Articles | Volume 14, issue 12
https://doi.org/10.5194/cp-14-1869-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/cp-14-1869-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the timing and structure of the 4.2 ka event in the Indian summer monsoon domain from an annually resolved speleothem record from Northeast India
Gayatri Kathayat
CORRESPONDING AUTHOR
Institute of Global Environmental Change, Xi'an Jiaotong
University, Xi'an, China
Hai Cheng
CORRESPONDING AUTHOR
Institute of Global Environmental Change, Xi'an Jiaotong
University, Xi'an, China
Department of Earth Sciences, University of Minnesota, Minneapolis,
USA
Ashish Sinha
Department of Earth Science, California State University Dominguez
Hills, Carson, USA
Max Berkelhammer
Department of Earth and Environmental Sciences, University of
Illinois, Chicago, USA
Haiwei Zhang
Institute of Global Environmental Change, Xi'an Jiaotong
University, Xi'an, China
Pengzhen Duan
Institute of Global Environmental Change, Xi'an Jiaotong
University, Xi'an, China
Hanying Li
Institute of Global Environmental Change, Xi'an Jiaotong
University, Xi'an, China
Xianglei Li
Institute of Global Environmental Change, Xi'an Jiaotong
University, Xi'an, China
Youfeng Ning
Institute of Global Environmental Change, Xi'an Jiaotong
University, Xi'an, China
R. Lawrence Edwards
Department of Earth Sciences, University of Minnesota, Minneapolis,
USA
Related authors
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Ashish Sinha, Gayatri Kathayat, and Hanying Li
Clim. Past, 16, 211–225, https://doi.org/10.5194/cp-16-211-2020, https://doi.org/10.5194/cp-16-211-2020, 2020
Short summary
Short summary
Few studies have paid attention to the important effect of nonsummer monsoon (NSM) precipitation on the speleothem δ18O in SE China. We find the summer monsoon precipitation is equivalent to NSM precipitation amount in the area of spring persistent rain in SE China, and we discuss the relationships between seasonal precipitation amount, moisture source, δ18O, and ENSO. Characterizing the spatial differences in seasonal precipitation is key to interpreting the speleothem δ18O record.
Hanying Li, Hai Cheng, Ashish Sinha, Gayatri Kathayat, Christoph Spötl, Aurèle Anquetil André, Arnaud Meunier, Jayant Biswas, Pengzhen Duan, Youfeng Ning, and Richard Lawrence Edwards
Clim. Past, 14, 1881–1891, https://doi.org/10.5194/cp-14-1881-2018, https://doi.org/10.5194/cp-14-1881-2018, 2018
Short summary
Short summary
The
4.2 ka eventbetween 4.2 and 3.9 ka has been widely discussed in the Northern Hemsiphere but less reported in the Southern Hemisphere. Here, we use speleothem records from Rodrigues in the southwestern Indian Ocean spanning from 6000 to 3000 years ago to investigate the regional hydro-climatic variability. Our records show no evidence for an unusual climate anomaly between 4.2 and 3.9 ka. Instead, it shows a multi-centennial drought between 3.9 and 3.5 ka.
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Gayatri Kathayat, Ashish Sinha, R. Lawrence Edwards, and Liangcheng Tan
Clim. Past, 14, 1805–1817, https://doi.org/10.5194/cp-14-1805-2018, https://doi.org/10.5194/cp-14-1805-2018, 2018
Short summary
Short summary
The collapses of several Neolithic cultures in China are considered to have been associated with abrupt climate change during the 4.2 ka BP event; however, the hydroclimate of this event in China is still poorly known. Based on stalagmite records from monsoonal China, we found that north China was dry but south China was wet during this event. We propose that the rain belt remained longer at its southern position, giving rise to a pronounced humidity gradient between north and south China.
Hubert B. Vonhof, Sophie Verheyden, Dominique Bonjean, Stéphane Pirson, Michael Weber, Denis Scholz, John Hellstrom, Hai Cheng, Xue Jia, Kévin Di Modica, Gregory Abrams, Marjan A. P. van Nunen, Joost Ruiter, Michèlle van der Does, Daniel Böhl, and Jeroen H. J. L. van der Lubbe
Clim. Past, 20, 2741–2758, https://doi.org/10.5194/cp-20-2741-2024, https://doi.org/10.5194/cp-20-2741-2024, 2024
Short summary
Short summary
The sedimentary sequence in Scladina Cave (Belgium) is well-known for its rich archeological assemblages and its numerous faunal remains. Of particular interest is the presence of a nearly complete jaw bone of a Neanderthal child. In this study, we present new uranium series ages of stalagmites from the archeological sequence that allow more precise dating of the archeological finds. One key result is that the Neanderthal child may be slightly older than previously thought.
Juan Luis Bernal-Wormull, Ana Moreno, Yuri Dublyansky, Christoph Spötl, Reyes Giménez, Carlos Pérez-Mejías, Miguel Bartolomé, Martin Arriolabengoa, Eneko Iriarte, Isabel Cacho, Richard Lawrence Edwards, and Hai Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2024-3612, https://doi.org/10.5194/egusphere-2024-3612, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We present in this manuscript a record of temperature changes during the last deglaciation and the Holocene using isotopes of fluid inclusions in stalagmites from the northeastern region of the Iberian Peninsula. This innovative climate proxy for this study region provides a quantitative understanding of the abrupt temperature changes in southern Europe of the last 16500 years before present.
Timothy J. Pollard, Jon D. Woodhead, Russell N. Drysdale, R. Lawrence Edwards, Xianglei Li, Ashlea N. Wainwright, Mathieu Pythoud, Hai Cheng, John C. Hellstrom, Ilaria Isola, Eleonora Regattieri, Giovanni Zanchetta, and Dylan S. Parmenter
EGUsphere, https://doi.org/10.5194/egusphere-2024-3594, https://doi.org/10.5194/egusphere-2024-3594, 2024
Short summary
Short summary
The uranium-thorium and uranium-lead radiometric dating methods are both capable of dating carbonate samples ranging in age from about 400,000 to 650,000 years. Here we test agreement between the two methods by 'double dating' speleothems (i.e. secondary cave mineral deposits) that grew within this age range. We demonstrate excellent agreement between the two dating methods and discuss their relative strengths and weaknesses.
Hu Yang, Xiaoxu Shi, Xulong Wang, Qingsong Liu, Yi Zhong, Xiaodong Liu, Youbin Sun, Yanjun Cai, Fei Liu, Gerrit Lohmann, Martin Werner, Zhimin Jian, Tainã M. L. Pinho, Hai Cheng, Lijuan Lu, Jiping Liu, Chao-Yuan Yang, Qinghua Yang, Yongyun Hu, Xing Cheng, Jingyu Zhang, and Dake Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2778, https://doi.org/10.5194/egusphere-2024-2778, 2024
Short summary
Short summary
The precession driven low-latitude hydrological cycle is not paced by hemispheric summer insolation, but shifting perihelion.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Hai Cheng, and R. Lawrence Edwards
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-54, https://doi.org/10.5194/cp-2024-54, 2024
Revised manuscript accepted for CP
Short summary
Short summary
This study presents a new speleothem record of the western Mediterranean region that offers new insights into the timeline of glacial terminations TIV, TIII, and TIII.a. The comparison among the studied deglaciations reveals differences in terms of intensity and duration and opens the opportunity to evaluate marine sediment chronologies based on orbital tuning from the North Atlantic and the Western Mediterranean.
Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, and Gina E. Moseley
Clim. Past, 20, 1521–1535, https://doi.org/10.5194/cp-20-1521-2024, https://doi.org/10.5194/cp-20-1521-2024, 2024
Short summary
Short summary
We present a reconstruction of permafrost and snow cover on the British Isles for the Younger Dryas period, a time of extremely cold winters that happened approximately 12 000 years ago. Our results indicate that seasonal sea ice in the North Atlantic was most likely a crucial factor to explain the observed climate shifts during this time.
Pengzhen Duan, Hanying Li, Zhibang Ma, Jingyao Zhao, Xiyu Dong, Ashish Sinha, Peng Hu, Haiwei Zhang, Youfeng Ning, Guangyou Zhu, and Hai Cheng
Clim. Past, 20, 1401–1414, https://doi.org/10.5194/cp-20-1401-2024, https://doi.org/10.5194/cp-20-1401-2024, 2024
Short summary
Short summary
We use multi-proxy speleothem records to reveal a two droughts–one pluvial pattern during 8.5–8.0 ka. The different rebounded rainfall quantity after two droughts causes different behavior of δ13C, suggesting the dominant role of rainfall threshold on the ecosystem. A comparison of different records suggests the prolonged 8.2 ka event is a globally common phenomenon rather than a regional signal. The variability of the AMOC strength is mainly responsible for these climate changes.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Max Berkelhammer, Gerald F. Page, Frank Zurek, Christopher Still, Mariah S. Carbone, William Talavera, Laura Hildebrand, James Byron, Kyle Inthabandith, Angellica Kucinski, Melissa Carter, Kelsey Foss, Wendy Brown, Rosemary W. H. Carroll, Austin Simonpietri, Marshall Worsham, Ian Breckheimer, Anna Ryken, Reed Maxwell, David Gochis, Mark Raleigh, Eric Small, and Kenneth H. Williams
EGUsphere, https://doi.org/10.5194/egusphere-2023-3063, https://doi.org/10.5194/egusphere-2023-3063, 2024
Short summary
Short summary
Warming in montane systems is affecting the amount of snowmelt inputs. This will affect subalpine forests globally that rely on spring snowmelt to support their water demands. We use a network of sensors across in the Upper Colorado Basin to show that changing spring primarily impacts dense forest stands that have high peak water demands. On the other hand, open forest stands show a higher reliance on summer rain and were minimally sensitive to even historically low snow conditions like 2019.
Heather M. Stoll, Chris Day, Franziska Lechleitner, Oliver Kost, Laura Endres, Jakub Sliwinski, Carlos Pérez-Mejías, Hai Cheng, and Denis Scholz
Clim. Past, 19, 2423–2444, https://doi.org/10.5194/cp-19-2423-2023, https://doi.org/10.5194/cp-19-2423-2023, 2023
Short summary
Short summary
Stalagmites formed in caves provide valuable information about past changes in climate and vegetation conditions. In this contribution, we present a new method to better estimate past changes in soil and vegetation productivity using carbon isotopes and trace elements measured in stalagmites. Applying this method to other stalagmites should provide a better indication of past vegetation feedbacks to climate change.
Giselle Utida, Francisco W. Cruz, Mathias Vuille, Angela Ampuero, Valdir F. Novello, Jelena Maksic, Gilvan Sampaio, Hai Cheng, Haiwei Zhang, Fabio Ramos Dias de Andrade, and R. Lawrence Edwards
Clim. Past, 19, 1975–1992, https://doi.org/10.5194/cp-19-1975-2023, https://doi.org/10.5194/cp-19-1975-2023, 2023
Short summary
Short summary
We reconstruct the Intertropical Convergence Zone (ITCZ) behavior during the past 3000 years over northeastern Brazil based on oxygen stable isotopes of stalagmites. Paleoclimate changes were mainly forced by the tropical South Atlantic and tropical Pacific sea surface temperature variability. We describe an ITCZ zonal behavior active around 1100 CE and the period from 1500 to 1750 CE. The dataset also records historical droughts that affected modern human population in this area of Brazil.
Anika Donner, Paul Töchterle, Christoph Spötl, Irka Hajdas, Xianglei Li, R. Lawrence Edwards, and Gina E. Moseley
Clim. Past, 19, 1607–1621, https://doi.org/10.5194/cp-19-1607-2023, https://doi.org/10.5194/cp-19-1607-2023, 2023
Short summary
Short summary
This study investigates the first finding of fine-grained cryogenic cave minerals in Greenland, a type of speleothem that has been notably difficult to date. We present a successful approach for determining the age of these minerals using 230Th / U disequilibrium and 14C dating. We relate the formation of the cryogenic cave minerals to a well-documented extreme weather event in 1889 CE. Additionally, we provide a detailed report on the mineralogical and isotopic composition of these minerals.
Charlotte Honiat, Gabriella Koltai, Yuri Dublyansky, R. Lawrence Edwards, Haiwei Zhang, Hai Cheng, and Christoph Spötl
Clim. Past, 19, 1177–1199, https://doi.org/10.5194/cp-19-1177-2023, https://doi.org/10.5194/cp-19-1177-2023, 2023
Short summary
Short summary
A look at the climate evolution during the last warm period may allow us to test ground for future climate conditions. We quantified the temperature evolution during the Last Interglacial using a tiny amount of water trapped in the crystals of precisely dated stalagmites in caves from the southeastern European Alps. Our record indicates temperatures up to 2 °C warmer than today and an unstable climate during the first half of the Last Interglacial.
Paul Töchterle, Simon D. Steidle, R. Lawrence Edwards, Yuri Dublyansky, Christoph Spötl, Xianglei Li, John Gunn, and Gina E. Moseley
Geochronology, 4, 617–627, https://doi.org/10.5194/gchron-4-617-2022, https://doi.org/10.5194/gchron-4-617-2022, 2022
Short summary
Short summary
Cryogenic cave carbonates (CCCs) provide a marker for past permafrost conditions. Their formation age is determined by Th / U dating. However, samples can be contaminated with small amounts of Th at formation, which can cause inaccurate ages and require correction. We analysed multiple CCCs and found that varying degrees of contamination can cause an apparent spread of ages, when samples actually formed within distinguishable freezing events. A correction method using isochrons is presented.
