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Abstract. The volume of the Antarctic continental ice
sheet(s) varied substantially during the Oligocene and
Miocene (∼ 34–5 Ma) from smaller to substantially larger
than today, both on million-year and on orbital timescales.
However, reproduction through physical modeling of a dy-
namic response of the ice sheets to climate forcing remains
problematic, suggesting the existence of complex feedback
mechanisms between the cryosphere, ocean, and atmosphere
systems. There is therefore an urgent need to improve the
models for better predictions of these systems, including re-
sulting potential future sea level change. To assess the in-
teractions between the cryosphere, ocean, and atmosphere,
knowledge of ancient sea surface conditions close to the
Antarctic margin is essential. Here, we present a new TEX86-
based sea surface water paleotemperature record measured
on Oligocene sediments from Integrated Ocean Drilling
Program (IODP) Site U1356, offshore Wilkes Land, East
Antarctica. The new data are presented along with previ-
ously published Miocene temperatures from the same site.
Together the data cover the interval between ∼ 34 and ∼
11 Ma and encompasses two hiatuses. This record allows us
to accurately reconstruct the magnitude of sea surface tem-
perature (SST) variability and trends on both million-year
and glacial–interglacial timescales. On average, TEX86 val-

ues indicate SSTs ranging between 10 and 21 ◦C during the
Oligocene and Miocene, which is on the upper end of the few
existing reconstructions from other high-latitude Southern
Ocean sites. SST maxima occur around 30.5, 25, and 17 Ma.
Our record suggests generally warm to temperate ocean off-
shore Wilkes Land. Based on lithological alternations de-
tected in the sedimentary record, which are assigned to
glacial–interglacial deposits, a SST variability of 1.5–3.1 ◦C
at glacial–interglacial timescales can be established. This
variability is slightly larger than that of deep-sea tempera-
tures recorded in Mg /Ca data. Our reconstructed Oligocene
temperature variability has implications for Oligocene ice
volume estimates based on benthic δ18O records. If the long-
term and orbital-scale SST variability at Site U1356 mirrors
that of the nearby region of deep-water formation, we ar-
gue that a substantial portion of the variability and trends
contained in long-term δ18O records can be explained by
variability in Southern high-latitude temperature and that the
Antarctic ice volume may have been less dynamic than previ-
ously thought. Importantly, our temperature record suggests
that Oligocene–Miocene Antarctic ice sheets were generally
of smaller size compared to today.
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1 Introduction

Numerical paleoclimate models predict that with the current
rate of ice volume loss (up to 109±56 Gt yr−1; The IMBRIE
Team, 2018) several sectors of the West Antarctic marine-
based ice sheet will disappear within the coming few cen-
turies (e.g., Joughin et al., 2014; The IMBRIE Team, 2018),
favored by ocean warming-induced collapse. Observations
show that glaciers on East Antarctica are also vulnerable to
basal melt through warming of the ocean waters when they
are grounded below sea level (Greenbaum et al., 2015; Miles
et al., 2016; Shen et al., 2018; The IMBRIE Team, 2018),
making the East Antarctic Ice Sheet (EAIS) not as stable as
previously thought (Mcmillan et al., 2014). Recent numeri-
cal modeling studies have improved on reproducing the ob-
served ice sheet volume decrease, as they incorporate posi-
tive feedbacks (e.g., bedrock topography) to global warming
and more complicated physics (e.g., hydrofracturing and ice-
cliff failure) into these models (Austermann et al., 2015; De-
Conto and Pollard, 2016; Fogwill et al., 2014; Golledge et al.,
2017; Pollard et al., 2015). These models indeed show that
sensitivity to global warming is particularly high where the
ice sheet is grounded below sea level (Fretwell et al., 2013),
such as in the Wilkes Land Basin (Golledge et al., 2017; Shen
et al., 2018).

On both glacial–interglacial (Parrenin et al., 2013) and
longer-term Cenozoic timescales (Pagani et al., 2011; Za-
chos et al., 2008), Antarctic ice volume changes have been
mostly linked to changes in atmospheric CO2 concentrations
(pCO2; see e.g., Foster and Rohling, 2013; Crampton et al.
2016), modulated by astronomically forced changes in in-
solation (e.g., Holbourn et al., 2013; Liebrand et al., 2017;
Miller et al., 2017; Pälike et al., 2006b; Westerhold et al.,
2005). Foster and Rohling (2013) compiled pCO2 proxy data
and associated sea level reconstructions for the last 40 mil-
lion years (Myr). These data suggest that if the past is pro-
jected to the future all ice on West Antarctica and Greenland
may be lost under current and near-future atmospheric CO2
conditions (400–450 ppmv) in equilibrium state. Projections
of pCO2 for future emission scenarios of the latest IPCC Re-
port (2014) show a range from 500 to 1000 ppmv for the year
2100, which could lead to additional ice sheet volume loss
from East Antarctica. This range in atmospheric pCO2 is
similar to that reconstructed for the warmest intervals of the
Oligocene and Miocene epochs (full range: 200–1000 ppmv;
e.g., Zhang et al., 2013; Super et al., 2018). Given that ob-
servations clearly link the recent instability of marine-based
ice sheets to ocean warming, it becomes important to better
constrain near-field sea surface temperatures (SSTs) from the
Antarctic margin during the Oligocene and Miocene to im-
prove our understanding of past ice sheet dynamics and the
projections for the future.

