related authors
Inken Heidke, Adam Hartland, Denis Scholz, Andrew Pearson, John Hellstrom, Sebastian F. M. Breitenbach, and Thorsten Hoffmann
Biogeosciences, 18, 2289–2300, https://doi.org/10.5194/bg-18-2289-2021, https://doi.org/10.5194/bg-18-2289-2021, 2021
Short summary
Short summary
We analyzed lignin oxidation products (LOPs) in leaf litter and different soil horizons as well as dripwater and flowstone samples from four different cave sites from different vegetation zones in New Zealand using liquid chromatography coupled to mass spectrometry. We test whether the original source-dependent LOP signal of the overlying vegetation is preserved and can be recovered from flowstone samples and investigate how the signal is altered by the transport from the soil to the cave.
Inken Heidke, Denis Scholz, and Thorsten Hoffmann
Biogeosciences, 15, 5831–5845, https://doi.org/10.5194/bg-15-5831-2018, https://doi.org/10.5194/bg-15-5831-2018, 2018
Short summary
Short summary
We developed a sensitive method to analyze the lignin composition of organic traces contained in speleothems. Lignin is a main constituent of woody plants and its composition contains information about the type of vegetation. This method offers new possibilities to reconstruct the vegetation of past millennia since it combines the advantages of lignin analysis as a highly specific vegetation biomarker with the benefits of speleothems as unique terrestrial climate archives.
Jackson Seymore, Martanda Gautam, Miklós Szakáll, Alexander Theis, Thorsten Hoffmann, Jialiang Ma, Lingli Zhou, and Alexander Vogel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3940, https://doi.org/10.5194/egusphere-2024-3940, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We investigated the chemical retention of water-soluble organic compounds in Beijing aerosols using an acoustic levitator and drop freezing experiments. Samples from PM2.5 filter extracts were frozen at -15 °C without artificial nucleators and analyzed using ultra-high resolution mass spectrometry. Our findings reveal a nonnormal distribution of retention coefficients that differs from current literature on cloud droplets.
Hubert B. Vonhof, Sophie Verheyden, Dominique Bonjean, Stéphane Pirson, Michael Weber, Denis Scholz, John Hellstrom, Hai Cheng, Xue Jia, Kévin Di Modica, Gregory Abrams, Marjan A. P. van Nunen, Joost Ruiter, Michèlle van der Does, Daniel Böhl, and Jeroen H. J. L. van der Lubbe
Clim. Past, 20, 2741–2758, https://doi.org/10.5194/cp-20-2741-2024, https://doi.org/10.5194/cp-20-2741-2024, 2024
Short summary
Short summary
The sedimentary sequence in Scladina Cave (Belgium) is well-known for its rich archeological assemblages and its numerous faunal remains. Of particular interest is the presence of a nearly complete jaw bone of a Neanderthal child. In this study, we present new uranium series ages of stalagmites from the archeological sequence that allow more precise dating of the archeological finds. One key result is that the Neanderthal child may be slightly older than previously thought.
Christine Borchers, Jackson Seymore, Martanda Gautam, Konstantin Dörholt, Yannik Müller, Andreas Arndt, Laura Gömmer, Florian Ungeheuer, Miklós Szakáll, Stephan Borrmann, Alexander Theis, Alexander L. Vogel, and Thorsten Hoffmann
Atmos. Chem. Phys., 24, 13961–13974, https://doi.org/10.5194/acp-24-13961-2024, https://doi.org/10.5194/acp-24-13961-2024, 2024
Short summary
Short summary
Riming, a crucial process in cloud dynamics, influences the vertical distribution of compounds in the atmosphere. Experiments in Mainz's wind tunnel investigated retention coefficients of organic compounds under varying conditions. Findings suggest a correlation between the Henry's law constant and retention, applicable even to complex organic molecules.
Johanna Schäfer, Anja Beschnitt, François Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2243, https://doi.org/10.5194/egusphere-2024-2243, 2024
Short summary
Short summary
Glaciers preserve organic compounds from atmospheric aerosols, which can serve as markers for emission sources. Most studies overlook the enantiomers of chiral compounds. We developed a 2-dimensional liquid chromatography method to determine the chiral ratios of monoterpene oxidation products cis-pinic acid and cis-pinonic acid in ice-core samples. Applied to samples from the Belukha glacier (1870–1970 CE), the method revealed fluctuating chiral ratios for the analytes.
Niklas Karbach, Lisa Höhler, Peter Hoor, Heiko Bozem, Nicole Bobrowski, and Thorsten Hoffmann
Atmos. Meas. Tech., 17, 4081–4086, https://doi.org/10.5194/amt-17-4081-2024, https://doi.org/10.5194/amt-17-4081-2024, 2024
Short summary
Short summary
The system presented here can accurately generate and reproduce a stable flow of gas mixtures of known concentrations over several days using ambient air as a dilution medium. In combination with the small size and low weight of the system, this enables the calibration of hydrogen sensors in the field, reducing the influence of matrix effects on the accuracy of the sensor. The system is inexpensive to assemble and easy to maintain, which is the key to reliable measurement results.
Jade Margerum, Julia Homann, Stuart Umbo, Gernot Nehrke, Thorsten Hoffmann, Anton Vaks, Aleksandr Kononov, Alexander Osintsev, Alena Giesche, Andrew Mason, Franziska A. Lechleitner, Gideon M. Henderson, Ola Kwiecien, and Sebastian F. M. Breitenbach
EGUsphere, https://doi.org/10.5194/egusphere-2024-1707, https://doi.org/10.5194/egusphere-2024-1707, 2024
Short summary
Short summary
We analyse a southern Siberian stalagmite to reconstruct soil respiration, wildfire, and vegetation trends, during the last interglacial (LIG) (124.1 – 118.8 ka BP) and Holocene (10 – 0 ka BP). We show that wildfires were greater during the LIG than the Holocene and were supported by fire prone-species, low soil respiration, and a greater difference between summer and winter temperature. We show that vegetation type and summer/winter temperature contrast are strong drivers of Siberian wildfires.
Heather M. Stoll, Chris Day, Franziska Lechleitner, Oliver Kost, Laura Endres, Jakub Sliwinski, Carlos Pérez-Mejías, Hai Cheng, and Denis Scholz
Clim. Past, 19, 2423–2444, https://doi.org/10.5194/cp-19-2423-2023, https://doi.org/10.5194/cp-19-2423-2023, 2023
Short summary
Short summary
Stalagmites formed in caves provide valuable information about past changes in climate and vegetation conditions. In this contribution, we present a new method to better estimate past changes in soil and vegetation productivity using carbon isotopes and trace elements measured in stalagmites. Applying this method to other stalagmites should provide a better indication of past vegetation feedbacks to climate change.
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Denis Leppla, Nora Zannoni, Leslie Kremper, Jonathan Williams, Christopher Pöhlker, Marta Sá, Maria Christina Solci, and Thorsten Hoffmann
Atmos. Chem. Phys., 23, 809–820, https://doi.org/10.5194/acp-23-809-2023, https://doi.org/10.5194/acp-23-809-2023, 2023
Short summary
Short summary
Chiral chemodiversity plays a critical role in biochemical processes such as insect and plant communication. Here we report on the measurement of chiral-specified secondary organic aerosol in the Amazon rainforest. The results show that the chiral ratio is mainly determined by large-scale emission processes. Characteristic emissions of chiral aerosol precursors from different forest ecosystems can thus provide large-scale information on different biogenic sources via chiral particle analysis.
Yunfan Liu, Hang Su, Siwen Wang, Chao Wei, Wei Tao, Mira L. Pöhlker, Christopher Pöhlker, Bruna A. Holanda, Ovid O. Krüger, Thorsten Hoffmann, Manfred Wendisch, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Yafang Cheng
Atmos. Chem. Phys., 23, 251–272, https://doi.org/10.5194/acp-23-251-2023, https://doi.org/10.5194/acp-23-251-2023, 2023
Short summary
Short summary
The origins of the abundant cloud condensation nuclei (CCN) in the upper troposphere (UT) of the Amazon remain unclear. With model developments of new secondary organic aerosol schemes and constrained by observation, we show that strong aerosol nucleation and condensation in the UT is triggered by biogenic organics, and organic condensation is key for UT CCN production. This UT CCN-producing mechanism may prevail over broader vegetation canopies and deserves emphasis in aerosol–climate feedback.
Jing Duan, Ru-Jin Huang, Yifang Gu, Chunshui Lin, Haobin Zhong, Wei Xu, Quan Liu, Yan You, Jurgita Ovadnevaite, Darius Ceburnis, Thorsten Hoffmann, and Colin O'Dowd
Atmos. Chem. Phys., 22, 10139–10153, https://doi.org/10.5194/acp-22-10139-2022, https://doi.org/10.5194/acp-22-10139-2022, 2022
Short summary
Short summary
Biomass-burning-influenced oxygenated organic aerosol (OOA-BB), formed from the photochemical oxidation and aging of biomass burning OA (BBOA), was resolved in urban Xi’an. The aqueous-phase processed oxygenated OA (aq-OOA) concentration was more dependent on secondary inorganic aerosol (SIA) content and aerosol liquid water content (ALWC). The increased aq-OOA contribution during SIA-enhanced periods likely reflects OA evolution due to the addition of alcohol or peroxide groups
Sophie F. Warken, Therese Weißbach, Tobias Kluge, Hubert Vonhof, Denis Scholz, Rolf Vieten, Martina Schmidt, Amos Winter, and Norbert Frank
Clim. Past, 18, 167–181, https://doi.org/10.5194/cp-18-167-2022, https://doi.org/10.5194/cp-18-167-2022, 2022
Short summary
Short summary
The analysis of fluid inclusions from a Puerto Rican speleothem provides quantitative information about past rainfall conditions and temperatures during the Last Glacial Period, when the climate was extremely variable. Our data show that the region experienced a climate that was generally colder and drier. However, we also reconstruct intervals when temperatures reached nearly modern values, and convective activity was comparable to or only slightly weaker than the present day.
Alexandra Gutmann, Nicole Bobrowski, Marcello Liotta, and Thorsten Hoffmann
Atmos. Meas. Tech., 14, 6395–6406, https://doi.org/10.5194/amt-14-6395-2021, https://doi.org/10.5194/amt-14-6395-2021, 2021
Short summary
Short summary
Motivated by a special interest in bromine chemistry in volcanic plumes, the study presented here describes a new method for the quantitative collection of gaseous hydrogen bromide in gas diffusion denuders. The hydrogen bromide reacted during sampling with appropriate epoxides applied to the denuder walls. The denuder sampling assembly was successfully deployed in the volcanic plume of Masaya volcano, Nicaragua.
Haijie Tong, Fobang Liu, Alexander Filippi, Jake Wilson, Andrea M. Arangio, Yun Zhang, Siyao Yue, Steven Lelieveld, Fangxia Shen, Helmi-Marja K. Keskinen, Jing Li, Haoxuan Chen, Ting Zhang, Thorsten Hoffmann, Pingqing Fu, William H. Brune, Tuukka Petäjä, Markku Kulmala, Maosheng Yao, Thomas Berkemeier, Manabu Shiraiwa, and Ulrich Pöschl
Atmos. Chem. Phys., 21, 10439–10455, https://doi.org/10.5194/acp-21-10439-2021, https://doi.org/10.5194/acp-21-10439-2021, 2021
Short summary
Short summary
We measured radical yields of aqueous PM2.5 extracts and found lower yields at higher concentrations of PM2.5. Abundances of water-soluble transition metals and aromatics in PM2.5 were positively correlated with the relative fraction of •OH but negatively correlated with the relative fraction of C-centered radicals among detected radicals. Composition-dependent reactive species yields may explain differences in the reactivity and health effects of PM2.5 in clean versus polluted air.