Alessandra D'Angelo, Cynthia Garcia-Eidell, Christopher Knowlton, Andrea Gingras, Holly Morin, Dwight Coleman, Jessica Kaelblein, Humair Raziuddin, Nikolas VanKeersbilck, Tristan J. Rivera, Krystian Kopka, Yoana Boleaga, Korenna Estes, Andrea Nodal, Ericka Schulze, Theressa Ewa, Mirella Shaban, Samira Umar, Rosanyely Santana, Jacob Strock, Erich Gruebel, Michael Digilio, Rick Ludkin, Donglai Gong, Zak Kerrigan, Mia Otokiak, Frances Crable, Nicole Trenholm, Triston Millstone, Kevin Montenegro, Melvin Kim, Gibson Porter, Tomer Ketter, Max Berkelhammer, Andrew L. King, Miguel Angel Gonzalez-Meler, and Brice Loose
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-306, https://doi.org/10.5194/essd-2022-306, 2022
Manuscript not accepted for further review
Short summary
Short summary
The Canadian Arctic Archipelago (CAA) is characterized by advection from the Pacific (PW) and Atlantic waters (AW), ice melt, local river discharge and net precipitation. In a changing Arctic, it is crucial to monitor the hydrography of this Region. We combined chemical and physical parameters into an Optimal MultiParameter Analysis, for the detection of the source water fractions characterizing the CAA. The outcome was effective about the PW and AW, and discriminated the meltwaters origin.
Linda M. J. Kooijmans, Ara Cho, Jin Ma, Aleya Kaushik, Katherine D. Haynes, Ian Baker, Ingrid T. Luijkx, Mathijs Groenink, Wouter Peters, John B. Miller, Joseph A. Berry, Jerome Ogée, Laura K. Meredith, Wu Sun, Kukka-Maaria Kohonen, Timo Vesala, Ivan Mammarella, Huilin Chen, Felix M. Spielmann, Georg Wohlfahrt, Max Berkelhammer, Mary E. Whelan, Kadmiel Maseyk, Ulli Seibt, Roisin Commane, Richard Wehr, and Maarten Krol
Biogeosciences, 18, 6547–6565, https://doi.org/10.5194/bg-18-6547-2021, https://doi.org/10.5194/bg-18-6547-2021, 2021
Short summary
Short summary
The gas carbonyl sulfide (COS) can be used to estimate photosynthesis. To adopt this approach on regional and global scales, we need biosphere models that can simulate COS exchange. So far, such models have not been evaluated against observations. We evaluate the COS biosphere exchange of the SiB4 model against COS flux observations. We find that the model is capable of simulating key processes in COS biosphere exchange. Still, we give recommendations for further improvement of the model.
Kathleen A. Wendt, Xianglei Li, R. Lawrence Edwards, Hai Cheng, and Christoph Spötl
Clim. Past, 17, 1443–1454, https://doi.org/10.5194/cp-17-1443-2021, https://doi.org/10.5194/cp-17-1443-2021, 2021
Short summary
Short summary
In this study, we tested the upper limits of U–Th dating precision by analyzing three stalagmites from the Austrian Alps that have high U concentrations. The composite record spans the penultimate interglacial (MIS 7) with an average 2σ age uncertainty of 400 years. This unprecedented age control allows us to constrain the timing of temperature shifts in the Alps during MIS 7 while offering new insight into millennial-scale changes in the North Atlantic leading up to Terminations III and IIIa.
Gabriella Koltai, Christoph Spötl, Alexander H. Jarosch, and Hai Cheng
Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021, https://doi.org/10.5194/cp-17-775-2021, 2021
Short summary
Short summary
This paper utilises a novel palaeoclimate archive from caves, cryogenic cave carbonates, which allow for precisely constraining permafrost thawing events in the past. Our study provides new insights into the climate of the Younger Dryas (12 800 to 11 700 years BP) in mid-Europe from the perspective of a high-elevation cave sensitive to permafrost development. We quantify seasonal temperature and precipitation changes by using a heat conduction model.
Chao-Jun Chen, Dao-Xian Yuan, Jun-Yun Li, Xian-Feng Wang, Hai Cheng, You-Feng Ning, R. Lawrence Edwards, Yao Wu, Si-Ya Xiao, Yu-Zhen Xu, Yang-Yang Huang, Hai-Ying Qiu, Jian Zhang, Ming-Qiang Liang, and Ting-Yong Li
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-20, https://doi.org/10.5194/cp-2021-20, 2021
Manuscript not accepted for further review
Xianglei Li, Kathleen A. Wendt, Yuri Dublyansky, Gina E. Moseley, Christoph Spötl, and R. Lawrence Edwards
Geochronology, 3, 49–58, https://doi.org/10.5194/gchron-3-49-2021, https://doi.org/10.5194/gchron-3-49-2021, 2021
Short summary
Short summary
In this study, we built a statistical model to determine the initial δ234U in submerged calcite crusts that coat the walls of Devils Hole 2 (DH2) cave (Nevada, USA) and, using a 234U–238U dating method, extended the chronology of the calcite deposition beyond previous well-established 230Th ages and determined the oldest calcite deposited in this cave, a time marker for cave genesis. The novel method presented here may be used in future speleothem studies in similar hydrogeological settings.
Yue Hu, Xiaoming Sun, Hai Cheng, and Hong Yan
Clim. Past, 16, 597–610, https://doi.org/10.5194/cp-16-597-2020, https://doi.org/10.5194/cp-16-597-2020, 2020
Short summary
Short summary
Tridacna, as the largest marine bivalves, can be used for high-resolution paleoclimate reconstruction in its carbonate skeleton. In this contribution, the modern δ18O shell is suggested to be a proxy for sea surface temperature in the Xisha Islands, South China Sea. Data from a fossil Tridacna (3673 ± 28 BP) indicate a warmer climate and intense ENSO-related variability but reduced ENSO frequency and more extreme El Niño winters compared to modern Tridacna.
Sinikka T. Lennartz, Christa A. Marandino, Marc von Hobe, Meinrat O. Andreae, Kazushi Aranami, Elliot Atlas, Max Berkelhammer, Heinz Bingemer, Dennis Booge, Gregory Cutter, Pau Cortes, Stefanie Kremser, Cliff S. Law, Andrew Marriner, Rafel Simó, Birgit Quack, Günther Uher, Huixiang Xie, and Xiaobin Xu
Earth Syst. Sci. Data, 12, 591–609, https://doi.org/10.5194/essd-12-591-2020, https://doi.org/10.5194/essd-12-591-2020, 2020
Short summary
Short summary
Sulfur-containing trace gases in the atmosphere influence atmospheric chemistry and the energy budget of the Earth by forming aerosols. The ocean is an important source of the most abundant sulfur gas in the atmosphere, carbonyl sulfide (OCS) and its most important precursor carbon disulfide (CS2). In order to assess global variability of the sea surface concentrations of both gases to calculate their oceanic emissions, we have compiled a database of existing shipborne measurements.