EAIS volume changes have been suggested for the
Oligocene and Miocene based on a number of deep-sea δ18O
records, which reflect a combination of bottom-water tem-
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Figure 1. (a) Present-day Southern Ocean summer temperatures
and geography obtained from the World Ocean Atlas (Locarnini
et al., 2010) using Ocean Data View and Southern Ocean fronts
obtained from Orsi et al. (1995). PF: Polar Front; SAF: Sub-
Antarctic Front; STF: Subtropical Front. Red diamonds indicate
DSDP/ODP/IODP site locations. (b) Map of Antarctica around
30 Ma, a modified reconstruction by the Ocean Drilling Strati-
graphic Network Plate Tectonic Reconstruction Service (continents
in black, shelf areas in grey). Paleo-latitudes calculated with paleo-
latitude.org (van Hinsbergen et al., 2015). Reconstructed cold (light
blue) and warm (red) surface currents are based on publications by
Stickley et al. (2004), Warnaar (2006), Bijl et al. (2011, 2013), and
Douglas et al. (2014). Reconstructed bottom-water currents (dot-
ted dark blue) are based on publications by Carter et al. (2004),
Livermore et al. (2007), Maldonado et al. (2014), and Scher et
al. (2015). ACCC: Antarctic Circumpolar Counter Current; PLC:
proto-Leeuwin Current. (c) The same as the middle figure, but then
for the period around 17 Ma.
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perature and ice volume (e.g., Liebrand et al., 2017; Miller
et al., 2013; Pekar et al., 2006; Pekar and Christie-Blick,
2008; Shevenell et al., 2004; Westerhold et al., 2005), as well
as sedimentary paleo-sea level reconstructions (John et al.,
2011; Gallagher et al., 2013; Stap et al., 2017). These records
show long-term (1–3 Myr) trends punctuated by strong but
transient glaciation events (Oi and Mi events) (Hauptvogel
et al., 2017; Miller et al., 2017; Liebrand et al., 2017, 2016;
Pälike et al., 2006b; Westerhold et al., 2005). Following the
onset of the Oligocene, marked by the Oi-1 glaciation event,
the long-term trend shows a shift towards lighter δ18O val-
ues and a steady increase towards 27 Ma, then a decrease to
24 Ma, and a final increase leading into the Miocene, marked
by the Mi-1 glaciation event (Beddow et al., 2016; Cramer
et al., 2009; Liebrand et al., 2016; Zachos, 2001). Miocene
benthic δ18O long-term trends show a sudden increase at
16.9 Ma, which marks the onset of the mid-Miocene Climatic
Optimum (MMCO), a plateau phase, and a subsequent step-
wise decrease known as the mid-Miocene Climatic Transi-
tion (MMCT) (Holbourn et al., 2015, 2013, 2007; Shevenell
et al., 2004; Westerhold et al., 2005). The Oligocene and
Miocene glaciations are paced by periods of strong 110 kyr
eccentricity fluctuations of up to 1 ‰ (Liebrand et al., 2017,
2016, 2011). These δ18O fluctuations may mostly result from
the waxing and waning of the EAIS, in which case the
ice sheet was highly dynamic, or they mostly reflect large
changes in deep-sea temperature, in which case large SST
fluctuations in the region of deep-water formation were to
be expected. Considering the former, fluctuations between
50 % and 125 % of the present-day EAIS have been sug-
gested for the Oligocene (DeConto et al., 2008; Pekar et al.,
2006; Pekar and Christie-Blick, 2008), but this amount of
variability has not yet been entirely reproduced by numerical
modeling studies (DeConto et al., 2008; Gasson et al., 2016;
Pollard et al., 2015). Considering the latter, several studies
have suggested that during the Oligocene the southern high
latitudes were the prevalent source for cold deep-water for-
mation (Katz et al., 2011; Goldner et al., 2014; Borelli and
Katz, 2015). Hence, deep-water temperature records from the
southern high latitudes, particularly those capturing temper-
ature changes on million-year as well as orbital timescales,
may provide information on the relative contribution of deep-
sea temperature variability to the δ18O records. However, re-
constructions of deep-water temperature based on δ18O and
Mg /Ca ratios of benthic foraminifera are hampered by the
poor preservation of carbonates on the high-latitude South-
ern Ocean floor and rely on critical assumptions about past
composition of seawater chemistry. Therefore, one needs
to assume that the deep-sea temperature trend captured in
the Oligocene and Miocene δ18O records is related to sur-
face water temperature in the Southern Ocean similar to to-
day (Baines, 2009; Jacobs, 1991) and in the Eocene (Bijl
et al., 2009). Based on this assumption, Southern Ocean
SSTs would potentially gauge deep-sea temperature variabil-
ity. Only a few Oligocene SST estimates are available for the

Southern Ocean and they relate to the early Oligocene (Pe-
tersen and Schrag, 2015; Plancq et al., 2014). Few South-
ern Ocean SST records are available for the early and mid-
Miocene (14–17 Ma) (Kuhnert et al., 2009; Majewski and
Bohaty, 2010; Shevenell et al., 2004) and only two (Levy et
al., 2016; Sangiorgi et al., 2018) are derived from south of the
Polar Front (PF). Obstacles for reconstructing Oligocene and
Miocene SST in the Southern Ocean are the paucity of strati-
graphically well-calibrated sedimentary archives, as well as
suitable indicator fossils/compounds within these sediments
that can be used to reconstruct SST.