Kai Wang, Ru-Jin Huang, Martin Brüggemann, Yun Zhang, Lu Yang, Haiyan Ni, Jie Guo, Meng Wang, Jiajun Han, Merete Bilde, Marianne Glasius, and Thorsten Hoffmann
Atmos. Chem. Phys., 21, 9089–9104, https://doi.org/10.5194/acp-21-9089-2021, https://doi.org/10.5194/acp-21-9089-2021, 2021
Short summary
Short summary
Here we present the detailed molecular composition of the organic aerosol collected in three eastern Chinese cities from north to south, Changchun, Shanghai and Guangzhou, by applying LC–Orbitrap analysis. Accordingly, the aromaticity degree of chemical compounds decreases from north to south, while the oxidation degree increases from north to south, which can be explained by the different anthropogenic emissions and photochemical oxidation processes.
Bo Galle, Santiago Arellano, Nicole Bobrowski, Vladimir Conde, Tobias P. Fischer, Gustav Gerdes, Alexandra Gutmann, Thorsten Hoffmann, Ima Itikarai, Tomas Krejci, Emma J. Liu, Kila Mulina, Scott Nowicki, Tom Richardson, Julian Rüdiger, Kieran Wood, and Jiazhi Xu
Atmos. Meas. Tech., 14, 4255–4277, https://doi.org/10.5194/amt-14-4255-2021, https://doi.org/10.5194/amt-14-4255-2021, 2021
Short summary
Short summary
Measurements of volcanic gases are important for geophysical research, risk assessment and environmental impact studies. Some gases, like SO2 and BrO, may be studied from the ground at a safe distance using remote sensing techniques. Many other gases require in situ access to the gas plume. Here, a drone may be an attractive alternative. This paper describes a drone specially adapted for volcanic gas studies and demonstrates its use in a field campaign at Manam volcano in Papua New Guinea.
Inken Heidke, Adam Hartland, Denis Scholz, Andrew Pearson, John Hellstrom, Sebastian F. M. Breitenbach, and Thorsten Hoffmann
Biogeosciences, 18, 2289–2300, https://doi.org/10.5194/bg-18-2289-2021, https://doi.org/10.5194/bg-18-2289-2021, 2021
Short summary
Short summary
We analyzed lignin oxidation products (LOPs) in leaf litter and different soil horizons as well as dripwater and flowstone samples from four different cave sites from different vegetation zones in New Zealand using liquid chromatography coupled to mass spectrometry. We test whether the original source-dependent LOP signal of the overlying vegetation is preserved and can be recovered from flowstone samples and investigate how the signal is altered by the transport from the soil to the cave.
Wei Yuan, Ru-Jin Huang, Lu Yang, Ting Wang, Jing Duan, Jie Guo, Haiyan Ni, Yang Chen, Qi Chen, Yongjie Li, Ulrike Dusek, Colin O'Dowd, and Thorsten Hoffmann
Atmos. Chem. Phys., 21, 3685–3697, https://doi.org/10.5194/acp-21-3685-2021, https://doi.org/10.5194/acp-21-3685-2021, 2021
Short summary
Short summary
We characterized the seasonal variations in nitrated aromatic compounds (NACs) in composition, sources, and their light absorption contribution to brown carbon (BrC) aerosol in Xi'an, Northwest China. Our results show that secondary formation and vehicular emission were dominant sources in summer (~80 %), and biomass burning and coal combustion were major sources in winter (~75 %), and they indicate that the composition and sources of NACs have a profound impact on the light absorption of BrC
Julian Rüdiger, Alexandra Gutmann, Nicole Bobrowski, Marcello Liotta, J. Maarten de Moor, Rolf Sander, Florian Dinger, Jan-Lukas Tirpitz, Martha Ibarra, Armando Saballos, María Martínez, Elvis Mendoza, Arnoldo Ferrufino, John Stix, Juan Valdés, Jonathan M. Castro, and Thorsten Hoffmann
Atmos. Chem. Phys., 21, 3371–3393, https://doi.org/10.5194/acp-21-3371-2021, https://doi.org/10.5194/acp-21-3371-2021, 2021
Short summary
Short summary
We present an innovative approach to study halogen chemistry in the plume of Masaya volcano in Nicaragua. An unique data set was collected using multiple techniques, including drones. These data enabled us to determine the fraction of activation of the respective halogens at various plume ages, where in-mixing of ambient air causes chemical reactions. An atmospheric chemistry box model was employed to further examine the field results and help our understanding of volcanic plume chemistry.
Marcel Weloe and Thorsten Hoffmann
Atmos. Meas. Tech., 13, 5725–5738, https://doi.org/10.5194/amt-13-5725-2020, https://doi.org/10.5194/amt-13-5725-2020, 2020
Short summary
Short summary
Aerosol mass spectrometers (AMSs) are frequently applied in atmospheric aerosol research in connection with climate, environmental or health-related projects. The paper describes a new real-time technique for the measurement of organic peroxides, which play an important role in new particle formation and as
reactive oxygen speciesin aerosol–health-related aspects of atmospheric aerosols.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Ting Lei, Nan Ma, Juan Hong, Thomas Tuch, Xin Wang, Zhibin Wang, Mira Pöhlker, Maofa Ge, Weigang Wang, Eugene Mikhailov, Thorsten Hoffmann, Ulrich Pöschl, Hang Su, Alfred Wiedensohler, and Yafang Cheng
Atmos. Meas. Tech., 13, 5551–5567, https://doi.org/10.5194/amt-13-5551-2020, https://doi.org/10.5194/amt-13-5551-2020, 2020
Short summary
Short summary
We present the design of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. We further introduce comprehensive methods for system calibration and validation of the performance of the system. We then study the size dependence of the deliquescence and the efflorescence of aerosol nanoparticles for sizes down to 6 nm.
Ru-Jin Huang, Yao He, Jing Duan, Yongjie Li, Qi Chen, Yan Zheng, Yang Chen, Weiwei Hu, Chunshui Lin, Haiyan Ni, Wenting Dai, Junji Cao, Yunfei Wu, Renjian Zhang, Wei Xu, Jurgita Ovadnevaite, Darius Ceburnis, Thorsten Hoffmann, and Colin D. O'Dowd
Atmos. Chem. Phys., 20, 9101–9114, https://doi.org/10.5194/acp-20-9101-2020, https://doi.org/10.5194/acp-20-9101-2020, 2020
Short summary
Short summary
We systematically compared the submicron particle (PM1) processes in haze days with low and high relative humidity (RH) in wintertime Beijing. Nitrate had similar daytime growth rates in low-RH and high-RH pollution. OOA had a higher growth rate in low-RH pollution than in high-RH pollution. Sulfate had a decreasing trend in low-RH pollution, while it increased significantly in high-RH pollution. This distinction may be explained by the different processes affected by meteorological conditions.
Tobias Kluge, Tatjana S. Münster, Norbert Frank, Elisabeth Eiche, Regina Mertz-Kraus, Denis Scholz, Martin Finné, and Ingmar Unkel
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-47, https://doi.org/10.5194/cp-2020-47, 2020
Revised manuscript not accepted
Short summary
Short summary
A stalagmite from Hermes Cave (Greece) provides new insights into the climate evolution from 5.3−0.8 ka. Its close proximity to Mycenae and Corinth allows for a future comparative assessment of societal changes in a climatic context. Proxy data suggest significant centennial scale climate variability (i.e., wet vs. dry) with a long-term trend towards drier conditions from ca 3.7 to ~ 2.0 ka. The largest proxy variation of the whole record is found around the 4.2 ka event.
Wei Yuan, Ru-Jin Huang, Lu Yang, Jie Guo, Ziyi Chen, Jing Duan, Ting Wang, Haiyan Ni, Yongming Han, Yongjie Li, Qi Chen, Yang Chen, Thorsten Hoffmann, and Colin O'Dowd
Atmos. Chem. Phys., 20, 5129–5144, https://doi.org/10.5194/acp-20-5129-2020, https://doi.org/10.5194/acp-20-5129-2020, 2020
Short summary
Short summary
We characterized light-absorbing properties, chromophore composition and sources of brown carbon (BrC) in Xi'an; identified three groups of light-absorbing organics; and quantified their contribution to overall BrC absorption. Our results showed that vehicle emissions and secondary formation are major sources of BrC in spring, coal combustion and vehicle emissions are major sources in fall, biomass burning and coal combustion become major sources in winter, and secondary BrC dominates in summer.
Stefano Decesari, Marco Paglione, Matteo Rinaldi, Manuel Dall'Osto, Rafel Simó, Nicola Zanca, Francesca Volpi, Maria Cristina Facchini, Thorsten Hoffmann, Sven Götz, Christopher Johannes Kampf, Colin O'Dowd, Darius Ceburnis, Jurgita Ovadnevaite, and Emilio Tagliavini
Atmos. Chem. Phys., 20, 4193–4207, https://doi.org/10.5194/acp-20-4193-2020, https://doi.org/10.5194/acp-20-4193-2020, 2020
Short summary
Short summary
Atmospheric aerosols in Antarctica contribute to regulate the delicate budget of cloud formation and precipitations. Besides the well-known biogenic production of sulfur-containing aerosol components such as methanesulfonate (MSA), the assessment of biological sources of organic particles in Antarctica remains an active area of research. Here we present the results of aerosol organic characterization during a research cruise performed in the Weddell Sea and in the Southern Ocean in Jan–Feb 2015.
Jing Duan, Ru-Jin Huang, Yongjie Li, Qi Chen, Yan Zheng, Yang Chen, Chunshui Lin, Haiyan Ni, Meng Wang, Jurgita Ovadnevaite, Darius Ceburnis, Chunying Chen, Douglas R. Worsnop, Thorsten Hoffmann, Colin O'Dowd, and Junji Cao
Atmos. Chem. Phys., 20, 3793–3807, https://doi.org/10.5194/acp-20-3793-2020, https://doi.org/10.5194/acp-20-3793-2020, 2020
Short summary
Short summary
We characterized secondary aerosol formation in Beijing. Our results showed that relative humidity (RH) and Ox have opposite effects on sulfate and nitrate formation in summer and winter. The wintertime more-oxidized OOA (MO-OOA) showed a good correlation with aerosol liquid water content (ALWC). Meanwhile, the dependence of less-oxidized OOA (LO-OOA) and the mass ratio of LO-OOA to MO-OOA in Ox both degraded when RH > 60 %, suggesting that RH or ALWC may also affect LO-OOA formation.