Ole Valk, Michiel M. Rutgers van der Loeff, Walter Geibert, Sandra Gdaniec, S. Bradley Moran, Kate Lepore, Robert Lawrence Edwards, Yanbin Lu, Viena Puigcorbé, Nuria Casacuberta, Ronja Paffrath, William Smethie, and Matthieu Roy-Barman
Ocean Sci., 16, 221–234, https://doi.org/10.5194/os-16-221-2020, https://doi.org/10.5194/os-16-221-2020, 2020
Short summary
Short summary
After 2007 230Th decreased significantly in the central Amundsen Basin. This decrease is accompanied by a circulation change, indicated by changes in salinity. Ventilation of waters is most likely not the reason for the observed depletion in 230Th as atmospherically derived tracers do not reveal an increase in ventilation rate. It is suggested that these interior waters have undergone enhanced scavenging of Th during transit from Fram Strait and the Barents Sea to the central Amundsen Basin.
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Ashish Sinha, Gayatri Kathayat, and Hanying Li
Clim. Past, 16, 211–225, https://doi.org/10.5194/cp-16-211-2020, https://doi.org/10.5194/cp-16-211-2020, 2020
Short summary
Short summary
Few studies have paid attention to the important effect of nonsummer monsoon (NSM) precipitation on the speleothem δ18O in SE China. We find the summer monsoon precipitation is equivalent to NSM precipitation amount in the area of spring persistent rain in SE China, and we discuss the relationships between seasonal precipitation amount, moisture source, δ18O, and ENSO. Characterizing the spatial differences in seasonal precipitation is key to interpreting the speleothem δ18O record.
Gina E. Moseley, Christoph Spötl, Susanne Brandstätter, Tobias Erhardt, Marc Luetscher, and R. Lawrence Edwards
Clim. Past, 16, 29–50, https://doi.org/10.5194/cp-16-29-2020, https://doi.org/10.5194/cp-16-29-2020, 2020
Short summary
Short summary
Abrupt climate change during the last ice age can be used to provide important insights into the timescales on which the climate is capable of changing and the mechanisms that drive those changes. In this study, we construct climate records for the period 60 to 120 ka using stalagmites that formed in caves along the northern rim of the European Alps and find good agreement with the timing of climate changes in Greenland and the Asian monsoon.
Christopher J. Cox, David C. Noone, Max Berkelhammer, Matthew D. Shupe, William D. Neff, Nathaniel B. Miller, Von P. Walden, and Konrad Steffen
Atmos. Chem. Phys., 19, 7467–7485, https://doi.org/10.5194/acp-19-7467-2019, https://doi.org/10.5194/acp-19-7467-2019, 2019
Short summary
Short summary
Fogs are frequently reported by observers on the Greenland Ice Sheet. Fogs play a role in the hydrological and energetic balances of the ice sheet surface, but as yet the properties of Greenland fogs are not well known. We observed fogs in all months from Summit Station for 2 years and report their properties. Annually, fogs impart a slight warming to the surface and a case study suggests that they are particularly influential by providing insulation during the coldest part of the day in summer.
François Ritter, Max Berkelhammer, and Daniel Beysens
Hydrol. Earth Syst. Sci., 23, 1179–1197, https://doi.org/10.5194/hess-23-1179-2019, https://doi.org/10.5194/hess-23-1179-2019, 2019
Short summary
Short summary
There currently is no standardized approach for measuring dew formation, making it difficult to compare its frequency and importance across ecosystems. Recently, canopy surface temperature data from 30 sites in the US were measured continuously using in situ infrared radiometers. The analysis presented here provides the first continental-scale standardized synthesis of dew formation. This work provides a basis for considering how changing climate and land use will influence dew formation.
Hanying Li, Hai Cheng, Ashish Sinha, Gayatri Kathayat, Christoph Spötl, Aurèle Anquetil André, Arnaud Meunier, Jayant Biswas, Pengzhen Duan, Youfeng Ning, and Richard Lawrence Edwards
Clim. Past, 14, 1881–1891, https://doi.org/10.5194/cp-14-1881-2018, https://doi.org/10.5194/cp-14-1881-2018, 2018
Short summary
Short summary
The
4.2 ka eventbetween 4.2 and 3.9 ka has been widely discussed in the Northern Hemsiphere but less reported in the Southern Hemisphere. Here, we use speleothem records from Rodrigues in the southwestern Indian Ocean spanning from 6000 to 3000 years ago to investigate the regional hydro-climatic variability. Our records show no evidence for an unusual climate anomaly between 4.2 and 3.9 ka. Instead, it shows a multi-centennial drought between 3.9 and 3.5 ka.
Bharat Rastogi, Max Berkelhammer, Sonia Wharton, Mary E. Whelan, Frederick C. Meinzer, David Noone, and Christopher J. Still
Biogeosciences, 15, 7127–7139, https://doi.org/10.5194/bg-15-7127-2018, https://doi.org/10.5194/bg-15-7127-2018, 2018
Short summary
Short summary
Carbonyl sulfide (OCS) has gained prominence as an independent tracer for gross primary productivity, which is usually modelled by partitioning net CO2 fluxes. Here, we present a simple empirical model for estimating ecosystem-scale OCS fluxes for a temperate old-growth forest and find that OCS sink strength scales with independently estimated CO2 uptake and is sensitive to the the fraction of downwelling diffuse light. We also examine the response of OCS and CO2 fluxes to sequential heat waves.
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Gayatri Kathayat, Ashish Sinha, R. Lawrence Edwards, and Liangcheng Tan
Clim. Past, 14, 1805–1817, https://doi.org/10.5194/cp-14-1805-2018, https://doi.org/10.5194/cp-14-1805-2018, 2018
Short summary
Short summary
The collapses of several Neolithic cultures in China are considered to have been associated with abrupt climate change during the 4.2 ka BP event; however, the hydroclimate of this event in China is still poorly known. Based on stalagmite records from monsoonal China, we found that north China was dry but south China was wet during this event. We propose that the rain belt remained longer at its southern position, giving rise to a pronounced humidity gradient between north and south China.
Florian Adolphi, Christopher Bronk Ramsey, Tobias Erhardt, R. Lawrence Edwards, Hai Cheng, Chris S. M. Turney, Alan Cooper, Anders Svensson, Sune O. Rasmussen, Hubertus Fischer, and Raimund Muscheler
Clim. Past, 14, 1755–1781, https://doi.org/10.5194/cp-14-1755-2018, https://doi.org/10.5194/cp-14-1755-2018, 2018
Short summary
Short summary
The last glacial period was characterized by a number of rapid climate changes seen, for example, as abrupt warmings in Greenland and changes in monsoon rainfall intensity. However, due to chronological uncertainties it is challenging to know how tightly coupled these changes were. Here we exploit cosmogenic signals caused by changes in the Sun and Earth magnetic fields to link different climate archives and improve our understanding of the dynamics of abrupt climate change.