In 2010, the Integrated Ocean Drilling Program (IODP)
cored a sedimentary archive at the boundary of the con-
tinental rise and the abyssal plain offshore Wilkes Land
with a well-dated Oligocene and Miocene sequence: IODP
Site U1356 (Fig. 1), suitable for paleoclimatological anal-
ysis. In this study we use the now well-established ratio be-
tween several isoprenoid glycerol dialkyl glycerol tetraethers
(GDGTs), the so-called TEX86 proxy (Schouten et al., 2013,
2002), to reconstruct SSTs at this high-latitude Southern
Ocean site. We present new SST data based on TEX86,
covering almost the entire Oligocene, along with published
TEX86 values for the mid-Miocene section (Sangiorgi et al.,
2018). Detailed lithological logging of both the Oligocene
and Miocene sections of Site U1356 allows for the dis-
tinction of glacial and interglacial deposits (Salabarnada et
al., 2018). This enables us to assess long-term evolution
of SSTs in proximity of the ice sheet as well as the tem-
perature differences between glacials and interglacials on
orbital timescales, which have implications on the dynam-
ics of the Antarctic ice sheet and its sensitivity to climate
change. We compare our record with the few existing early
Oligocene and mid-Miocene SST data from other high-
latitude Southern Ocean sites as well as with deep-water
δ18O and Mg /Ca-based bottom-water temperature (BWT)
records from lower latitudes (Billups and Schrag, 2002; Lear
et al., 2004; Shevenell et al., 2004), and we discuss the im-
plications of our findings.

Together with the companion papers by Salabarnada et
al. (2018) and Bijl et al. (2018a) on the lithology and dinocyst
assemblages of Site U1356, we contribute significantly to the
limited knowledge that exists on Oligocene–Miocene paleo-
ceanographic conditions close to the Antarctic margin.

2 Materials and methods

2.1 Site description

Integrated Ocean Drilling Program (IODP) Expedition
318 Site U1356 was cored about 300 km off the Wilkes Land
coast (63◦54.61′ S, 135◦59.94′ E) at the boundary between
the continental rise and the abyssal plain at a water depth
of 3992 m (Escutia et al., 2011; see Fig. 1). Today, this
site is south of the Antarctic PF and is under the influence
of by Antarctic Bottom Waters (AABW), Lower Compo-
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Figure 2. Lithology, TEX86 values, and GDGT-2 /GDGT-3 ratios of Hole U1356A plotted against depth (m b.s.f.) with units according to
Escutia et al. (2011) and chronostratigraphic tie points and paleomagnetic polarities obtained from Tauxe et al. (2012), adjusted by Crampton
et al. (2016) and Bijl et al. (2018b). Depositional facies and interpretation are indicated with colors following Salabarnada et al. (2018); see
legend to the right. Colors of the TEX86 and GDGT-2 /GDGT-3 values reflect the lithology from which they have been sampled.

nent Deep Water (LCDW), Upper Component Deep Water
(UCDW), and Antarctic Surface Water (AASW) (Orsi et al.,
1995). Modern-day annual SST values lie around 0 ◦C (sum-
mer SSTs are about 1–2 ◦C) (Locarnini et al., 2010).

2.2 Sedimentology

At present, IODP Site U1356 receives sediments transported
from the shelf and the slope as well as the in situ pelagic
component. Although we have no quantitative constraints on

the water depth during the Oligocene and Miocene, the sed-
iments as well as the biota suggest a deep-water setting at
Site U1356 during these times (Houben et al., 2013; Escutia
et al., 2014). Sedimentary units of Hole U1356A have been
defined in the shipboard report (Escutia et al., 2011). De-
tailed logging of the sediments recovered in Hole U1356A
has revealed that the Oligocene and Miocene sedimentary
record (between 95.40 and 894.80 m below sea floor, m b.s.f.)
consists mostly of alternations of (diatomaceous) laminated
and bioturbated sediments, gravity flow deposits, and carbon-
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ate beds (Salabarnada et al., 2018; Sangiorgi et al., 2018)
(Fig. 2). Gravity flow deposits include mass-transport de-
posits (MTDs) formed by the slump and debris flow sed-
iments of the Miocene, Oligocene and Eocene–Oligocene
transition (EOT), and the late Oligocene–Miocene turbidite-
type facies as defined by Salabarnada et al. (2018). Samples
from the MTDs contain the largest contribution of reworked
older material transported from the continental shelf (Bijl et
al., 2018a), while in the other lithologies, this component is
reduced or absent.