Meng Wang, Ru-Jin Huang, Junji Cao, Wenting Dai, Jiamao Zhou, Chunshui Lin, Haiyan Ni, Jing Duan, Ting Wang, Yang Chen, Yongjie Li, Qi Chen, Imad El Haddad, and Thorsten Hoffmann
Atmos. Meas. Tech., 12, 4779–4789, https://doi.org/10.5194/amt-12-4779-2019, https://doi.org/10.5194/amt-12-4779-2019, 2019
Short summary
Short summary
The analytical performances of SE-GC-MS and TD-GC-MS for the determination of n-alkanes, PAHs and hopanes were evaluated and compared. The two methods show a good agreement with a high correlation efficient (R2 > 0.98) and a slope close to unity. The concentrations of n-alkanes, PAHs and hopanes are found to be much higher in Beijing than those in Chengdu, Shanghai and Guangzhou, most likely due to emissions from coal combustion for wintertime heating in Beijing.
Guo Li, Yafang Cheng, Uwe Kuhn, Rongjuan Xu, Yudong Yang, Hannah Meusel, Zhibin Wang, Nan Ma, Yusheng Wu, Meng Li, Jonathan Williams, Thorsten Hoffmann, Markus Ammann, Ulrich Pöschl, Min Shao, and Hang Su
Atmos. Chem. Phys., 19, 2209–2232, https://doi.org/10.5194/acp-19-2209-2019, https://doi.org/10.5194/acp-19-2209-2019, 2019
Short summary
Short summary
VOCs play a key role in atmospheric chemistry. Emission and deposition on soil have been suggested as important sources and sinks of atmospheric trace gases. The exchange characteristics and heterogeneous chemistry of VOCs on soil, however, are not well understood. We used a newly designed differential coated-wall flow tube system to investigate the long-term variability of bidirectional air–soil exchange of 13 VOCs at ambient air conditions of an urban background site in Beijing.
Tobias Anhäuser, Birgit Sehls, Werner Thomas, Claudia Hartl, Markus Greule, Denis Scholz, Jan Esper, and Frank Keppler
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-8, https://doi.org/10.5194/cp-2019-8, 2019
Revised manuscript not accepted
Inken Heidke, Denis Scholz, and Thorsten Hoffmann
Biogeosciences, 15, 5831–5845, https://doi.org/10.5194/bg-15-5831-2018, https://doi.org/10.5194/bg-15-5831-2018, 2018
Short summary
Short summary
We developed a sensitive method to analyze the lignin composition of organic traces contained in speleothems. Lignin is a main constituent of woody plants and its composition contains information about the type of vegetation. This method offers new possibilities to reconstruct the vegetation of past millennia since it combines the advantages of lignin analysis as a highly specific vegetation biomarker with the benefits of speleothems as unique terrestrial climate archives.
Jorge Saturno, Bruna A. Holanda, Christopher Pöhlker, Florian Ditas, Qiaoqiao Wang, Daniel Moran-Zuloaga, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Jeannine Ditas, Thorsten Hoffmann, Isabella Hrabe de Angelis, Tobias Könemann, Jošt V. Lavrič, Nan Ma, Jing Ming, Hauke Paulsen, Mira L. Pöhlker, Luciana V. Rizzo, Patrick Schlag, Hang Su, David Walter, Stefan Wolff, Yuxuan Zhang, Paulo Artaxo, Ulrich Pöschl, and Meinrat O. Andreae
Atmos. Chem. Phys., 18, 12817–12843, https://doi.org/10.5194/acp-18-12817-2018, https://doi.org/10.5194/acp-18-12817-2018, 2018
Short summary
Short summary
Biomass burning emits light-absorbing aerosol particles that warm the atmosphere. One of them is the primarily emitted black carbon, which strongly absorbs radiation in the visible and UV spectral regions. Another one is the so-called brown carbon, a fraction of organic aerosol particles that are able to absorb radiation, especially in the UV spectral region. The contribution of both kinds of aerosol particles to light absorption over the Amazon rainforest is studied in this paper.
Sarah S. Steimer, Aurélie Delvaux, Steven J. Campbell, Peter J. Gallimore, Peter Grice, Duncan J. Howe, Dominik Pitton, Magda Claeys, Thorsten Hoffmann, and Markus Kalberer
Atmos. Chem. Phys., 18, 10973–10983, https://doi.org/10.5194/acp-18-10973-2018, https://doi.org/10.5194/acp-18-10973-2018, 2018
Short summary
Short summary
Aerosol particles are a major public health concern, but particle properties contributing to their toxicity are not well known. Oxidising components such as peroxy acids might contribute significantly to particle toxicity. However, there is a lack of analytical methods for their characterisation. We synthesized three peroxy acids, developed an analysis method and showed that degradation affects peracid yield, likely leading to underestimation of their concentration in conventional analyses.
Ru-Jin Huang, Junji Cao, Yang Chen, Lu Yang, Jincan Shen, Qihua You, Kai Wang, Chunshui Lin, Wei Xu, Bo Gao, Yongjie Li, Qi Chen, Thorsten Hoffmann, Colin D. O'Dowd, Merete Bilde, and Marianne Glasius
Atmos. Meas. Tech., 11, 3447–3456, https://doi.org/10.5194/amt-11-3447-2018, https://doi.org/10.5194/amt-11-3447-2018, 2018
Julian Rüdiger, Jan-Lukas Tirpitz, J. Maarten de Moor, Nicole Bobrowski, Alexandra Gutmann, Marco Liuzzo, Martha Ibarra, and Thorsten Hoffmann
Atmos. Meas. Tech., 11, 2441–2457, https://doi.org/10.5194/amt-11-2441-2018, https://doi.org/10.5194/amt-11-2441-2018, 2018
Short summary
Short summary
Volcanic gas emission studies are important for monitoring active volcanoes, obtaining insights into subsurface processes and opening up an interesting domain for atmospheric chemistry investigations. Using an unmanned aerial vehicle, commonly called a drone, we were able to study various volcanic gases at sites which are typically too dangerous to access otherwise. The use of drones for volcano monitoring and gas measurements in harsh environments was successfully assessed.
Jonathan Liebmann, Einar Karu, Nicolas Sobanski, Jan Schuladen, Mikael Ehn, Simon Schallhart, Lauriane Quéléver, Heidi Hellen, Hannele Hakola, Thorsten Hoffmann, Jonathan Williams, Horst Fischer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 18, 3799–3815, https://doi.org/10.5194/acp-18-3799-2018, https://doi.org/10.5194/acp-18-3799-2018, 2018
Short summary
Short summary
Using a newly developed experimental setup, we have made the first direct measurements (during autumn 2016) of NO3 reactivity in the Finnish boreal forest. The NO3 reactivity was generally very high (maximum value of 0.94/s) so that daytime reaction with organics was a substantial fraction of the NO3 loss. Observations of biogenic hydrocarbons (BVOCs) suggested a dominant role for monoterpenes in determining the NO3 reactivity, which displayed a strong vertical gradient between 8.5 and 25 m.
Hannah Meusel, Alexandra Tamm, Uwe Kuhn, Dianming Wu, Anna Lena Leifke, Sabine Fiedler, Nina Ruckteschler, Petya Yordanova, Naama Lang-Yona, Mira Pöhlker, Jos Lelieveld, Thorsten Hoffmann, Ulrich Pöschl, Hang Su, Bettina Weber, and Yafang Cheng
Atmos. Chem. Phys., 18, 799–813, https://doi.org/10.5194/acp-18-799-2018, https://doi.org/10.5194/acp-18-799-2018, 2018
Short summary
Short summary
The photolysis of nitrous acid (HONO) forms the OH radical. However, not all sources are known. Recent studies showed that HONO can be emitted from soil but they did not evaluate the importance to the HONO budget. In this work HONO emissions from 43 soil and biological soil crust samples from Cyprus were measured in a dynamic chamber and extrapolated to the real atmosphere. A large fraction of the local missing source (published earlier; Meusel et al., 2016) could be assigned to soil emissions.
David Cabrera-Perez, Domenico Taraborrelli, Jos Lelieveld, Thorsten Hoffmann, and Andrea Pozzer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-928, https://doi.org/10.5194/acp-2017-928, 2017
Revised manuscript not accepted
Short summary
Short summary
Aromatic compounds are present in rural and urban atmospheres. The aim of this work is to disentangle the impacts of these compounds in different important atmospheric chemical species with the help of a numerical model. Aromatics have low impact OH, NOx and Ozone concentrations in the global scale (below 4 %). The impact however is larger in the regional scale (up to 10 %). The largest impact is in glyoxal and NO3 concentrations, with changes up to 10 % globally and 40 % regionally.
Hannah Meusel, Yasin Elshorbany, Uwe Kuhn, Thorsten Bartels-Rausch, Kathrin Reinmuth-Selzle, Christopher J. Kampf, Guo Li, Xiaoxiang Wang, Jos Lelieveld, Ulrich Pöschl, Thorsten Hoffmann, Hang Su, Markus Ammann, and Yafang Cheng
Atmos. Chem. Phys., 17, 11819–11833, https://doi.org/10.5194/acp-17-11819-2017, https://doi.org/10.5194/acp-17-11819-2017, 2017
Short summary
Short summary
In this study we investigated protein nitration and decomposition by light in the presence of NO2 via flow tube measurements. Nitrated proteins have an enhanced allergenic potential but so far nitration was only studied in dark conditions. Under irradiated conditions we found that proteins predominantly decompose while forming nitrous acid (HONO) an important precursor of the OH radical. Unlike other studies on heterogeneous NO2 conversion we found a stable HONO formation over a long period.
Martin Brüggemann, Laurent Poulain, Andreas Held, Torsten Stelzer, Christoph Zuth, Stefanie Richters, Anke Mutzel, Dominik van Pinxteren, Yoshiteru Iinuma, Sarmite Katkevica, René Rabe, Hartmut Herrmann, and Thorsten Hoffmann
Atmos. Chem. Phys., 17, 1453–1469, https://doi.org/10.5194/acp-17-1453-2017, https://doi.org/10.5194/acp-17-1453-2017, 2017
Short summary
Short summary
Using complementary mass spectrometric techniques during a field study in central Europe, characteristic contributors to the organic aerosol mass were identified. Besides common marker compounds for biogenic secondary organic aerosol, highly oxidized sulfur species were detected in the particle phase. High-time-resolution measurements revealed correlations between these organosulfates and particulate sulfate as well as gas-phase peroxyradicals, giving hints to underlying formation mechanisms.
Hannah Meusel, Uwe Kuhn, Andreas Reiffs, Chinmay Mallik, Hartwig Harder, Monica Martinez, Jan Schuladen, Birger Bohn, Uwe Parchatka, John N. Crowley, Horst Fischer, Laura Tomsche, Anna Novelli, Thorsten Hoffmann, Ruud H. H. Janssen, Oscar Hartogensis, Michael Pikridas, Mihalis Vrekoussis, Efstratios Bourtsoukidis, Bettina Weber, Jos Lelieveld, Jonathan Williams, Ulrich Pöschl, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 16, 14475–14493, https://doi.org/10.5194/acp-16-14475-2016, https://doi.org/10.5194/acp-16-14475-2016, 2016
Short summary
Short summary
There are many studies which show discrepancies between modeled and measured nitrous acid (HONO, precursor of OH radical) in the troposphere but with no satisfactory explanation. Ideal conditions to study the unknown sources of HONO were found on Cyprus, a remote Mediterranean island. Budget analysis of trace gas measurements indicates a common source of NO and HONO, which is not related to anthropogenic activity and is most likely derived from biologic activity in soils and subsequent emission.