Mary E. Whelan, Sinikka T. Lennartz, Teresa E. Gimeno, Richard Wehr, Georg Wohlfahrt, Yuting Wang, Linda M. J. Kooijmans, Timothy W. Hilton, Sauveur Belviso, Philippe Peylin, Róisín Commane, Wu Sun, Huilin Chen, Le Kuai, Ivan Mammarella, Kadmiel Maseyk, Max Berkelhammer, King-Fai Li, Dan Yakir, Andrew Zumkehr, Yoko Katayama, Jérôme Ogée, Felix M. Spielmann, Florian Kitz, Bharat Rastogi, Jürgen Kesselmeier, Julia Marshall, Kukka-Maaria Erkkilä, Lisa Wingate, Laura K. Meredith, Wei He, Rüdiger Bunk, Thomas Launois, Timo Vesala, Johan A. Schmidt, Cédric G. Fichot, Ulli Seibt, Scott Saleska, Eric S. Saltzman, Stephen A. Montzka, Joseph A. Berry, and J. Elliott Campbell
Biogeosciences, 15, 3625–3657, https://doi.org/10.5194/bg-15-3625-2018, https://doi.org/10.5194/bg-15-3625-2018, 2018
Short summary
Short summary
Measurements of the trace gas carbonyl sulfide (OCS) are helpful in quantifying photosynthesis at previously unknowable temporal and spatial scales. While CO2 is both consumed and produced within ecosystems, OCS is mostly produced in the oceans or from specific industries, and destroyed in plant leaves in proportion to CO2. This review summarizes the advancements we have made in the understanding of OCS exchange and applications to vital ecosystem water and carbon cycle questions.
Gabriella Koltai, Hai Cheng, and Christoph Spötl
Clim. Past, 14, 369–381, https://doi.org/10.5194/cp-14-369-2018, https://doi.org/10.5194/cp-14-369-2018, 2018
Short summary
Short summary
Here we present a multi-proxy study of flowstones in fractures of crystalline rocks with the aim of assessing the palaeoclimate significance of this new type of speleothem archive. Our results indicate a high degree of spatial heterogeneity, whereby changes in speleothem mineralogy and carbon isotope composition are likely governed by aquifer-internal processes. In contrast, the oxygen isotope composition reflects first-order climate variability.
Ny Riavo Gilbertinie Voarintsoa, Loren Bruce Railsback, George Albert Brook, Lixin Wang, Gayatri Kathayat, Hai Cheng, Xianglei Li, Richard Lawrence Edwards, Amos Fety Michel Rakotondrazafy, and Marie Olga Madison Razanatseheno
Clim. Past, 13, 1771–1790, https://doi.org/10.5194/cp-13-1771-2017, https://doi.org/10.5194/cp-13-1771-2017, 2017
Short summary
Short summary
This research has been an investigation of two stalagmites from two caves in NW Madagascar to reconstruct the region's paleoenvironmental changes, and to understand the linkage of such changes to the dynamics of the ITCZ. Stable isotopes, mineralogy, and petrography suggest wetter climate conditions than today during the early and late Holocene, when the mean ITCZ was south, and drier during the mid-Holocene when the ITCZ was north.
Stef Vansteenberge, Sophie Verheyden, Hai Cheng, R. Lawrence Edwards, Eddy Keppens, and Philippe Claeys
Clim. Past, 12, 1445–1458, https://doi.org/10.5194/cp-12-1445-2016, https://doi.org/10.5194/cp-12-1445-2016, 2016
Short summary
Short summary
The use of stalagmites for last interglacial continental climate reconstructions in Europe has been successful in the past; however to expand the geographical coverage, additional data from Belgium is presented. It has been shown that stalagmite growth, morphology and stable isotope content reflect regional and local climate conditions, with Eemian optimum climate occurring between 125.3 and 117.3 ka. The start the Weichselian is expressed by a stop of growth caused by a drying climate.
Mary E. Whelan, Timothy W. Hilton, Joseph A. Berry, Max Berkelhammer, Ankur R. Desai, and J. Elliott Campbell
Atmos. Chem. Phys., 16, 3711–3726, https://doi.org/10.5194/acp-16-3711-2016, https://doi.org/10.5194/acp-16-3711-2016, 2016
Short summary
Short summary
We constructed a model of carbonyl sulfide soil exchange sufficient for predicting outcomes in terrestrial ecosystems. Empirical observations combined with soil gas exchange theory reveal simultaneous abiotic production and biotic uptake mechanisms. Measurement of atmospheric carbonyl sulfide is an emerging tool to quantify photosynthesis at important temporal and spatial scales.
A. Bailey, D. Noone, M. Berkelhammer, H. C. Steen-Larsen, and P. Sato
Atmos. Meas. Tech., 8, 4521–4538, https://doi.org/10.5194/amt-8-4521-2015, https://doi.org/10.5194/amt-8-4521-2015, 2015
Short summary
Short summary
This study evaluates the long-term stability of concentration-dependent and drift-induced biases in three water vapor isotopic analyzers deployed at two remote field sites. Despite limited data at low humidity and measurement hysteresis, inaccuracies in the concentration-dependence characterization are small, and the bias shows no change with isotope ratio or directional drift. Changes in measurement repeatability that are not characterized by linear drift estimates are a larger source of error.
Related subject area
Subject: Teleconnections | Archive: Terrestrial Archives | Timescale: Holocene
The 8.2 ka event in northern Spain: timing, structure and climatic impact from a multi-proxy speleothem record
Teleconnections and relationship between the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) in reconstructions and models over the past millennium
The 4.2 ka BP Event in northeastern China: a geospatial perspective
Was the Little Ice Age more or less El Niño-like than the Medieval Climate Anomaly? Evidence from hydrological and temperature proxy data
Quantification of southwest China rainfall during the 8.2 ka BP event with response to North Atlantic cooling
Holocene environmental changes in the highlands of the southern Peruvian Andes (14° S) and their impact on pre-Columbian cultures
Hydroclimate variability of the northwestern Amazon Basin near the Andean foothills of Peru related to the South American Monsoon System during the last 1600 years
Holocene climate variability in north-eastern Italy: potential influence of the NAO and solar activity recorded by speleothem data
Hege Kilhavn, Isabelle Couchoud, Russell N. Drysdale, Carlos Rossi, John Hellstrom, Fabien Arnaud, and Henri Wong
Clim. Past, 18, 2321–2344, https://doi.org/10.5194/cp-18-2321-2022, https://doi.org/10.5194/cp-18-2321-2022, 2022
Short summary
Short summary
The analysis of stable carbon and oxygen isotopic ratios, trace element ratios, and growth rate from a Spanish speleothem provides quantitative information on past hydrological conditions during the early Holocene in south-western Europe. Our data show that the cave site experienced increased effective recharge during the 8.2 ka event. Additionally, the oxygen isotopes indicate a change in the isotopic composition of the moisture source, associated with the meltwater flux to the North Atlantic.