Between 593.4 and 795.1 m b.s.f., there are clear alterna-
tions between greenish carbonate-poor laminated and grey
bioturbated deposits with some carbonate-rich bioturbated
intervals. These deposits are interpreted as contourite de-
posits recording glacial–interglacial environmental variabil-
ity (Salabarnada et al., 2018). Above 600 m b.s.f., sediments
mostly consist of MTDs with low to abundant clasts (Fig. 2).
However, between the MTDs greenish or grey laminated
deposits and greenish or grey bioturbated deposits are pre-
served. Near the bottom of Unit III as defined in the ship-
board report (around 433 m b.s.f. and below), a different de-
positional setting is represented with alternations between
pelagic clays and (ripple) cross-laminated sandstone beds
(Escutia et al., 2011). These sandy (ripple) cross-laminated
beds are interpreted as turbidite deposits (Salabarnada et
al., 2018). Above these turbidite deposits, there are di-
atomaceous silty clays that are characterized by an alter-
nation of green laminated and grey homogeneous (biotur-
bated) silty clays. Apart from their diatom content, these
deposits are very similar to the Oligocene alternations be-
tween carbonate-poor laminated and carbonate-containing
bioturbated deposits and are therefore interpreted likewise
(Salabarnada et al., 2018). Up-core within the Miocene sec-
tion, the alternations between laminated and homogeneous
diatomaceous silty clays become more frequent. In the up-
per Miocene sections (95.4–110 m b.s.f.) laminations become
less clear as the sediments become less consolidated; how-
ever green and grey alternations can still be distinguished.
The more diatomaceous green deposits are interpreted as in-
terglacial stages. Samples analyzed for TEX86 were chosen
from all the different lithologies (Fig. 2). In particular the (di-
atomaceous) laminated and bioturbated deposits were sam-
pled, so we can test whether the glacial–interglacial variabil-
ity inferred from the lithology is reflected in our TEX86 data.

2.3 Oligocene and Miocene paleoceanographic setting

The Oligocene and Miocene Southern Ocean paleoceano-
graphic configuration is still obscure and controversial. Some
studies suggest that most Southern Ocean surface and deep-
water masses were already in place by Eocene–Oligocene
boundary times (Katz et al., 2011). Neodymium isotopes
on opposite sides of Tasmania suggest that an eastward-
flowing deep-water current has been present since 30 Ma
(Scher et al., 2015). A westward-flowing Antarctic Circum-

polar Counter Current (ACCC) was already established dur-
ing the middle Eocene (49 Ma; Bijl et al., 2013) (Fig. 1).
The Tasmanian Gateway opening also allowed the proto-
Leeuwin current (PLC) flowing along southern Australia to
continue eastward (Carter et al., 2004; Stickley et al., 2004)
(Fig. 1). However, numerical modeling studies show that
throughflow of the Antarctic Circumpolar Current (ACC)
was still limited during the Oligocene (Hill et al., 2013) be-
cause Australia and South America were substantially closer
to Antarctica (Fig. 1) than today (Markwick, 2007). More-
over, tectonic reconstructions and stratigraphy of formations
on Tierra del Fuego suggest that following open conditions
in the middle and late Eocene, the seaways at Drake Pas-
sage underwent uplift starting at 29 Ma and definitive clo-
sure around 22 Ma (Lagabrielle et al., 2009). Evidence for
active spreading and transgressional deposits in the Tierra
del Fuego area records the widening of Drake Passage from
15 Ma onwards. The timing of the Drake Passage opening,
which allowed for significant ACC throughflow, is still heav-
ily debated (Lawver and Gahagan, 2003; Livermore et al.,
2004; Scher and Martin, 2006, 2008; Barker et al., 2007;
Maldonado et al., 2014; Dalziel, 2014). Contourite deposits
suggest that strong Antarctic bottom-water currents first ap-
peared in the early Miocene (21.3 Ma) and that Weddell Sea
Deep Water has been able to flow westwards into the Sco-
tia Basin since the middle Miocene (∼ 12.1 Ma) (Maldon-
ado et al., 2003, 2005). It has been suggested that the clo-
sure and the reopening of Drake Passage are responsible for
the warmer late Oligocene and the mid-Miocene Climatic
Optimum (MMCO) and the subsequent cooling during the
mid-Miocene Climate Transition (MMCT), respectively, as
inferred from the benthic δ18O records (Lagabrielle et al.,
2009). If the throughflow at the Drake Passage was limited in
the late Oligocene and early Miocene, the ACCC was more
dominant than the ACC during these times according to the
model study of Hill et al. (2013).

Antarctica was positioned more eastward during the
Oligocene and Miocene relative to today (due to true po-
lar wander; van Hinsbergen et al., 2015), and Site U1356
was more to the north during the Oligocene and Miocene
compared to today (approximately 59◦ S at 34 Ma to 61◦ S
at 10 Ma). Reconstructions of the position of the PF based
on the distribution of calcareous and siliceous microfossils
place the PF at 60◦ S during the early Oligocene (Scher et
al., 2015), which means that Site U1356 may have crossed
the PF between 34 and 10 Ma. The more northerly position of
Site U1356 may have facilitated the influence of warmer wa-
ters during the mid-Miocene at Site U1356 (Sangiorgi et al.,
2018), and therefore bottom-water formation may have been
absent or limited at Site U1356. Bottom-water formation is
expected in more southerly positioned shallow basins, such
as the nearby Ross Sea, where glaciers extended onto the
Antarctic shelf (Sorlien et al., 2007). However, neodymium
isotopes obtained from Site U1356 suggest that bottom wa-
ter formed offshore the Adélie and Wilkes Land coast during
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the early Eocene, which seems in contrast with the globally
high temperature of that time (Huck et al., 2017). Modeling
studies have, however, suggested that density contrasts cre-
ated by seasonal changes in SST and salinity (with or without
sea ice) may have induced deep-water formation and down-
welling around Antarctica (Goldner et al., 2014; Lunt et al.,
2010).