Guo Li, Hang Su, Xin Li, Uwe Kuhn, Hannah Meusel, Thorsten Hoffmann, Markus Ammann, Ulrich Pöschl, Min Shao, and Yafang Cheng
Atmos. Chem. Phys., 16, 10299–10311, https://doi.org/10.5194/acp-16-10299-2016, https://doi.org/10.5194/acp-16-10299-2016, 2016
Short summary
Short summary
Indoor and outdoor formaldehyde (HCHO) are both of considerable concern because of its health effects and its role in atmospheric chemistry. The heterogeneous reactions between gaseous HCHO with soils can pose important impact on both HCHO budget and soil ecosystem. Our results confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions. Soil and soil-derived airborne particles can either act as a source or a sink for HCHO.
R. Oswald, M. Ermel, K. Hens, A. Novelli, H. G. Ouwersloot, P. Paasonen, T. Petäjä, M. Sipilä, P. Keronen, J. Bäck, R. Königstedt, Z. Hosaynali Beygi, H. Fischer, B. Bohn, D. Kubistin, H. Harder, M. Martinez, J. Williams, T. Hoffmann, I. Trebs, and M. Sörgel
Atmos. Chem. Phys., 15, 799–813, https://doi.org/10.5194/acp-15-799-2015, https://doi.org/10.5194/acp-15-799-2015, 2015
Short summary
Short summary
Nitrous acid (HONO) is a key species in atmospheric photochemistry since the photolysis leads to the important hydroxyl radical (OH). Although the importance of HONO as a precursor of OH is known, the formation pathways of HONO, especially during daytime, are a major challenge in atmospheric science. We present a detailed analysis of sources and sinks for HONO in the atmosphere for a field measurement campaign in the boreal forest in Finland and wonder if there is really a source term missing.
U. R. Thorenz, L. J. Carpenter, R.-J. Huang, M. Kundel, J. Bosle, and T. Hoffmann
Atmos. Chem. Phys., 14, 13327–13335, https://doi.org/10.5194/acp-14-13327-2014, https://doi.org/10.5194/acp-14-13327-2014, 2014
Short summary
Short summary
Phytoplankton suspensions were treated with high and low ozone levels, and volatile iodine (I2)-containing compounds were measured. Iodocarbon emissions were independent of the ozone level. I2 emission showed a strong dependency on the ozone level in the air as well as on the iodide concentration in the sample suspension. The experiments show that microalgae suspensions are capable of emitting I2 by the reaction of ozone with dissolved iodide at the air-water interface under natural conditions.
R.-J. Huang, W.-B. Li, Y.-R. Wang, Q. Y. Wang, W. T. Jia, K.-F. Ho, J. J. Cao, G. H. Wang, X. Chen, I. EI Haddad, Z. X. Zhuang, X. R. Wang, A. S. H. Prévôt, C. D. O'Dowd, and T. Hoffmann
Atmos. Meas. Tech., 7, 2027–2035, https://doi.org/10.5194/amt-7-2027-2014, https://doi.org/10.5194/amt-7-2027-2014, 2014
J. Wildt, T. F. Mentel, A. Kiendler-Scharr, T. Hoffmann, S. Andres, M. Ehn, E. Kleist, P. Müsgen, F. Rohrer, Y. Rudich, M. Springer, R. Tillmann, and A. Wahner
Atmos. Chem. Phys., 14, 2789–2804, https://doi.org/10.5194/acp-14-2789-2014, https://doi.org/10.5194/acp-14-2789-2014, 2014
G. Lohmann, A. Wackerbarth, P. M. Langebroek, M. Werner, J. Fohlmeister, D. Scholz, and A. Mangini
Clim. Past, 9, 89–98, https://doi.org/10.5194/cp-9-89-2013, https://doi.org/10.5194/cp-9-89-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Holocene
A continental reconstruction of hydroclimatic variability in South America during the past 2000 years
A Holocene history of climate, fire, landscape evolution, and human activity in northeastern Iceland
A global compilation of diatom silica oxygen isotope records from lake sediment – trends and implications for climate reconstruction
BrGDGT-based seasonal paleotemperature reconstruction for the last 15 000 years from a shallow lake on the eastern Tibetan Plateau
Reconstructing 15 000 years of southern France temperatures from coupled pollen and molecular (branched glycerol dialkyl glycerol tetraether) markers (Canroute, Massif Central)
Pollen-based reconstructions of Holocene climate trends in the eastern Mediterranean region
Spatiotemporal Intertropical Convergence Zone dynamics during the last 3 millennia in northeastern Brazil and related impacts in modern human history
Holocene climates of the Iberian Peninsula: pollen-based reconstructions of changes in the west–east gradient of temperature and moisture
Holocene climate and oceanography of the coastal Western United States and California Current System
Reconstructing Holocene temperatures in time and space using paleoclimate data assimilation
Long-term trends in diatom diversity and palaeoproductivity: a 16 000-year multidecadal record from Lake Baikal, southern Siberia
A 406-year non-growing-season precipitation reconstruction in the southeastern Tibetan Plateau
Climatic variations during the Holocene inferred from radiocarbon and stable carbon isotopes in speleothems from a high-alpine cave
Winter–spring warming in the North Atlantic during the last 2000 years: evidence from southwest Iceland
Climate reconstructions based on GDGT and pollen surface datasets from Mongolia and Baikal area: calibrations and applicability to extremely cold–dry environments over the Late Holocene
Sampling density and date along with species selection influence spatial representation of tree-ring reconstructions
Changes in high-intensity precipitation on the northern Apennines (Italy) as revealed by multidisciplinary data over the last 9000 years
Neoglacial trends in diatom dynamics from a small alpine lake in the Qinling mountains of central China
Centennial- to millennial-scale monsoon changes since the last deglaciation linked to solar activities and North Atlantic cooling
Algal lipids reveal unprecedented warming rates in alpine areas of SW Europe during the industrial period
Reconstructing seasonality through stable-isotope and trace-element analyses of the Proserpine stalagmite, Han-sur-Lesse cave, Belgium: indications for climate-driven changes during the last 400 years
Two millennia of Main region (southern Germany) hydroclimate variability
Combining a pollen and macrofossil synthesis with climate simulations for spatial reconstructions of European climate using Bayesian filtering
How dry was the Younger Dryas? Evidence from a coupled δ2H–δ18O biomarker paleohygrometer applied to the Gemündener Maar sediments, Western Eifel, Germany
Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions
The 4.2 ka BP Event in the Mediterranean region: an overview
Technical note: Optimizing the utility of combined GPR, OSL, and Lidar (GOaL) to extract paleoenvironmental records and decipher shoreline evolution
The onset of neoglaciation in Iceland and the 4.2 ka event
Hydroclimatic variations in southeastern China during the 4.2 ka event reflected by stalagmite records
Fire, vegetation, and Holocene climate in a southeastern Tibetan lake: a multi-biomarker reconstruction from Paru Co
Climate impact on the development of Pre-Classic Maya civilisation
Synchronizing 10Be in two varved lake sediment records to IntCal13 14C during three grand solar minima
Technical note: Open-paleo-data implementation pilot – the PAGES 2k special issue
A chironomid-based record of temperature variability during the past 4000 years in northern China and its possible societal implications
Insights into Atlantic multidecadal variability using the Last Millennium Reanalysis framework
Three distinct Holocene intervals of stalagmite deposition and nondeposition revealed in NW Madagascar, and their paleoclimate implications
Examining bias in pollen-based quantitative climate reconstructions induced by human impact on vegetation in China
A dual-biomarker approach for quantification of changes in relative humidity from sedimentary lipid D∕H ratios
Pseudo-proxy tests of the analogue method to reconstruct spatially resolved global temperature during the Common Era
Development and evaluation of a system of proxy data assimilation for paleoclimate reconstruction
A chironomid-based mean July temperature inference model from the south-east margin of the Tibetan Plateau, China
Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world
Quantitative reconstruction of summer precipitation using a mid-Holocene δ13C common millet record from Guanzhong Basin, northern China
North Atlantic Oscillation controls on oxygen and hydrogen isotope gradients in winter precipitation across Europe; implications for palaeoclimate studies
A 368-year maximum temperature reconstruction based on tree-ring data in the northwestern Sichuan Plateau (NWSP), China
Inferring late-Holocene climate in the Ecuadorian Andes using a chironomid-based temperature inference model
A high-altitude peatland record of environmental changes in the NW Argentine Andes (24 ° S) over the last 2100 years
Technical note: The Linked Paleo Data framework – a common tongue for paleoclimatology
A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change
Inferring climate variability from nonlinear proxies: application to palaeo-ENSO studies
Mathurin A. Choblet, Janica C. Bühler, Valdir F. Novello, Nathan J. Steiger, and Kira Rehfeld
Clim. Past, 20, 2117–2141, https://doi.org/10.5194/cp-20-2117-2024, https://doi.org/10.5194/cp-20-2117-2024, 2024
Short summary
Short summary
Past climate reconstructions are essential for understanding climate mechanisms and drivers. Our focus is on the South American continent over the past 2000 years. We offer a new reconstruction that particularly utilizes data from speleothems, previously absent from continent-wide reconstructions. We use paleoclimate data assimilation, a reconstruction method that combines information from climate archives and climate simulations.
Nicolò Ardenghi, David J. Harning, Jonathan H. Raberg, Brooke R. Holman, Thorvaldur Thordarson, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Clim. Past, 20, 1087–1123, https://doi.org/10.5194/cp-20-1087-2024, https://doi.org/10.5194/cp-20-1087-2024, 2024
Short summary
Short summary
Analysing a sediment record from Stóra Viðarvatn (NE Iceland), we reveal how natural factors and human activities influenced environmental changes (erosion, wildfires) over the last 11 000 years. We found increased fire activity around 3000 and 1500 years ago, predating human settlement, likely driven by natural factors like precipitation shifts. Declining summer temperatures increased erosion vulnerability, exacerbated by farming and animal husbandry, which in turn may have reduced wildfires.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Xiaohuan Hou, Nannan Wang, Zhe Sun, Kan Yuan, Xianyong Cao, and Juzhi Hou
Clim. Past, 20, 335–348, https://doi.org/10.5194/cp-20-335-2024, https://doi.org/10.5194/cp-20-335-2024, 2024
Short summary
Short summary
We present an ice-free season temperature based on brGDGTs over last 15 kyr on the eastern Tibetan Plateau (TP). The result shows that Holocene Thermal Maximum occurred during 8–3.5 ka, which lags behind pollen-based temperature recorded in same core, indicating a significant seasonal bias between different proxies. We also investigated previously published brGDGT-based temperatures on the TP to determine the pattern of Holocene temperature changes and possible reasons for the diverse records.
Léa d'Oliveira, Lucas Dugerdil, Guillemette Ménot, Allowen Evin, Serge D. Muller, Salomé Ansanay-Alex, Julien Azuara, Colline Bonnet, Laurent Bremond, Mehmet Shah, and Odile Peyron
Clim. Past, 19, 2127–2156, https://doi.org/10.5194/cp-19-2127-2023, https://doi.org/10.5194/cp-19-2127-2023, 2023
Short summary
Short summary
In southern Europe, Holocene climate variability is characterized by a strong heterogeneity whose patterns are still poorly understood. Here, a multi-proxy approach (pollen and biomarkers) is applied to the Canroute sequence to reconstruct the climatic variation over the last 15 000 years in southern Massif Central, France. Results reveal that reconstructions of regional climate trends notably differ depending on proxies and sites, notably concerning the presence of a Holocene thermal maximum.