Christoph Dätwyler, Martin Grosjean, Nathan J. Steiger, and Raphael Neukom
Clim. Past, 16, 743–756, https://doi.org/10.5194/cp-16-743-2020, https://doi.org/10.5194/cp-16-743-2020, 2020
Short summary
Short summary
The El Niño–Southern Oscillation (ENSO) and Southern Annular Mode (SAM) are two important modes of climate variability, strongly influencing climate across the tropics and Southern Hemisphere mid- to high latitudes. This study sheds light on their relationship over the past millennium, combining evidence from palaeoclimate proxy archives and climate models. We show that their indices were mostly negatively correlated with fluctuations likely driven by internal variability in the climate system.
Louis A. Scuderi, Xiaoping Yang, Samantha E. Ascoli, and Hongwei Li
Clim. Past, 15, 367–375, https://doi.org/10.5194/cp-15-367-2019, https://doi.org/10.5194/cp-15-367-2019, 2019
Short summary
Short summary
The lack of integration of data into a scientifically credible, globally assembled, information platform with consistent terminology and definitions hinders our understanding of the 4.2 ka BP Event. Using such an information platform, we show the presence of a strong and coherent signal for the 4.2 ka BP Event in northeastern China. Our prototype database approach, guided by semantic analysis and georeferencing, can serve as a guide to the assembly of a larger-scale global 4.2 ka database.
Lilo M. K. Henke, F. Hugo Lambert, and Dan J. Charman
Clim. Past, 13, 267–301, https://doi.org/10.5194/cp-13-267-2017, https://doi.org/10.5194/cp-13-267-2017, 2017
Short summary
Short summary
To understand future ENSO behaviour we must look at the past, but temperature and rainfall proxies (e.g. tree rings, sediment cores) appear to show different responses. We tested this by making separate multi-proxy ENSO reconstructions for precipitation and temperature and found no evidence of a disagreement between ENSO-driven changes in precipitation and temperature. While this supports our physical understanding of ENSO, the lack of good proxy data must be addressed to further explore this.
Yuhui Liu and Chaoyong Hu
Clim. Past, 12, 1583–1590, https://doi.org/10.5194/cp-12-1583-2016, https://doi.org/10.5194/cp-12-1583-2016, 2016
Short summary
Short summary
The 8.2 ka BP event, a global climate anomaly that occurred 8200 years ago, could provide climate teleconnection information for the simulation of abrupt climate changes, but there are few quantitative reconstructions of this event. This paper provides a 10-year resolution rainfall record from the East Asian monsoon area during the event, showing the reduced rainfall in southwest China during the 8.2 ka BP period was coupled with Greenland cooling with a possible response rate of 110 ± 30 mm/℃.
K. Schittek, M. Forbriger, B. Mächtle, F. Schäbitz, V. Wennrich, M. Reindel, and B. Eitel
Clim. Past, 11, 27–44, https://doi.org/10.5194/cp-11-27-2015, https://doi.org/10.5194/cp-11-27-2015, 2015
J. Apaéstegui, F. W. Cruz, A. Sifeddine, M. Vuille, J. C. Espinoza, J. L. Guyot, M. Khodri, N. Strikis, R. V. Santos, H. Cheng, L. Edwards, E. Carvalho, and W. Santini
Clim. Past, 10, 1967–1981, https://doi.org/10.5194/cp-10-1967-2014, https://doi.org/10.5194/cp-10-1967-2014, 2014
Short summary
Short summary
In this paper we explore a speleothem δ18O record from Palestina cave, northwestern Peru, on the eastern side of the Andes cordillera, in the upper Amazon Basin. The δ18O record is interpreted as a proxy for South American Summer Monsoon (SASM) intensity and allows the reconstruction of its variability during the last 1600 years. Replicating regional climate signals from different sites and using different proxies is essential for a comprehensive understanding of past changes in SASM activity.
D. Scholz, S. Frisia, A. Borsato, C. Spötl, J. Fohlmeister, M. Mudelsee, R. Miorandi, and A. Mangini
Clim. Past, 8, 1367–1383, https://doi.org/10.5194/cp-8-1367-2012, https://doi.org/10.5194/cp-8-1367-2012, 2012
Cited articles
Arz, H. W., Lamy, F., and Pätzold, J.: A pronounced dry event recorded
around 4.2 ka in brine sediments from the northern Red Sea, Quaternary Res.,
66, 432–441, 2006.
Baker, A., Ito, E., Smart, P. L., and McEwan, R. F.: Elevated and variable
values of 13C in speleothems in a British cave system, Chem. Geol.,
136, 263–270, 1997.
Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F., and
Yoshimura, K.: An abrupt shift in the Indian monsoon 4000 years ago, Geophys.
Monogr. Ser., 198, 75–88, 2012.
Breitenbach, S. F., Adkins, J. F., Meyer, H., Marwan, N., Kumar, K. K., and
Haug, G. H.: Strong influence of water vapor source dynamics on stable
isotopes in precipitation observed in Southern Meghalaya, NE India, Earth
Planet. Sc. Lett., 292, 212–220, 2010.
Breitenbach, S. F. M., Rehfeld, K., Goswami, B., Baldini, J. U. L., Ridley,
H. E., Kennett, D. J., Prufer, K. M., Aquino, V. V., Asmerom, Y., Polyak, V.
J., Cheng, H., Kurths, J., and Marwan, N.: COnstructing Proxy Records from
Age models (COPRA), Clim. Past, 8, 1765–1779,
https://doi.org/10.5194/cp-8-1765-2012, 2012.
Breitenbach, S. F. M., Lechleitner, F. A., Meyer, H., Diengdoh, G., Mattey,
D., and Marwan, N.: Cave ventilation and rainfall signals in dripwater in a
monsoonal setting – a monitoring study from NE India, Chem. Geol., 402,
111–124, 2015.
Chang, K. C.: China on the eve of the Historical Period, in: The Cambridge
History of Ancient China – From the Origins of Civilization to 221 BC,
edited by: Loewe, M. and Shaughnessy, E. L., Cambridge University Press, New
York, 37–73, 1999.
Cheng, H., Edwards, R., Hoff, J., Gallup, C., Richards, D., and Asmerom, Y.:
The half-lives of uranium-234 and thorium-230, Chem. Geol., 169, 17–33,
2000.
Cheng, H., Zhang, P., Spötl, C., Edwards, R., Cai, Y., Zhang, D., Sang,
W., Tan, M., and An, Z.: The climatic cyclicity in semiarid-arid central Asia
over the past 500,000 years, Geophys. Res. Lett., 39, L01705, https://doi.org/10.1029/2011GL050202,
2012.
Cheng, H., Edwards, R. L., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead,
J., Hellstrom, J., Wang, Y., Kong, X., and Spötl, C.: Improvements in
230Th dating, 230Th and 234U half-life values,
and U–Th isotopic measurements by multi-collector inductively coupled plasma
mass spectrometry, Earth Planet. Sc. Lett., 371, 82–91, 2013.