2.4 Age model U1356

Oligocene sediments were recovered in the section from
894.68 m b.s.f. (first occurrence (FO) Malvinia escutiana) to
432.64 m b.s.f. (base of subchron C6Cn.2n) at IODP Hole
U1356A (Bijl et al., 2018b). The shipboard age model (Tauxe
et al., 2012) was based on biostratigraphy with magne-
tostratigraphic tie points and chronostratigraphically cali-
brated to the Geologic Time Scale of 2004 (Gradstein et
al., 2004). We follow Bijl et al. (2018b), who recalibrated
the existing age tie points to the Geologic Timescale of
2012 (GTS2012, Gradstein et al., 2012). The FO of Malvinia
escutiana (894.68 m b.s.f.; 33.5 Ma; Houben et al., 2011)
and the last occurrence (LO) of Reticulofenestra bisecta
(431.99 m b.s.f.; 22.97 Ma) and the paleomagnetic tie points
were used to convert the data to the time domain (see Fig. 4).
For the Oligocene–Miocene boundary, we also follow Bijl
et al. (2018b), who infer a hiatus spanning from ∼ 22.5 to
17.0 Ma between Cores 44R and 45R (∼ 421 m b.s.f.). It is
unknown whether additional short hiatuses exist within the
Oligocene record, but this is likely considering the presence
of MTDs (Salabarnada et al., 2018; Fig. S1 in the Supple-
ment). In addition, the poor core recovery in some intervals
dictates caution in making detailed stratigraphic comparisons
with other records.

For the Miocene section of Hole U1356A we follow San-
giorgi et al. (2018), who applied the constrained optimization
methodology (CONOP) of Crampton et al. (2016) to diatom
and radiolarian biostratigraphic events to construct an age
model. Based on the application of CONOP to the diatom
and radiolarian biostratigraphic events, a second hiatus was
identified spanning approximately the interval between 13.4
and 11 Ma.

2.5 Glycerol dialkyl glycerol tetraether extraction and
analysis

In addition to the 29 samples from the Miocene section pre-
sented in Sangiorgi et al. (2018), a total of 132 samples
from the Oligocene and early Miocene part of the sedimen-
tary record (Table S1 in the Supplement) were processed
for the analysis of GDGTs used for TEX86. Spacing varies
due to variability in core recovery and GDGT preserva-
tion. Furthermore, sampling of disturbed strata was avoided.
Sample processing involved manual powdering of freeze-
dried sediments after which lipids were extracted through ac-
celerated solvent extraction (ASE; with a dichloromethane

(DCM) /methanol (MeOH) mixture, 9 : 1 v/v, at 100 ◦C
and 7.6× 106 Pa). The lipid extract was separated using
Al2O3 column chromatography and hexane /DCM (9 : 1,
v/v), hexane /DCM (1 : 1, v/v), and DCM /MeOH (1 : 1,
v/v) for separating apolar, ketone, and polar fractions, re-
spectively. Then, 99 ng of C46 internal standard was added
to the polar fraction, containing the GDGTs, for quan-
tification purposes (see Huguet et al., 2006). The polar
fraction of each sample was dried under N2, dissolved in
hexane / isopropanol (99 : 1, v/v) and filtered through a
0.45 µm 4 mm diameter polytetrafluorethylene filter. After
that the dissolved polar fractions were injected and analyzed
by high-performance liquid chromatography–mass spec-
trometry (HPLC–MS) at Utrecht University. Most samples
were analyzed following HPLC–MS settings in Schouten
et al. (2007), while some samples (see Table S1) were an-
alyzed by ultra-high-performance liquid chromatography–
mass spectrometry (UHPLC–MS) according to the method
described by Hopmans et al. (2016). Only a minor differ-
ence between TEX86 index values generated by the differ-
ent methods was recorded by Hopmans et al. (2016) (on av-
erage 0.005 TEX86 units). Reruns of five samples with the
new method show an average difference between the two
methods of 0.011 TEX86 units (see Table S2), which trans-
lates to a 0.6 ◦C temperature difference based on TEXH

86 of
Kim et al. (2010) and lies well within the calibration error of
2.5 ◦C. GDGT peaks in the (U)HPLC chromatograms were
integrated using ChemStation software. A total of 16 of the
132 samples had too low concentrations of GDGTs to obtain
a reliable TEX86 value and have been discarded (i.e., with a
peak height less than 3× background, as well as peak areas
below 5× 103 and 3× 103 mV for HPLC-MS and UHPLC-
MS, respectively).

We have used the branched and isoprenoid tetraether (BIT)
index (Hopmans et al., 2004) to verify the relative contribu-
tion of terrestrial GDGTs in our samples, compared to ma-
rine GDGTs. As isoprenoid GDGTs (isoGDGTs), used for
the TEX86 proxy, are also produced in terrestrial soils, albeit
in minor amounts, they can alter the marine signal when there
is a large contribution of soil organic matter to marine sedi-
ments. This contribution can be identified by determining the
relative amount of branched GDGTs (brGDGTs), which are
primarily derived from soil (Weijers et al., 2006), to that of
the isoGDGT crenarchaeol (Hopmans et al., 2004). Samples
with BIT index values above 0.3 indicate that the TEX86-
based temperature may be affected by a contribution of soil-
derived isoGDGTs and thus should be discarded (see Weijers
et al., 2006), although, a high BIT value can sometimes also
result from production of brGDGTs in marine sediments and
the water column (Peterse et al., 2009; Sinninghe Damsté,
2016). The composition of the brGDGTs can be used to dis-
tinguish between marine and soil-derived GDGT input, in
particular by using the #ringtetra index (Sinninghe Damsté,
2016). The #ringstetra index can discriminate between marine
and soil-derived brGDGTs as the composition of soil-derived
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GDGTs typically shows high amounts of the acyclic tetram-
ethylated GDGT-Ia, while a dominance of cyclic tetramethy-
lated (Ib and Ic) brGDGTs has been attributed to in situ pro-
duction within the sediments (Sinninghe Damsté, 2016).

