Articles | Volume 14, issue 9
Clim. Past, 14, 1275–1297, 2018
https://doi.org/10.5194/cp-14-1275-2018
Clim. Past, 14, 1275–1297, 2018
https://doi.org/10.5194/cp-14-1275-2018

Research article 04 Sep 2018

Research article | 04 Sep 2018

Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 3: Insights from Oligocene–Miocene TEX86-based sea surface temperature reconstructions

Julian D. Hartman et al.

Related authors

A review of the ecological affinities of marine organic microfossils from a Holocene record offshore of Adélie Land (East Antarctica)
Julian D. Hartman, Peter K. Bijl, and Francesca Sangiorgi
J. Micropalaeontol., 37, 445–497, https://doi.org/10.5194/jm-37-445-2018,https://doi.org/10.5194/jm-37-445-2018, 2018
Short summary
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 2: Insights from Oligocene–Miocene dinoflagellate cyst assemblages
Peter K. Bijl, Alexander J. P. Houben, Julian D. Hartman, Jörg Pross, Ariadna Salabarnada, Carlota Escutia, and Francesca Sangiorgi
Clim. Past, 14, 1015–1033, https://doi.org/10.5194/cp-14-1015-2018,https://doi.org/10.5194/cp-14-1015-2018, 2018
Short summary
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 1: Insights from late Oligocene astronomically paced contourite sedimentation
Ariadna Salabarnada, Carlota Escutia, Ursula Röhl, C. Hans Nelson, Robert McKay, Francisco J. Jiménez-Espejo, Peter K. Bijl, Julian D. Hartman, Stephanie L. Strother, Ulrich Salzmann, Dimitris Evangelinos, Adrián López-Quirós, José Abel Flores, Francesca Sangiorgi, Minoru Ikehara, and Henk Brinkhuis
Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018,https://doi.org/10.5194/cp-14-991-2018, 2018
Short summary

Related subject area

Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Cenozoic
Temperate Oligocene surface ocean conditions offshore Cape Adare, Ross Sea, Antarctica
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-139,https://doi.org/10.5194/cp-2020-139, 2020
Revised manuscript accepted for CP
Short summary
Lessons from a high-CO2 world: an ocean view from  ∼ 3 million years ago
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020,https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
A Revised Mid-Pliocene Composite Section for ODP Site 846
Timothy D. Herbert, Rocio Caballero-Gill, and Joseph B. Novak
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-133,https://doi.org/10.5194/cp-2019-133, 2020
Revised manuscript accepted for CP
Short summary
Late Pliocene Cordilleran Ice Sheet development with warm northeast Pacific sea surface temperatures
Maria Luisa Sánchez-Montes, Erin L. McClymont, Jeremy M. Lloyd, Juliane Müller, Ellen A. Cowan, and Coralie Zorzi
Clim. Past, 16, 299–313, https://doi.org/10.5194/cp-16-299-2020,https://doi.org/10.5194/cp-16-299-2020, 2020
Short summary
Understanding the mechanisms behind high glacial productivity in the southern Brazilian margin
Rodrigo da Costa Portilho-Ramos, Tainã Marcos Lima Pinho, Cristiano Mazur Chiessi, and Cátia Fernandes Barbosa
Clim. Past, 15, 943–955, https://doi.org/10.5194/cp-15-943-2019,https://doi.org/10.5194/cp-15-943-2019, 2019
Short summary

Cited articles

Austermann, J., Pollard, D., Mitrovica, J. X., Moucha, R., Forte, A. M., DeConto, R. M., Rowley, D. B., and Raymo, M. E.: The impact of dynamic topography change on Antarctic ice sheet stability during the mid-Pliocene warm period, Geology, 43, 927–930, https://doi.org/10.1130/G36988.1, 2015. 
Baines, P. G.: A model for the structure of the Antarctic Slope Front, Deep-Sea Res. Pt. II, 56, 859–873, https://doi.org/10.1016/j.dsr2.2008.10.030, 2009. 
Barker, P. F., Filippelli, G. M., Florindo, F., Martin, E. E., and Scher, H. D.: Onset and role of the Antarctic Circumpolar Current, Deep-Sea Res. Pt. II, 54, 2388–2398, https://doi.org/10.1016/j.dsr2.2007.07.028, 2007. 
Basse, A., Zhu, C., Versteegh, G. J. M., Fischer, G., and Hinrichs, K.-U.: Distribution of intact and core tetraether lipids in water column profiles of suspended particulate matter off Cape Blanc , NW Africa, Org. Geochem., 72, 1–13, https://doi.org/10.1016/j.orggeochem.2014.04.007, 2014. 
Beddow, H. M., Liebrand, D., Sluijs, A., Wade, B. S., and Lourens, L. J.: Global change across the Oligocene-Miocene transition: High-resolution stable isotope records from IODP Site U1334 (equatorial Pacific Ocean), Paleoceanography, 31, 81–97, https://doi.org/10.1002/2015PA002820, 2016. 
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.