Cheng, H., Sinha, A., Verheyden, S., Nader, F. H., Li, X. L., Zhang, P. Z.,
Yin, J. J., Yi, L., Peng, Y. B., Rao, Z. G., Ning, Y. F., and Edwards, R. L.:
The climate variability in northern Levant over the past 20,000 years,
Geophys. Res. Lett., 42, 8641–8650, 2015.
Cheng, H., Edwards, R. L., Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly,
M., Kathayat, G., Wang, X., and Li, X.: The Asian monsoon over the past
640,000 years and ice age terminations, Nature, 534, 640–646, 2016.
Conroy, J. L., Overpeck, J. T., Cole, J. E., Shanahan, T. M., and
Steinitz-Kannan, M.: Holocene changes in eastern tropical Pacific climate
inferred from a Galápagos lake sediment record, Quaternary Sci. Rev., 27,
1166–1180, 2008.
Cullen, H. M., Hemming, S., Hemming, G., Brown, F., Guilderson, T., and
Sirocko, F.: Climate change and the collapse of the Akkadian empire: Evidence
from the deep sea, Geology, 28, 379–382, 2000.
Dayem, K. E., Molnar, P., Battisti, D. S., and Roe, G. H.: Lessons learned
from oxygen isotopes in modern precipitation applied to interpretation of
speleothem records of paleoclimate from eastern Asia, Earth Planet. Sc.
Lett., 295, 219–230, 2010.
Deininger, M., Fohlmeister, J., Scholz, D., and Mangini, A.: Isotope
disequilibrium effects: The influence of evaporation and ventilation effects
on the carbon and oxygen isotope composition of speleothems – A model
approach, Geochim. Cosmochim. Ac., 96, 57–79, 2012.
Dixit, Y., Hodell, D. A., and Petrie, C. A.: Abrupt weakening of the summer
monsoon in northwest India ∼4100 yr ago, Geology, 42, 339–342, 2014.
Dixit, Y., Hodell, D. A., Giesche, A., Tandon, S. K., Gázquez, F., Saini,
H. S., Skinner, L. C., Mujtaba, S. A., Pawar, V., and Singh, R. N.:
Intensified summer monsoon and the urbanization of Indus Civilization in
northwest India, Sci. Rep.-UK, 8, 4225, https://doi.org/10.1038/s41598-018-22504-5, 2018.
Donders, T. H., Wagner-Cremer, F., and Visscher, H.: Integration of proxy
data and model scenarios for the mid-Holocene onset of modern ENSO
variability, Quaternary Sci. Rev., 27, 571–579, 2008.
Dorale, J. A., Edwards, R. L., Ito, E., and González, L. A.: Climate and
Vegetation History of the Midcontinent from 75 to 25 ka: A Speleothem Record
from Crevice Cave, Missouri, USA, Science, 282, 1871–1874, 1998.
Drysdale, R., Zanchetta, G., Hellstrom, J., Maas, R., Fallick, A., Pickett,
M., Cartwright, I., and Piccini, L.: Late Holocene drought responsible for
the collapse of Old World civilizations is recorded in an Italian cave
flowstone, Geology, 34, 101–104, 2006.
Edwards, R. L., Chen, J., and Wasserburg, G.: 238U 234U
230Th 232Th systematics and the precise measurement of
time over the past 500,000 years, Earth Planet. Sc. Lett., 81, 175–192,
1987.
Enzel, Y., Ely, L. L., Mishra, S., Ramesh, R., Amit, R., Lazar, B., Rajaguru,
S. N., Baker, V. R., and Sandler, A.: High-resolution Holocene environmental
changes in the Thar Desert, northwestern India, Science, 284, 125–128, 1999.
Fairchild, I. J. and Treble, P. C.: Trace elements in speleothems as
recorders of environmental change, Quaternary Sci. Rev., 28, 449–468, 2009.
Fohlmeister, J.: A statistical approach to construct composite climate
records of dated archives, Quat. Geochronol., 14, 48–56, 2012.
Fohlmeister, J., Scholz, D., Kromer, B., and Mangini, A.: Modelling carbon
isotopes of carbonates in cave drip water, Geochim. Cosmochim. Ac., 75,
5219–5228, 2011.
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, J., Jouzel, J., and
Van-Exter, S.: Precise dating of Dansgaard-Oeschger climate oscillations in
western Europe from stalagmite data, Nature, 421, 833–837, 2003.
Giosan, L., Clift, P. D., Macklin, M. G., Fuller, D. Q., Constantinescu, S.,
Durcan, J. A., Stevens, T., Duller, G. A., Tabrez, A. R., and Gangal, K.:
Fluvial landscapes of the Harappan civilization, P. Natl. Acad. Sci. USA,
109, E1688–E1694, 2012.
Goswami, B. N., Wu, G., and Yasunari, T.: The annual cycle, intraseasonal
oscillations, and roadblock to seasonal predictability of the asian summer
monsoon, J. Climate, 19, 5078–5098, 2006.
Haslett, J. and Parnell, A.: A simple monotone process with application to
radiocarbon-dated depth chronologies, J. R. Stat. Soc. C-Appl., 57, 399–418,
2008.
Kathayat, G., Cheng, H., Sinha, A., Spötl, C., Edwards, R. L., Zhang, H.,
Li, X., Yi, L., Ning, Y., Cai, Y., Lui, W. L., and Breitenbach, S. F. M.:
Indian monsoon variability on millennial-orbital timescales, Sci. Rep.-UK, 6,
24374, https://doi.org/10.1038/srep24374, 2016.
Kathayat, G., Cheng, H., Sinha, A., Yi, L., Li, X., Zhang, H., Li, H., Ning,
Y., and Edwards, R. L.: The Indian monsoon variability and civilization
changes in the Indian subcontinent, Science Advances, 3, e1701296, https://doi.org/10.1126/sciadv.1701296,
2017.
Krishnamurthy, V. and Shukla, J.: Intraseasonal and interannual variability
of rainfall over India, J. Climate, 13, 4366–4377, 2000.
Liu, F. and Feng, Z.: A dramatic climatic transition at ∼4000 cal. yr BP and its cultural responses in Chinese cultural domains,
Holocene, 22, 1181–1197, 2012.
Madella, M. and Fuller, D. Q.: Palaeoecology and the Harappan Civilisation of
South Asia: a reconsideration, Quaternary Sci. Rev., 25, 1283–1301, 2006.
Marshall, M. H., Lamb, H. F., Huws, D., Davies, S. J., Bates, R., Bloemendal,
J., Boyle, J., Leng, M. J., Umer, M., and Bryant, C.: Late Pleistocene and
Holocene drought events at Lake Tana, the source of the Blue Nile, Global
Planet. Change, 78, 147–161, 2011.