Esmeralda Cruz-Silva, Sandy P. Harrison, I. Colin Prentice, Elena Marinova, Patrick J. Bartlein, Hans Renssen, and Yurui Zhang
Clim. Past, 19, 2093–2108, https://doi.org/10.5194/cp-19-2093-2023, https://doi.org/10.5194/cp-19-2093-2023, 2023
Short summary
Short summary
We examined 71 pollen records (12.3 ka to present) in the eastern Mediterranean, reconstructing climate changes. Over 9000 years, winters gradually warmed due to orbital factors. Summer temperatures peaked at 4.5–5 ka, likely declining because of ice sheets. Moisture increased post-11 kyr, remaining high from 10–6 kyr before a slow decrease. Climate models face challenges in replicating moisture transport.
Giselle Utida, Francisco W. Cruz, Mathias Vuille, Angela Ampuero, Valdir F. Novello, Jelena Maksic, Gilvan Sampaio, Hai Cheng, Haiwei Zhang, Fabio Ramos Dias de Andrade, and R. Lawrence Edwards
Clim. Past, 19, 1975–1992, https://doi.org/10.5194/cp-19-1975-2023, https://doi.org/10.5194/cp-19-1975-2023, 2023
Short summary
Short summary
We reconstruct the Intertropical Convergence Zone (ITCZ) behavior during the past 3000 years over northeastern Brazil based on oxygen stable isotopes of stalagmites. Paleoclimate changes were mainly forced by the tropical South Atlantic and tropical Pacific sea surface temperature variability. We describe an ITCZ zonal behavior active around 1100 CE and the period from 1500 to 1750 CE. The dataset also records historical droughts that affected modern human population in this area of Brazil.
Mengmeng Liu, Yicheng Shen, Penelope González-Sampériz, Graciela Gil-Romera, Cajo J. F. ter Braak, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past, 19, 803–834, https://doi.org/10.5194/cp-19-803-2023, https://doi.org/10.5194/cp-19-803-2023, 2023
Short summary
Short summary
We reconstructed the Holocene climates in the Iberian Peninsula using a large pollen data set and found that the west–east moisture gradient was much flatter than today. We also found that the winter was much colder, which can be expected from the low winter insolation during the Holocene. However, summer temperature did not follow the trend of summer insolation, instead, it was strongly correlated with moisture.
Hannah M. Palmer, Veronica Padilla Vriesman, Caitlin M. Livsey, Carina R. Fish, and Tessa M. Hill
Clim. Past, 19, 199–232, https://doi.org/10.5194/cp-19-199-2023, https://doi.org/10.5194/cp-19-199-2023, 2023
Short summary
Short summary
To better understand and contextualize modern climate change, this systematic review synthesizes climate and oceanographic patterns in the Western United States and California Current System through the most recent 11.75 kyr. Through a literature review and coded analysis of past studies, we identify distinct environmental phases through time and linkages between marine and terrestrial systems. We explore climate change impacts on ecosystems and human–environment interactions.
Michael P. Erb, Nicholas P. McKay, Nathan Steiger, Sylvia Dee, Chris Hancock, Ruza F. Ivanovic, Lauren J. Gregoire, and Paul Valdes
Clim. Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, https://doi.org/10.5194/cp-18-2599-2022, 2022
Short summary
Short summary
To look at climate over the past 12 000 years, we reconstruct spatial temperature using natural climate archives and information from model simulations. Our results show mild global mean warmth around 6000 years ago, which differs somewhat from past reconstructions. Undiagnosed seasonal biases in the data could explain some of the observed temperature change, but this still would not explain the large difference between many reconstructions and climate models over this period.
Anson W. Mackay, Vivian A. Felde, David W. Morley, Natalia Piotrowska, Patrick Rioual, Alistair W. R. Seddon, and George E. A. Swann
Clim. Past, 18, 363–380, https://doi.org/10.5194/cp-18-363-2022, https://doi.org/10.5194/cp-18-363-2022, 2022
Short summary
Short summary
We investigated the diversity of algae called diatoms in Lake Baikal, the oldest and deepest lake in the world, because algae sit at the base of aquatic foodwebs and provide energy (in the form of primary production) for other organisms to use. Diatom diversity and primary production have been influenced by both long-term and abrupt climate change over the past 16 000 years. The shape of these responses appears to be time-period specific.
Maierdang Keyimu, Zongshan Li, Bojie Fu, Guohua Liu, Fanjiang Zeng, Weiliang Chen, Zexin Fan, Keyan Fang, Xiuchen Wu, and Xiaochun Wang
Clim. Past, 17, 2381–2392, https://doi.org/10.5194/cp-17-2381-2021, https://doi.org/10.5194/cp-17-2381-2021, 2021
Short summary
Short summary
We created a residual tree-ring width chronology and reconstructed non-growth-season precipitation (NGSP) over the period spanning 1600–2005 in the southeastern Tibetan Plateau (SETP), China. Reconstruction model verification as well as similar variations of NGSP reconstruction and Palmer Drought Severity Index reconstructions from the surrounding region indicate the reliability of the present reconstruction. Our reconstruction is representative of NGSP variability of a large region in the SETP.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Nora Richter, James M. Russell, Johanna Garfinkel, and Yongsong Huang
Clim. Past, 17, 1363–1383, https://doi.org/10.5194/cp-17-1363-2021, https://doi.org/10.5194/cp-17-1363-2021, 2021
Short summary
Short summary
We present a reconstruction of winter–spring temperatures developed using organic proxies preserved in well-dated lake sediments from southwest Iceland to assess seasonal temperature changes in the North Atlantic region over the last 2000 years. The gradual warming trend observed in our record is likely influenced by sea surface temperatures, which are sensitive to changes in ocean circulation and seasonal insolation, during the winter and spring season.
Lucas Dugerdil, Sébastien Joannin, Odile Peyron, Isabelle Jouffroy-Bapicot, Boris Vannière, Bazartseren Boldgiv, Julia Unkelbach, Hermann Behling, and Guillemette Ménot
Clim. Past, 17, 1199–1226, https://doi.org/10.5194/cp-17-1199-2021, https://doi.org/10.5194/cp-17-1199-2021, 2021
Short summary
Short summary
Since the understanding of Holocene climate change appears to be a relevant issue for future climate change, the paleoclimate calibrations have to be improved. Here, surface samples from Mongolia and Siberia were analyzed to provide new calibrations for pollen and biomarker climate models. These calibrations appear to be more powerful than global calibrations, especially in an arid central Asian context. These calibrations will improve the understanding of monsoon Holocene oscillations.
Justin T. Maxwell, Grant L. Harley, Trevis J. Matheus, Brandon M. Strange, Kayla Van Aken, Tsun Fung Au, and Joshua C. Bregy
Clim. Past, 16, 1901–1916, https://doi.org/10.5194/cp-16-1901-2020, https://doi.org/10.5194/cp-16-1901-2020, 2020
Short summary
Short summary
We found that increasing the density of chronologies in the tree-ring network resulted in estimated soil moisture conditions that better matched the spatial variability of the values that were instrumentally recorded for droughts and, to a lesser extent, pluvials. By sampling trees in 2010 compared to 1980, the sensitivity of tree rings to soil moisture decreased in the southern portion of our region, where severe drought conditions have been absent over recent decades.
Stefano Segadelli, Federico Grazzini, Veronica Rossi, Margherita Aguzzi, Silvia Marvelli, Marco Marchesini, Alessandro Chelli, Roberto Francese, Maria Teresa De Nardo, and Sandro Nanni
Clim. Past, 16, 1547–1564, https://doi.org/10.5194/cp-16-1547-2020, https://doi.org/10.5194/cp-16-1547-2020, 2020
Short summary
Short summary
In an attempt to consolidate trends in the hydrological cycle induced by recent warming, we conducted a multidisciplinary study combining meteorological data, climate proxies from the literature, and original coring and pollen data acquired in an area that has been hit by record-breaking precipitation events. A detailed study of recent flash-flood deposits compared with fossil peat bog and lake sediments supports the expected increase in precipitation intensity during warm climatic phases.
Bo Cheng, Jennifer Adams, Jianhui Chen, Aifeng Zhou, Qing Zhang, and Anson W. Mackay
Clim. Past, 16, 543–554, https://doi.org/10.5194/cp-16-543-2020, https://doi.org/10.5194/cp-16-543-2020, 2020
Short summary
Short summary
The Qinling mountains in China are biodiversity rich. We studied one of the high-latitude lakes on Mount Taibai with a view to looking at how aquatic diversity responded to long-term changes in climate over the past 3500 years. We specifically looked at a group of single-celled algae called diatoms, as they are very sensitive to the environment. We found that these algae changed gradually over time, but they showed abrupt change during the period known as the Little Ice Age, about 400 years ago.
Xingxing Liu, Youbin Sun, Jef Vandenberghe, Peng Cheng, Xu Zhang, Evan J. Gowan, Gerrit Lohmann, and Zhisheng An
Clim. Past, 16, 315–324, https://doi.org/10.5194/cp-16-315-2020, https://doi.org/10.5194/cp-16-315-2020, 2020
Short summary
Short summary
The East Asian summer monsoon and winter monsoon are anticorrelated on a centennial timescale during 16–1 ka. The centennial monsoon variability is connected to changes of both solar activity and North Atlantic cooling events during the Early Holocene. Then, North Atlantic cooling became the major forcing of events during the Late Holocene. This work presents the great challenge and potential to understand the response of the monsoon system to global climate changes in the past and the future.
Antonio García-Alix, Jaime L. Toney, Gonzalo Jiménez-Moreno, Carmen Pérez-Martínez, Laura Jiménez, Marta Rodrigo-Gámiz, R. Scott Anderson, Jon Camuera, Francisco J. Jiménez-Espejo, Dhais Peña-Angulo, and María J. Ramos-Román
Clim. Past, 16, 245–263, https://doi.org/10.5194/cp-16-245-2020, https://doi.org/10.5194/cp-16-245-2020, 2020
Short summary
Short summary
In this paper we identify warming thresholds, rates, and forcing mechanisms from a novel alpine temperature record of the southern Iberian Peninsula during the Common Era in order to contextualize the modern warming and its potential impact on these vulnerable alpine ecosystems. To do so, we have developed and applied the first lacustrine temperature calibration in alpine lakes for algal compounds, called long-chain alkyl diols, which is a significant advance in biomarker paleothermometry.
Stef Vansteenberge, Niels J. de Winter, Matthias Sinnesael, Sophie Verheyden, Steven Goderis, Stijn J. M. Van Malderen, Frank Vanhaecke, and Philippe Claeys
Clim. Past, 16, 141–160, https://doi.org/10.5194/cp-16-141-2020, https://doi.org/10.5194/cp-16-141-2020, 2020
Short summary
Short summary
We measured the chemical composition (trace-element concentrations and stable-isotope ratios) of a Belgian speleothem that deposited annual layers. Our sub-annual resolution dataset allows us to investigate how the chemistry of this speleothem recorded changes in the environment and climate in northwestern Europe. We then use this information to reconstruct climate change during the 16th and 17th century on the seasonal scale and demonstrate that environmental change drives speleothem chemistry.