Oxic degradation of GDGTs does not affect the relative
amounts of individual isoGDGTs (Huguet et al., 2009; Kim
et al., 2009). However, oxic degradation may lead to an in-
creased relative influence of soil-derived isoGDGTs, which
could bias the TEX86 in different ways depending on the
composition of the soil-derived isoGDGTs (Huguet et al.,
2009). Higher BIT index values are expected in samples with
enhanced amounts of soil-derived isoGDGTs due to oxic
degradation and will be discarded. In addition, we calcu-
lated the methane index (MI) (Zhang et al., 2011), GDGT-
0 / crenarchaeol (Blaga et al., 2009; Sinninghe Damste et al.,
2009), GDGT-2 / crenarchaeol ratios (Weijers et al., 2011),
and ring index (Zhang et al., 2016) to check for input of
methanogenic or methanotrophic archaea, or any other non-
temperature-related biases to TEX86.

2.6 TEX86 calibrations

The TEX86 proxy is based on the distribution of isoGDGTs
preserved in sediments (Schouten et al., 2013, 2002). In ma-
rine sediments these lipids are assumed to originate from cell
membranes of marine Thaumarchaeota, which are one of the
dominant prokaryotes in today’s ocean and occur throughout
the entire water column (e.g., Karner et al., 2001; Church et
al., 2010, 2003). Applying TEX86 in polar oceans has been
challenged by the observation that high scatter in the cold
end of the core-top dataset for TEX86 is present (Ho et al.,
2014; Kim et al., 2010). To overcome some of the scatter
as well as the nonlinearity of the TEX86–SST relationship,
Kim et al. (2010) proposed two isoGDGT-based proxies and
calibrations: TEXL

86 and TEXH
86. The latter is not considered

here as it was particularly developed for low-latitude high-
temperature surface waters, and high-latitude core-top values
were left out of the calibration (Kim et al., 2010). The former
was particularly developed for high-latitude low-temperature
surface waters. However, it has been shown that TEXL

86 is
sensitive to changes in the GDGT-2 /GDGT-3 ratio ([2]/[3]),
which are unrelated to SST (Taylor et al., 2013; Hernández-
Sánchez et al., 2014). Instead these [2]/[3] changes result
from changes in the Thaumarchaeota community structure
in the water column because the community that thrives
in deeper (> 1000 m b.s.l.) nutrient and ammonia-rich wa-
ters produces significantly more GDGT-2 and thereby intro-
duces a water-depth dependency into the calibration (Tay-
lor et al., 2013; Hernández-Sánchez et al., 2014; Villanueva
et al., 2015). Close to the Antarctic margin, the abundance
of shallow versus deep-water Thaumarchaeota communities
at deep-water sites, like Site U1356 during the Oligocene–
Miocene, could be affected by the presence of sea ice and
the relative influence of (proto-)UCDW and (proto-)LCDW
upwelling. For this reason, TEXL

86-based calibrations are also

not the focus of our study. Instead, we focus on TEX86-based
calibrations only. All existing TEX(H)

86 and TEXL
86 calibra-

tions have, however, been applied to our data and are pre-
sented as a figure in the Supplement (Fig. S1).

In addition to the TEXL
86 and TEXH

86 calibrations, Kim et
al. (2010) also constructed a linear SST calibration based
on TEX86 that does include the high-latitude core-top val-
ues. Despite the scatter at the cold end of the calibration
that results from the inclusion of Arctic surface sediment
samples with deviating TEX86–SST relations, this calibra-
tion (SST= 81.5×TEX86 – 26.6 with a calibration error
of ±5.2 ◦C) has been shown to plot onto the annual mean
sea surface temperatures of the World Ocean Atlas 2009
(WOA2009; Locarnini et al., 2010) for the surface sample
TEX86 values obtained in the Pacific sector of the Southern
Ocean (Ho et al., 2014). However, this calibration is likely to
be influenced by regional differences in water depth, oceano-
graphic setting, and archaeal communities (Kim et al., 2015,
2016; Tierney and Tingley, 2014; Trommer et al., 2009; Vil-
lanueva et al., 2015). In addition, this calibration suffers from
regression dilution bias caused by the uncertainty in the mea-
sured TEX86 values plotted on the x axis (Tierney and Tin-
gley, 2014). Regression dilution bias causes flattening of the
slope (Hutcheon et al., 2010) and therefore affects recon-
structed TEX86-based temperatures at the lower and upper
end of the calibration range. Modern-analogue calibration
methods exist today to overcome this regression dilution bias
as well as some of the regional variability in TEX86–SST
relationships (Tierney and Tingley, 2015, 2014). These cali-
brations are based on a Bayesian spatially varying regression
model (BAYSPAR), which infers a best estimate for inter-
section and slope of the calibration based on an assembly of
20◦ by 20◦ spatial grid boxes that statistically fit best with
an estimate of the prior distribution of temperature (i.e., the
prior) (Tierney and Tingley, 2014). As for deep-time temper-
ature reconstructions, this prior cannot be based on modern-
day annual mean SSTs; the BAYSPAR method requires a
user-specified mean and variance for this prior (Tierney and
Tingley, 2014). The prior for Site U1356 is obtained from
recent clumped isotope measurements (147) on planktonic
foraminifers from Maud Rise (ODP Site 689) (Petersen and
Schrag, 2015), which show early Oligocene temperatures of
12 ◦C. The BAYSPAR approach (Tierney and Tingley 2014,
2015) selects only those TEX86 values from the calibration
set of Kim et al. (2010) and an additional 155 core tops
from regional core-top TEX86 studies that are relevant for
the study site, thereby generating a more regional calibration.
Application of BAYSPAR on Site U1356 using a prior mean
of 12 ◦C does, however, result in the exclusion of the high-
latitude core-top values. For this reason we find it useful to
compare the BAYSPAR results to the results obtained by us-
ing the linear calibration of Kim et al. (2010). The BAYSPAR
calibration method provides an estimate for SST and an up-
per and lower 90 % confidence interval. For comparison to
the linear calibration of Kim et al. (2010), a standard error
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(SE) has been calculated from these confidence intervals by
assuming a normal distribution around the mean, in which
case the 90 % confidence interval boundaries can be calcu-
lated as the mean plus or minus 1.645 times the SE.