Menounos, B., Clague, J. J., Osborn, G., Luckman, B. H., Lakeman, T. R., and
Minkus, R.: Western Canadian glaciers advance in concert with climate change
circa 4.2 ka, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL033172, 2008.
Midhun, M. and Ramesh, R.: Validation of δ18O as a proxy for
past monsoon rain by multi-GCM simulations, Clim. Dynam., 46, 1371–1385,
2016.
Murata, F., Hayashi, T., Matsumoto, J., and Asada, H.: Rainfall on the
Meghalaya plateau in northeastern India – one of the rainiest places in the
world, Nat. Hazards, 42, 391–399, 2007.
Myers, C. G., Oster, J. L., Sharp, W. D., Bennartz, R., Kelley, N. P., Covey,
A. K., and Breitenbach, S. F.: Northeast Indian stalagmite records Pacific
decadal climate change: Implications for moisture transport and drought in
India, Geophys. Res. Lett., 42, 4124–4132, 2015.
Nakamura, A., Yokoyama, Y., Maemoku, H., Yagi, H., Okamura, M., Matsuoka, H.,
Miyake, N., Osada, T., Adhikari, D. P., and Dangol, V.: Weak monsoon event at
4.2 ka recorded in sediment from Lake Rara, Himalayas, Quaternary Int., 397,
349–359, 2016.
Pausata, F. S., Battisti, D. S., Nisancioglu, K. H., and Bitz, C. M.: Chinese
stalagmite δ18O controlled by changes in the Indian monsoon
during a simulated Heinrich event, Nat. Geosci., 4, 474–480, 2011.
Prasad, S. and Enzel, Y.: Holocene paleoclimates of India, Quaternary Res.,
66, 442–453, 2006.
Railsback, L. B., Liang, F., Brook, G., Voarintsoa, N. R. G., Sletten, H. R.,
Marais, E., Hardt, B., Cheng, H., and Edwards, R. L.: The timing, two-pulsed
nature, and variable climatic expression of the 4.2 ka event: A review and
new high-resolution stalagmite data from Namibia, Quaternary Sci. Rev., 186,
78–90, 2018.
Sarkar, S., Prasad, S., Wilkes, H., Riedel, N., Stebich, M., Basavaiah, N.,
and Sachse, D.: Monsoon source shifts during the drying mid-Holocene:
Biomarker isotope based evidence from the core “monsoon zone” (CMZ) of
India. Quaternary Sci. Rev., 123, 144–157, 2015.
Sabin, T., Krishnan, R., Ghattas, J., Denvil, S., Dufresne, J.-L., Hourdin,
F., and Pascal, T.: High resolution simulation of the South Asian monsoon
using a variable resolution global climate model, Clim. Dynam., 41, 173–194,
2013.
Scholz, D., Frisia, S., Borsato, A., Spötl, C., Fohlmeister, J.,
Mudelsee, M., Miorandi, R., and Mangini, A.: Holocene climate variability in
north-eastern Italy: potential influence of the NAO and solar activity
recorded by speleothem data, Clim. Past, 8, 1367–1383,
https://doi.org/10.5194/cp-8-1367-2012, 2012.
Sengupta, S. and Sarkar, A.: Stable isotope evidence of dual (Arabian Sea and
Bay of Bengal) vapour sources in monsoonal precipitation over north India,
Earth Planet. Sc. Lett., 250, 511–521, 2006.
Sinha, A., Berkelhammer, M., Stott, L., Mudelsee, M., Cheng, H., and Biswas,
J.: The leading mode of Indian Summer Monsoon precipitation variability
during the last millennium, Geophys. Res. Lett., 38, L15703, https://doi.org/10.1029/2011GL047713, 2011a.
Sinha, A., Stott, L., Berkelhammer, M., Cheng, H., Edwards, R. L., Buckeley,
B., Aldenderfer, M., and Mudelsee, M.: A global context for megadroughts in
monsoon Asia during the past millennium, Quaternary Sci. Rev., 30, 47–62,
2011b.
Sinha, A., Kathayat, G., Cheng, H., Breitenbach, S. F., Berkelhammer, M.,
Mudelsee, M., Biswas, J., and Edwards, R.: Trends and oscillations in the
Indian summer monsoon rainfall over the last two millennia, Nat. Commun., 6,
6309,
https://doi.org/10.1038/ncomms7309,
2015.
Stanley, J.-D., Krom, M. D., Cliff, R. A., and Woodward, J. C.: Nile flow
failure at the end of the Old Kingdom, Egypt: strontium isotopic and
petrologic evidence, Geoarchaeology Int. J., 18, 395–402, 2003.
Staubwasser, M. and Weiss, H.: Holocene Climate and Cultural Evolution in
Late Prehistoric-Early Historic West Asia, Quaternary Res., 66, 372–387,
2006.
Staubwasser, M., Sirocko, F., Grootes, P., and Segl, M.: Climate change at
the 4.2 ka BP termination of the Indus valley civilization and Holocene
south Asian monsoon variability, Geophys. Res. Lett., 30, 1425, https://doi.org/10.1029/2002GL016822,
2003.
Vuille, M., Werner, M., Bradley, R. S., and Keimig, F.: Stable isotopes in
precipitation in the Asian monsoon region, J. Geophys. Res.-Atmos., 110,
D23108, https://doi.org/10.1029/2005JD006022, 2005.
Walker, M., Head, M. J., Berkelhammer, M., Björck, S., Cheng, H., Cwynar,
L., Fisher, D., Gkinis, V., Long, A., Lowe, J., Newnham, R., Olander, R. S.,
and Weiss, H.: Formal ratification of the subdivision of the Holocene
Series/Epoch (Quaternary System/Period): two new Global Boundary Stratotype
Sections and Points (GSSPs) and three new stages/subseries, IUGS, 1–11,
2018.
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C.,
and Dorale, A. J.: A high-Resolution Absolute-Dated Late Pleistocene Monsoon
Record from Hulu Cave, China, Science, 294, 2345–2348, 2001.
Weiss, H.: Global megadrought, societal collapse and resilience at
4.2–3.9 ka BP across the mediterranean and west asia, PAGES, 24, 62–63,
2016.
Weiss, H., Courty, M.-A., Wetterstrom, W., Guichard, F., Senior, L., Meadow,
R., and Curnow, A.: The genesis and collapse of third millennium north
Mesopotamian civilization, Science, 261, 995–1004, 1993.
Short summary
The 4.2 ka event is generally characterized as an approximately 300-year period of major global climate anomaly. However, the climatic manifestation of this event remains unclear in the Indian monsoon domain. Our high-resolution and precisely dated speleothem record from Meghalaya, India, characterizes the event as consisting of a series of multi-decadal droughts between 3.9 and 4.0 ka rather than a singular pulse of multi-centennial drought as previously thought.
The 4.2 ka event is generally characterized as an approximately 300-year period of major global...
Special issue