Alexander Land, Sabine Remmele, Jutta Hofmann, Daniel Reichle, Margaret Eppli, Christian Zang, Allan Buras, Sebastian Hein, and Reiner Zimmermann
Clim. Past, 15, 1677–1690, https://doi.org/10.5194/cp-15-1677-2019, https://doi.org/10.5194/cp-15-1677-2019, 2019
Short summary
Short summary
With the use of precipitation sensitive oak ring-width series from the Main River region (southern Germany) a 2000-year long hydroclimate reconstruction has been developed. The ring series are sensitive to the sum of rainfall from 26 February to 6 July. This region suffered from severe, long-lasting droughts in the past two millennia (e.g., AD 500/510s, 940s, 1170s, 1390s and 1160s). In the AD 550s, 1050s, 1310s and 1480s, multi-year periods with high rainfall hit the region.
Nils Weitzel, Andreas Hense, and Christian Ohlwein
Clim. Past, 15, 1275–1301, https://doi.org/10.5194/cp-15-1275-2019, https://doi.org/10.5194/cp-15-1275-2019, 2019
Short summary
Short summary
A new method for probabilistic spatial reconstructions of past climate states is presented, which combines pollen data with a multi-model ensemble of climate simulations in a Bayesian framework. The approach is applied to reconstruct summer and winter temperature in Europe during the mid-Holocene. Our reconstructions account for multiple sources of uncertainty and are well suited for quantitative statistical analyses of the climate under different forcing conditions.
Johannes Hepp, Lorenz Wüthrich, Tobias Bromm, Marcel Bliedtner, Imke Kathrin Schäfer, Bruno Glaser, Kazimierz Rozanski, Frank Sirocko, Roland Zech, and Michael Zech
Clim. Past, 15, 713–733, https://doi.org/10.5194/cp-15-713-2019, https://doi.org/10.5194/cp-15-713-2019, 2019
Olga V. Churakova (Sidorova), Marina V. Fonti, Matthias Saurer, Sébastien Guillet, Christophe Corona, Patrick Fonti, Vladimir S. Myglan, Alexander V. Kirdyanov, Oksana V. Naumova, Dmitriy V. Ovchinnikov, Alexander V. Shashkin, Irina P. Panyushkina, Ulf Büntgen, Malcolm K. Hughes, Eugene A. Vaganov, Rolf T. W. Siegwolf, and Markus Stoffel
Clim. Past, 15, 685–700, https://doi.org/10.5194/cp-15-685-2019, https://doi.org/10.5194/cp-15-685-2019, 2019
Short summary
Short summary
We present a unique dataset of multiple tree-ring and stable isotope parameters, representing temperature-sensitive Siberian ecotones, to assess climatic impacts after six large stratospheric volcanic eruptions at 535, 540, 1257, 1640, 1815, and 1991 CE. Besides the well-documented effects of temperature derived from tree-ring width and latewood density, stable carbon and oxygen isotopes in tree-ring cellulose provide information about moisture and sunshine duration changes after the events.
Monica Bini, Giovanni Zanchetta, Aurel Perşoiu, Rosine Cartier, Albert Català, Isabel Cacho, Jonathan R. Dean, Federico Di Rita, Russell N. Drysdale, Martin Finnè, Ilaria Isola, Bassem Jalali, Fabrizio Lirer, Donatella Magri, Alessia Masi, Leszek Marks, Anna Maria Mercuri, Odile Peyron, Laura Sadori, Marie-Alexandrine Sicre, Fabian Welc, Christoph Zielhofer, and Elodie Brisset
Clim. Past, 15, 555–577, https://doi.org/10.5194/cp-15-555-2019, https://doi.org/10.5194/cp-15-555-2019, 2019
Short summary
Short summary
The Mediterranean region has returned some of the clearest evidence of a climatically dry period occurring approximately 4200 years ago. We reviewed selected proxies to infer regional climate patterns between 4.3 and 3.8 ka. Temperature data suggest a cooling anomaly, even if this is not uniform, whereas winter was drier, along with dry summers. However, some exceptions to this prevail, where wetter condition seems to have persisted, suggesting regional heterogeneity.
Amy J. Dougherty, Jeong-Heon Choi, Chris S. M. Turney, and Anthony Dosseto
Clim. Past, 15, 389–404, https://doi.org/10.5194/cp-15-389-2019, https://doi.org/10.5194/cp-15-389-2019, 2019
Áslaug Geirsdóttir, Gifford H. Miller, John T. Andrews, David J. Harning, Leif S. Anderson, Christopher Florian, Darren J. Larsen, and Thor Thordarson
Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, https://doi.org/10.5194/cp-15-25-2019, 2019
Short summary
Short summary
Compositing climate proxies in sediment from seven Iceland lakes documents abrupt summer cooling between 4.5 and 4.0 ka, statistically indistinguishable from 4.2 ka. Although the decline in summer insolation was an important factor, a combination of superposed changes in ocean circulation and explosive Icelandic volcanism were likely responsible for the abrupt perturbation recorded by our proxies. Lake and catchment proxies recovered to a colder equilibrium state following the perturbation.
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Gayatri Kathayat, Ashish Sinha, R. Lawrence Edwards, and Liangcheng Tan
Clim. Past, 14, 1805–1817, https://doi.org/10.5194/cp-14-1805-2018, https://doi.org/10.5194/cp-14-1805-2018, 2018
Short summary
Short summary
The collapses of several Neolithic cultures in China are considered to have been associated with abrupt climate change during the 4.2 ka BP event; however, the hydroclimate of this event in China is still poorly known. Based on stalagmite records from monsoonal China, we found that north China was dry but south China was wet during this event. We propose that the rain belt remained longer at its southern position, giving rise to a pronounced humidity gradient between north and south China.
Alice Callegaro, Dario Battistel, Natalie M. Kehrwald, Felipe Matsubara Pereira, Torben Kirchgeorg, Maria del Carmen Villoslada Hidalgo, Broxton W. Bird, and Carlo Barbante
Clim. Past, 14, 1543–1563, https://doi.org/10.5194/cp-14-1543-2018, https://doi.org/10.5194/cp-14-1543-2018, 2018
Short summary
Short summary
Holocene fires and vegetation are reconstructed using different molecular markers with a single analytical method, applied for the first time to lake sediments from Tibet. The early Holocene shows oscillations between grasses and conifers, with smouldering fires represented by levoglucosan peaks, and high-temperature fires represented by PAHs. The lack of human FeSts excludes local human influence on fire and vegetation changes. Late Holocene displays an increase in local to regional combustion.
Kees Nooren, Wim Z. Hoek, Brian J. Dermody, Didier Galop, Sarah Metcalfe, Gerald Islebe, and Hans Middelkoop
Clim. Past, 14, 1253–1273, https://doi.org/10.5194/cp-14-1253-2018, https://doi.org/10.5194/cp-14-1253-2018, 2018
Short summary
Short summary
We present two new palaeoclimatic records for the central Maya lowlands, adding valuable new insights to the impact of climate change on the development of Maya civilisation. Lake Tuspan's diatom record is indicative of precipitation changes at a local scale, while a beach ridge elevation record from the world's largest late Holocene beach ridge plain provides a regional picture.
Markus Czymzik, Raimund Muscheler, Florian Adolphi, Florian Mekhaldi, Nadine Dräger, Florian Ott, Michał Słowinski, Mirosław Błaszkiewicz, Ala Aldahan, Göran Possnert, and Achim Brauer
Clim. Past, 14, 687–696, https://doi.org/10.5194/cp-14-687-2018, https://doi.org/10.5194/cp-14-687-2018, 2018
Short summary
Short summary
Our results provide a proof of concept for facilitating 10Be in varved lake sediments as a novel synchronization tool required for investigating leads and lags of proxy responses to climate variability. They also point to some limitations of 10Be in these archives mainly connected to in-lake sediment resuspension processes.
Darrell S. Kaufman and PAGES 2k special-issue editorial team
Clim. Past, 14, 593–600, https://doi.org/10.5194/cp-14-593-2018, https://doi.org/10.5194/cp-14-593-2018, 2018
Short summary
Short summary
We explain the procedure used to attain a high and consistent level of data stewardship across a special issue of the journal Climate of the Past. We discuss the challenges related to (1) determining which data are essential for public archival, (2) using data generated by others, and (3) understanding data citations. We anticipate that open-data sharing in paleo sciences will accelerate as the advantages become more evident and as practices that reduce data loss become the accepted convention.
Haipeng Wang, Jianhui Chen, Shengda Zhang, David D. Zhang, Zongli Wang, Qinghai Xu, Shengqian Chen, Shijin Wang, Shichang Kang, and Fahu Chen
Clim. Past, 14, 383–396, https://doi.org/10.5194/cp-14-383-2018, https://doi.org/10.5194/cp-14-383-2018, 2018
Short summary
Short summary
The chironomid-inferred temperature record from Gonghai Lake exhibits a stepwise decreasing trend since 4 ka. A cold event in the Era of Disunity, the Sui-Tang Warm Period, the Medieval Warm Period and the Little Ice Age can all be recognized in our record, as well as in many other temperature reconstructions in China. Local wars in Shanxi Province, documented in the historical literature during the past 2700 years, are statistically significantly correlated with changes in temperature.
Hansi K. A. Singh, Gregory J. Hakim, Robert Tardif, Julien Emile-Geay, and David C. Noone
Clim. Past, 14, 157–174, https://doi.org/10.5194/cp-14-157-2018, https://doi.org/10.5194/cp-14-157-2018, 2018
Short summary
Short summary
The Atlantic Multidecadal Oscillation (AMO) is prominent in the climate system. We study the AMO over the last 2000 years using a novel proxy framework, the Last Millennium Reanalysis. We find that the AMO is linked to continental warming, Arctic sea ice retreat, and an Atlantic precipitation shift. Low clouds decrease globally. We find no distinct multidecadal spectral peak in the AMO over the last 2 millennia, suggesting that human activities may have enhanced the AMO in the modern era.
Ny Riavo Gilbertinie Voarintsoa, Loren Bruce Railsback, George Albert Brook, Lixin Wang, Gayatri Kathayat, Hai Cheng, Xianglei Li, Richard Lawrence Edwards, Amos Fety Michel Rakotondrazafy, and Marie Olga Madison Razanatseheno
Clim. Past, 13, 1771–1790, https://doi.org/10.5194/cp-13-1771-2017, https://doi.org/10.5194/cp-13-1771-2017, 2017
Short summary
Short summary
This research has been an investigation of two stalagmites from two caves in NW Madagascar to reconstruct the region's paleoenvironmental changes, and to understand the linkage of such changes to the dynamics of the ITCZ. Stable isotopes, mineralogy, and petrography suggest wetter climate conditions than today during the early and late Holocene, when the mean ITCZ was south, and drier during the mid-Holocene when the ITCZ was north.
Wei Ding, Qinghai Xu, and Pavel E. Tarasov
Clim. Past, 13, 1285–1300, https://doi.org/10.5194/cp-13-1285-2017, https://doi.org/10.5194/cp-13-1285-2017, 2017
Short summary
Short summary
Pollen-based past climate reconstruction for regions with long-term human occupation is always controversial. We examined the bias induced by the human impact on vegetation in a climate reconstruction for temperate eastern China by comparing the deviations in the reconstructed results for a fossil record based on two pollen–climate calibration sets. Climatic signals in pollen assemblages are indeed obscured by human impact; however, the extent of the bias could be assessed.