Despite these recent efforts in improving the TEX86–SST
relationship, TEX86 is known to overestimate temperatures
at high latitudes due to multiple possible biases, such as
seasonality (Ho et al., 2014; Schouten et al., 2013) and
the incorporation of a subsurface signal (0–200 m b.s.l.) at
deep-ocean sites (> 1000 m b.s.l.) (Hernández-Sánchez et al.,
2014; Huguet et al., 2007; Rodrigo-Gámiz et al., 2015; Ya-
mamoto et al., 2012). There is, however, general consensus
that TEX86 is able to capture decadal and longer-term tem-
perature trends (Richey and Tierney, 2016), which is why
the main focus of this work is on relative SST changes.
Indeed, subsurface export of GDGTs is implicitly incorpo-
rated into the global TEX86–SST calibration and has there-
fore no implications for reconstructing SST (Hernández-
Sánchez et al., 2014). The highest GDGT fluxes are closely
linked to the highest organic matter, opal (diatom frustules),
and lithogenic particle fluxes (Mollenhauer et al., 2015; Ya-
mamoto et al., 2012), and the lack of production of sinking
particles that can incorporate GDGTs formed in deeper wa-
ters prevents biasing of surface-sediment TEX86 values to-
wards deep-water temperatures (Basse et al., 2014; Mollen-
hauer et al., 2015; Yamamoto et al., 2012). Still, particu-
lar environmental settings (e.g., upwelling regions, regions
with oxygen-depleted deep waters, freshwater surface wa-
ters) might favor the transport of a subsurface temperature
(Tsub) signal to the sediments (Kim et al., 2012a, b; Lopes
dos Santos et al., 2010; Mollenhauer et al., 2015). Also, for
polar oceans it has been suggested that reconstructed temper-
atures reflect Tsub since today Thaumarchaeota are virtually
absent in the upper 0–45 m of Antarctic low-salinity surface
waters formed by seasonal retreat of sea ice (Kalanetra et
al., 2009). Surface water conditions over Site U1356 during
the Oligocene and the MMCO were much like present-day
regions south of the STF and likely not under the influence
of a seasonal sea ice system (see Fig. 1) (Sangiorgi et al.,
2018; Bijl et al., 2018a). For these time intervals, there is no
reason to believe that surface waters were devoid of Thau-
marchaeota due to the presence of sea ice and that TEX86
values are influenced by an increased subsurface signal. For
the earliest Oligocene and the MMCT, the presence of Se-
lenopemphix antarctica suggests that Site U1356 was under
the influence of a seasonal sea ice system (Bijl et al., 2018a).
For these periods, a reconstruction of Tsub values may be
more appropriate, but this would still imply that SSTs are
warmer. We limit our discussion to the TEX86-based recon-
structions of SST, notably, because it has been shown that
TEX86-based SST estimates based on the linear calibration
of Kim et al. (2010) obtained from core-top samples from to-
day’s sea-ice-influenced Southern Ocean are in accordance
with WOA2009 mean annual SST (Ho et al., 2014). This
suggests that the effect of sea ice on surface and subsur-

face isoGDGT production is incorporated into the linear cal-
ibration of Kim et al. (2010). We therefore consider that de-
spite the potential absence of Thaumarchaeota in the surface
waters during the early Oligocene and the MMCT, the cal-
ibration of Kim et al. (2010) does provide a reliable esti-
mate of SST for these time intervals. Moreover, [2]/[3] ra-
tios for the earliest Oligocene and the MMCT are relatively
low and show much less variability compared to the rest of
the record (Fig. 2), which is opposite of what is expected
when the relative influence of deep-water Thaumarchaeota
increases (Hernández-Sánchez et al., 2014; Villanueva et al.,
2015). Calibrations to Tsub (Kim et al., 2012a, b; Tierney and
Tingley, 2015) are therefore not considered here, but are in-
cluded in Fig. S1 in the Supplement.