Oliver Rach, Ansgar Kahmen, Achim Brauer, and Dirk Sachse
Clim. Past, 13, 741–757, https://doi.org/10.5194/cp-13-741-2017, https://doi.org/10.5194/cp-13-741-2017, 2017
Short summary
Short summary
Currently, reconstructions of past changes in the hydrological cycle are usually qualitative, which is a major drawback for testing the accuracy of models in predicting future responses. Here we present a proof of concept of a novel approach to deriving quantitative paleohydrological data, i.e. changes in relative humidity, from lacustrine sediment archives, employing a combination of organic geochemical methods and plant physiological modeling.
Juan José Gómez-Navarro, Eduardo Zorita, Christoph C. Raible, and Raphael Neukom
Clim. Past, 13, 629–648, https://doi.org/10.5194/cp-13-629-2017, https://doi.org/10.5194/cp-13-629-2017, 2017
Short summary
Short summary
This contribution aims at assessing to what extent the analogue method, a classic technique used in other branches of meteorology and climatology, can be used to perform gridded reconstructions of annual temperature based on the limited information from available but un-calibrated proxies spread across different locations of the world. We conclude that it is indeed possible, albeit with certain limitations that render the method comparable to more classic techniques.
Atsushi Okazaki and Kei Yoshimura
Clim. Past, 13, 379–393, https://doi.org/10.5194/cp-13-379-2017, https://doi.org/10.5194/cp-13-379-2017, 2017
Short summary
Short summary
Data assimilation has been successfully applied in the field of paleoclimatology to reconstruct past climate. However, data reconstructed from proxies have been assimilated, as opposed to the actual proxy values, which prevented full utilization of the information recorded in the proxies. This study propose a new data assimilation system in which actual proxy data are directly assimilated.
Enlou Zhang, Jie Chang, Yanmin Cao, Hongqu Tang, Pete Langdon, James Shulmeister, Rong Wang, Xiangdong Yang, and Ji Shen
Clim. Past, 13, 185–199, https://doi.org/10.5194/cp-13-185-2017, https://doi.org/10.5194/cp-13-185-2017, 2017
Short summary
Short summary
This paper reports the first development of sub-fossil chironomid-based mean July temperature transfer functions from China. The transfer functions yield reliable reconstructions that are comparable to the instrumental record. The application of this new tool will provide long-term quantitative palaeoclimate estimates from south-western China which is a critical region for understanding the dynamic and evolution of the Indian Ocean south-west Monsoon system.
Kira Rehfeld, Mathias Trachsel, Richard J. Telford, and Thomas Laepple
Clim. Past, 12, 2255–2270, https://doi.org/10.5194/cp-12-2255-2016, https://doi.org/10.5194/cp-12-2255-2016, 2016
Short summary
Short summary
Indirect evidence on past climate comes from the former composition of ecological communities such as plants, preserved as pollen grains in sediments of lakes. Transfer functions convert relative counts of species to a climatologically meaningful scale (e.g. annual mean temperature in degrees C). We show that the fundamental assumptions in the algorithms impact the reconstruction results in he idealized model world, in particular if the reconstructed variables were not ecologically relevant.
Qing Yang, Xiaoqiang Li, Xinying Zhou, Keliang Zhao, and Nan Sun
Clim. Past, 12, 2229–2240, https://doi.org/10.5194/cp-12-2229-2016, https://doi.org/10.5194/cp-12-2229-2016, 2016
Short summary
Short summary
The fossilized seeds of common millet are suited to the production of quantitative Holocene precipitation reconstructions. Our reconstructed results showed that summer precipitation from 7.7–3.4 ka BP was ~ 50 mm, or 17 % higher than present levels. Maximal mean summer precipitation peaked at 414 mm during 6.1–5.5 ka BP, ~ 109 mm, or 36 % higher than today, indicating the EASM peaked at this time. This work can provide a new proxy for further research into continuous paleoprecipitation sequences.
Michael Deininger, Martin Werner, and Frank McDermott
Clim. Past, 12, 2127–2143, https://doi.org/10.5194/cp-12-2127-2016, https://doi.org/10.5194/cp-12-2127-2016, 2016
Short summary
Short summary
This study investigates the NAO (Northern Atlantic Oscillation)-related mechanisms that control winter precipitation stable oxygen and hydrogen isotope gradients across Europe. The results show that past longitudinal stable oxygen and hydrogen isotope gradients in European rainfall stored in palaeoclimate archives (e.g. speleothems) can be used to infer the past winter NAO modes from its variations.
Liangjun Zhu, Yuandong Zhang, Zongshan Li, Binde Guo, and Xiaochun Wang
Clim. Past, 12, 1485–1498, https://doi.org/10.5194/cp-12-1485-2016, https://doi.org/10.5194/cp-12-1485-2016, 2016
Short summary
Short summary
We present a 368-year late summer maximum temperature reconstruction based on spruce tree rings. It touches on the critical topic of climate reconstruction in the eastern edge of Tibetan Plateau and represents an extension and enhancement of climate records for this area. The Little Ice Age was well represented and 20th century warming was not obvious in this reconstruction. This temperature variation may be affected by global land–sea atmospheric circulation as well as solar and volcanic forcing.
Frazer Matthews-Bird, Stephen J. Brooks, Philip B. Holden, Encarni Montoya, and William D. Gosling
Clim. Past, 12, 1263–1280, https://doi.org/10.5194/cp-12-1263-2016, https://doi.org/10.5194/cp-12-1263-2016, 2016
Short summary
Short summary
Chironomidae are a family of two-winged aquatic fly of the order Diptera. The family is species rich (> 5000 described species) and extremely sensitive to environmental change, particualy temperature. Across the Northern Hemisphere, chironomids have been widely used as paleotemperature proxies as the chitinous remains of the insect are readily preserved in lake sediments. This is the first study using chironomids as paleotemperature proxies in tropical South America.
Karsten Schittek, Sebastian T. Kock, Andreas Lücke, Jonathan Hense, Christian Ohlendorf, Julio J. Kulemeyer, Liliana C. Lupo, and Frank Schäbitz
Clim. Past, 12, 1165–1180, https://doi.org/10.5194/cp-12-1165-2016, https://doi.org/10.5194/cp-12-1165-2016, 2016
Short summary
Short summary
Cushion peatlands are versatile climate archives for the study of past environmental changes. We present the environmental history for the last 2100 years of Cerro Tuzgle peatland, which is located in the NW Argentine Puna. The results reflect prominent late Holocene climate anomalies and provide evidence that Northern Hemisphere climate oscillations were extensive. Volcanic forcing at the beginning of the 19th century seems to have had an impact on climatic settings in the Central Andes
Nicholas P. McKay and Julien Emile-Geay
Clim. Past, 12, 1093–1100, https://doi.org/10.5194/cp-12-1093-2016, https://doi.org/10.5194/cp-12-1093-2016, 2016
Short summary
Short summary
The lack of accepted data formats and data standards in paleoclimatology is a growing problem that slows progress in the field. Here, we propose a preliminary data standard for paleoclimate data, general enough to accommodate all the proxy and measurement types encountered in a large international collaboration (PAGES 2k). We also introduce a data format for such structured data (Linked Paleo Data, or LiPD), leveraging recent advances in knowledge representation (Linked Open Data).
Niamh Cahill, Andrew C. Kemp, Benjamin P. Horton, and Andrew C. Parnell
Clim. Past, 12, 525–542, https://doi.org/10.5194/cp-12-525-2016, https://doi.org/10.5194/cp-12-525-2016, 2016
Short summary
Short summary
We propose a Bayesian model for the reconstruction and analysis of former sea levels. The model provides a single, unifying framework for reconstructing and analyzing sea level through time with fully quantified uncertainty. We illustrate our approach using a case study of Common Era (last 2000 years) sea levels from New Jersey.
J. Emile-Geay and M. Tingley
Clim. Past, 12, 31–50, https://doi.org/10.5194/cp-12-31-2016, https://doi.org/10.5194/cp-12-31-2016, 2016
Short summary
Short summary
Ignoring nonlinearity in palaeoclimate records (e.g. continental run-off proxies) runs the risk of severely overstating changes in climate variability. Even with the correct model and parameters, some information is irretrievably lost by such proxies. However, we find that a simple empirical transform can do much to improve the situation, and makes them amenable to classical analyses. Doing so on two palaeo-ENSO records markedly changes some of the quantitative inferences made from such records.
Cited articles
Bahri, H., Dignac, M.-F., Rumpel, C., Rasse, D. P., Chenu, C., and Mariotti,
A.: Lignin turnover kinetics in an agricultural soil is monomer specific,
Soil Biol. Biochem., 38, 1977–1988,
https://doi.org/10.1016/j.soilbio.2006.01.003, 2006. a, b
Blyth, A. J. and Watson, J. S.: Thermochemolysis of organic matter preserved
in stalagmites: A preliminary study, Org. Geochem., 40, 1029–1031,
https://doi.org/10.1016/j.orggeochem.2009.06.007, 2009. a
Blyth, A. J., Asrat, A., Baker, A., Gulliver, P., Leng, M. J., and Genty, D.:
A new approach to detecting vegetation and land-use Change using
high-resolution lipid biomarker records in stalagmites, Quaternary
Res., 68, 314–324, https://doi.org/10.1016/j.yqres.2007.08.002, 2007. a
Blyth, A. J., Baker, A., Collins, M. J., Penkman, K. E., Gilmour, M. A., Moss,
J. S., Genty, D., and Drysdale, R. N.: Molecular organic matter in
speleothems and its potential as an environmental proxy, Quaternary Sci.
Rev., 27, 905–921, https://doi.org/10.1016/j.quascirev.2008.02.002, 2008. a
Blyth, A. J., Baker, A., Thomas, L. E., and van Calsteren, P.: A 2000-year
lipid biomarker record preserved in a stalagmite from north-west Scotland,
J. Quat. Sci., 26, 326–334, https://doi.org/10.1002/jqs.1457, 2011. a
Blyth, A. J., Shutova, Y., and Smith, C.: δ13C analysis of bulk
organic matter in speleothems using liquid chromatography–isotope ratio mass
spectrometry, Org. Geochem., 55, 22–25,
https://doi.org/10.1016/j.orggeochem.2012.11.003, 2013. a
Blyth, A. J., Jex, C. N., Baker, A., Khan, S. J., and Schouten, S.:
Contrasting distributions of glycerol dialkyl glycerol tetraethers (GDGTs)
in speleothems and associated soils, Org. Geochem., 69, 1–10,
https://doi.org/10.1016/j.orggeochem.2014.01.013, 2014. a
Blyth, A. J., Hartland, A., and Baker, A.: Organic proxies in speleothems –
New developments, advantages and limitations, Quaternary Sci. Rev.,
149, 1–17, https://doi.org/10.1016/j.quascirev.2016.07.001, 2016. a, b
Boerjan, W., Ralph, J., and Baucher, M.: Lignin Biosynthesis, Annu. Rev.
Plant Biol., 54, 519–546,
https://doi.org/10.1146/annurev.arplant.54.031902.134938, 2003. a
Bosle, J. M., Mischel, S. A., Schulze, A.-L., Scholz, D., and Hoffmann, T.:
Quantification of low molecular weight fatty acids in cave drip water and
speleothems using HPLC-ESI-IT/MS – development and validation of a
selective method, Anal. Bioanal. Chem., 406, 3167–3177,
https://doi.org/10.1007/s00216-014-7743-6, 2014. a, b
Bush, R. T. and McInerney, F. A.: Leaf wax n-alkane distributions in and
across modern plants: Implications for paleoecology and chemotaxonomy,
Geochim. Cosmochim. Ac., 117, 161–179,
https://doi.org/10.1016/j.gca.2013.04.016, 2013. a
Cheng, H., Edwards, R. L., Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly,
M., Kathayat, G., Wang, X., Li, X., Kong, X., Wang, Y., Ning, Y., and Zhang,
H.: The Asian monsoon over the past 640,000 years and ice age terminations,
Nature, 534, 640–646, https://doi.org/10.1038/nature18591, 2016. a
Dreybrodt, W. and Scholz, D.: Climatic dependence of stable carbon and oxygen
isotope signals recorded in speleothems: From soil water to speleothem
calcite, Geochim. Cosmochim. Ac., 75, 734–752,
https://doi.org/10.1016/j.gca.2010.11.002, 2011. a
Fairchild, I. J. and Baker, A.: Speleothem Science, John Wiley & Sons,
Ltd, Chichester, UK, https://doi.org/10.1002/9781444361094, 2012. a, b
Fairchild, I. J. and Treble, P. C.: Trace elements in speleothems as recorders
of environmental change, Quaternary Sci. Rev., 28, 449–468,
https://doi.org/10.1016/j.quascirev.2008.11.007, 2009. a, b
Fohlmeister, J., Kromer, B., and Mangini, A.: The Influence of Soil Organic
Matter Age Spectrum on the Reconstruction of Atmospheric 14C Levels Via
Stalagmites, Radiocarbon, 53, 99–115, https://doi.org/10.1017/S003382220003438X,
2011. a
Hansen, M., Scholz, D., Froeschmann, M.-L., Schöne, B. R., and Spötl,
C.: Carbon isotope exchange between gaseous CO2 and thin solution films:
Artificial cave experiments and a complete diffusion-reaction model,
Geochim. Cosmochim. Ac., 211, 28–47,
https://doi.org/10.1016/j.gca.2017.05.005, 2017. a, b
Hedges, J. I. and Mann, D. C.: The characterization of plant tissues by their
lignin oxidation products, Geochim. Cosmochim. Ac., 43,
1803–1807, https://doi.org/10.1016/0016-7037(79)90028-0, 1979. a
Hernes, P. J. and Benner, R.: Transport and diagenesis of dissolved and
particulate terrigenous organic matter in the North Pacific Ocean, Deep-Sea
Res. Pt. I, 49, 2119–2132,
https://doi.org/10.1016/S0967-0637(02)00128-0,
2002. a
Hernes, P. J., Robinson, A. C., and Aufdenkampe, A. K.: Fractionation of
lignin during leaching and sorption and implications for organic matter
“freshness”, Geophys. Res. Lett., 34, 1921,
https://doi.org/10.1029/2007GL031017, 2007. a, b, c, d
Hernes, P. J., Kaiser, K., Dyda, R. Y., and Cerli, C.: Molecular trickery in
soil organic matter: hidden lignin, Environ. Sci. Technol.,
47, 9077–9085, https://doi.org/10.1021/es401019n, 2013. a, b, c
Jex, C. N., Pate, G. H., Blyth, A. J., Spencer, R. G., Hernes, P. J., Khan,
S. J., and Baker, A.: Lignin biogeochemistry: from modern processes to
Quaternary archives, Quaternary Sci. Rev., 87, 46–59,
https://doi.org/10.1016/j.quascirev.2013.12.028, 2014. a, b, c
Kirwan, J. A., Broadhurst, D. I., Davidson, R. L., and Viant, M. R.:
Characterising and correcting batch variation in an automated direct
infusion mass spectrometry (DIMS) metabolomics workflow, Anal.
Bioanal. Chem., 405, 5147–5157, https://doi.org/10.1007/s00216-013-6856-7,
2013. a
Kögel-Knabner, I.: The macromolecular organic composition of plant and
microbial residues as inputs to soil organic matter, Soil Biol.
Biochem., 34, 139–162, https://doi.org/10.1016/S0038-0717(01)00158-4, 2002. a, b
Lachniet, M. S.: Climatic and environmental controls on speleothem
oxygen-isotope values, Quaternary Sci. Rev., 28, 412–432,
https://doi.org/10.1016/j.quascirev.2008.10.021, 2009. a
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter,
Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015. a
Litt, T., Schölzel, C., Kühl, N., and Brauer, A.: Vegetation and
climate history in the Westeifel Volcanic Field (Germany) during the past 11 000 years based on annually laminated lacustrine maar sediments, Boreas,
38, 679–690, https://doi.org/10.1111/j.1502-3885.2009.00096.x, 2009. a, b, c
McDermott, F.: Palaeo-climate reconstruction from stable isotope variations in
speleothems: a review, Quaternary Sci. Rev., 23, 901–918,
https://doi.org/10.1016/j.quascirev.2003.06.021, 2004. a
Mischel, S. A., Scholz, D., and Spötl, C.: δ18O values of cave
drip water: a promising proxy for the reconstruction of the North Atlantic
Oscillation?, Clim. Dynam., 45, 3035–3050,
https://doi.org/10.1007/s00382-015-2521-5, 2015. a, b, c
Mischel, S. A., Mertz-Kraus, R., Jochum, K. P., and Scholz, D.: TERMITE: An R
script for fast reduction of laser ablation inductively coupled plasma mass
spectrometry data and its application to trace element measurements, Rapid
Commun. Mass Sp., 31, 1079–1087,
https://doi.org/10.1002/rcm.7895, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Opsahl, S. and Benner, R.: Early diagenesis of vascular plant tissues: Lignin
and cutin decomposition and biogeochemical implications, Geochim.
Cosmochim. Ac., 59, 4889–4904, https://doi.org/10.1016/0016-7037(95)00348-7, 1995. a
Polag, D., Scholz, D., Mühlinghaus, C., Spötl, C.,
Schröder-Ritzrau, A., Segl, M., and Mangini, A.: Stable isotope
fractionation in speleothems: Laboratory experiments, Chem. Geol.,
279, 31–39, https://doi.org/10.1016/j.chemgeo.2010.09.016, 2010. a
Quiers, M., Perrette, Y., Chalmin, E., Fanget, B., and Poulenard, J.:
Geochemical mapping of organic carbon in stalagmites using liquid-phase and
solid-phase fluorescence, Chem. Geol., 411, 240–247,
https://doi.org/10.1016/j.chemgeo.2015.07.012,
2015. a
Richards, D. A. and Dorale, J. A.: Uranium-series Chronology and Environmental
Applications of Speleothems, Rev. Mineral. Geochem., 52,
407–460, https://doi.org/10.2113/0520407, 2003. a
Rutlidge, H., Andersen, M. S., Baker, A., Chinu, K. J., Cuthbert, M. O., Jex,
C. N., Marjo, C. E., Markowska, M., and Rau, G. C.: Organic characterisation
of cave drip water by LC-OCD and fluorescence analysis, Geochim.
Cosmochim. Ac., 166, 15–28, https://doi.org/10.1016/j.gca.2015.05.042,
2015. a
Scholz, D. and Hoffmann, D.: 230Th∕U-dating of fossil corals and speleothems,
Quaternary Sci. J., 57, 52–76, 2008. a
Scholz, D. and Hoffmann, D. L.: StalAge – An algorithm designed for
construction of speleothem age models, Quat. Geochronol., 6,
369–382, https://doi.org/10.1016/j.quageo.2011.02.002, 2011. a
Scholz, D., Frisia, S., Borsato, A., Spötl, C., Fohlmeister, J., Mudelsee, M., Miorandi, R., and Mangini, A.: Holocene climate variability in north-eastern Italy: potential influence of the NAO and solar activity recorded by speleothem data, Clim. Past, 8, 1367–1383, https://doi.org/10.5194/cp-8-1367-2012, 2012. a
Standley, L. J. and Kaplan, L. A.: Isolation and analysis of lignin-derived
phenols in aquatic humic substances: improvements on the procedures,
Org. Geochem., 28, 689–697, https://doi.org/10.1016/S0146-6380(98)00041-2,
1998. a
Surowiec, I., Johansson, E., Torell, F., Idborg, H., Gunnarsson, I.,
Svenungsson, E., Jakobsson, P.-J., and Trygg, J.: Multivariate strategy for
the sample selection and integration of multi-batch data in metabolomics,
Metabolomics, 13, 114,
https://doi.org/10.1007/s11306-017-1248-1, 2017. a
Tegen, I. and Dörr, H.: 14C Measurements of Soil Organic Matter, Soil CO2
and Dissolved Organic Carbon (1987–1992), Radiocarbon, 38, 247–251,
https://doi.org/10.1017/S0033822200017628, 1996. a
Thevenot, M., Dignac, M.-F., and Rumpel, C.: Fate of lignins in soils: A
review, Soil Biol. Biochem., 42, 1200–1211,
https://doi.org/10.1016/j.soilbio.2010.03.017, 2010. a, b, c
Trumbore, S.: Age of soil organic matter and soil respiration: radiocarbon
constraints on belowground C dynamics, Ecol. Appl., 10,
399–411, 2000. a
Wehrens, R., Hageman, J. A., van Eeuwijk, F., Kooke, R., Flood, P. J.,
Wijnker, E., Keurentjes, J. J. B., Lommen, A., van Eekelen, H. D. L. M.,
Hall, R. D., Mumm, R., and de Vos, R. C. H.: Improved batch correction in
untargeted MS-based metabolomics, Metabolomics, 12, 88, https://doi.org/10.1007/s11306-016-1015-8, 2016. a
Wiedner, E., Scholz, D., Mangini, A., Polag, D., Mühlinghaus, C., and Segl,
M.: Investigation of the stable isotope fractionation in speleothems with
laboratory experiments, Quaternary Int., 187, 15–24,
https://doi.org/10.1016/j.quaint.2007.03.017, 2008. a
Wynn, P. M. and Brocks, J. J.: A framework for the extraction and
interpretation of organic molecules in speleothem carbonate, Rapid
Commun. Mass Sp., 28, 845–854, https://doi.org/10.1002/rcm.6843,
2014. a, b
Xie, S.: Lipid distribution in a subtropical southern China stalagmite as a
record of soil ecosystem response to paleoclimate change, Quaternary
Res., 60, 340–347, https://doi.org/10.1016/j.qres.2003.07.010, 2003.
a
Zhang, T., Li, X., Sun, S., Lan, H., Du, P., and Wang, M.: Determination of
lignin in marine sediment using alkaline cupric oxide oxidation-solid phase
extraction-on-column derivatization-gas chromatography, J. Ocean
U. China, 12, 63–69, https://doi.org/10.1007/s11802-011-1936-z, 2013. a
Short summary
This is the first quantitative study of lignin biomarkers in stalagmites and cave drip water. Lignin is only produced by higher plants; therefore, its analysis can be used to reconstruct the vegetation of the past. We compared our lignin results with stable isotope and trace element records from the same samples and found correlations or similarities with P, Ba, U and Mg concentrations as well as δ13C values. These results can help to better interpret other vegetation proxies.
This is the first quantitative study of lignin biomarkers in stalagmites and cave drip water....