To obtain an estimate for the long-term average SST trends
and confidence levels, a local polynomial regression model
(LOESS) has been applied using R, which is based on the lo-
cal regression model “cloess” of Cleveland et al. (1992). This
method of estimating the long-term average trend is preferred
over a running average because it accounts for the variable
sample resolution. For the parameter “span”, which controls
the degree of smoothing, a value was automatically selected
through generalized cross-validation (R package fANCOVA;
Wang, 2010).

3 Results

3.1 Discarding potentially biased TEX86 values

A total of 116 samples spanning the Oligocene and earliest
Miocene were analyzed for TEX86 in this study. When the
Miocene samples of Sangiorgi et al. (2018) are included, the
total number of samples with sufficiently high GDGT con-
centrations is 145. However, only 77 of these 145 TEX86
values could be used for SST reconstruction for reasons dis-
cussed below.

Although sampling of disturbed strata was avoided, a to-
tal of 46 Oligocene and Miocene samples proved to be ob-
tained from MTDs after detailed logging by Salabarnada
et al. (2018). Hence, samples from these beds may not
reflect in situ material exclusively. For the EOT slumps,
this is supported by a high degree of reworked Eocene
specimens within the dinoflagellate cyst assemblage below
880.08 m b.s.f. (Houben et al., 2013). In addition, the clast-
bearing deposits of Units II and IV and decimeter-thick
granule-rich interbeds of Unit VIII (Fig. 2) are interpreted
as ice-rafted debris (IRD) deposits (Escutia et al., 2011; San-
giorgi et al., 2018) and thus indicate the presence of icebergs
above the site during deposition of these intervals. To avoid
potential bias due to allochthonous input and reworking of
older sediments, all samples from MTDs are excluded from
the SST reconstructions.

A contribution of terrestrial isoGDGTs can also bias the
marine pelagic TEX86 signal and can be verified by the BIT
index (Hopmans et al., 2004; Weijers et al., 2006). In 17
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Figure 3. (a) TEX86-based SSTs plotted against age (Ma), using the linear calibration of Kim et al. (2010) and the BAYSPAR method
(see text). The map (center left) indicates the 20◦× 20◦ grid cells from which core-top values (black dots) were obtained for the BAYSPAR
calibration. The red + in the map indicates the location of Site U1356. Other SST estimates are plotted for comparison. For the TEX86-
based temperature estimates (blue and orange crosses), the symbols with both fill and outline are based on the linear calibration of Kim et
al. (2010); those with the fill color only are based on the BAYSPAR SST calibration (Tierney and Tingley, 2014). The standard error of
the Kim et al. (2010) calibration is indicated by grey shading and the standard error of the BAYSPAR calibration is indicated by colored
shading. (b) The SST difference from the LOESS average based on the linear calibration of Kim et al. (2010) plotted against age. Modern-day
temperature range indicated along the y axis.

samples – none of which were derived from MTDs – the
BIT index value was > 0.3, which indicates that the recon-
structed TEX86 temperatures are likely affected by a con-
tribution of soil-derived isoGDGTs (Weijers et al., 2006;
Hopmans et al., 2004). For selected samples, the composi-
tion of brGDGTs was analyzed by UHPLC–MS (Hopmans
et al., 2016), which showed that #ringtetra values were be-
low 0.7 (Sinninghe Damsté, 2016), meaning that a signifi-
cant portion of the brGDGTs was likely derived from soil.
Furthermore, the TEX86 signal may be influenced by a po-
tential input of isoGDGTs from methanogenic archaea. Since
methanogenic Euryarchaeota are known to produce GDGT-
0 and small amounts of GDGT-1, GDGT-2, and GDGT-
3 (Koga et al., 1998), but not crenarchaeol, such a contri-
bution may be recognized by GDGT-0 / crenarchaeol val-
ues > 2 (Blaga et al., 2009; Sinninghe Damsté et al., 2009).
Similarly, methanotrophic Euryarchaeota may contribute sig-
nificant amounts of GDGT-1, GDGT-2, and GDGT-3 that
can be identified by values > 0.3 for the MI (Zhang et al.,
2011) and/or GDGT-2 / crenarchaeol values > 0.4 (Weijers
et al., 2011). In total 19 non-MTD-derived samples have too

high GDGT-0 / crenarchaeol ratios, too high MI values, or
too high GDGT-2 / crenarchaeol values. Of these 19 sam-
ples, 14 also have too high BIT values, meaning that in to-
tal 22 samples are discarded because of a potential contri-
bution of soil-derived and methanogenic or methanotrophic
archaeal isoGDGT input. As a final exercise, the ring in-
dex (|1RI|) was calculated for our dataset to identify all
other non-temperature-related influences on the distribution
of isoGDGTs in the samples (Zhang et al., 2016). In addition
to the non-temperature-related influences discussed above,
these could include oxygen concentrations (Qin et al., 2015),
archaeal growth phase (Elling et al., 2014), ammonia oxida-
tion rates (Hurley et al., 2016), and ecological factors (Elling
et al., 2015). Using |1RI|> 0.6 as a cutoff, no additional sam-
ples were discarded. All GDGT data and TEX86 values, in-
cluding those of the discarded samples, are presented in the
Supplement (Fig. S2, Table S1).
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Clim. Past, 14, 1275–1297, 2018 www.clim-past.net/14/1275/2018/



J. D. Hartman et al.: Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica 1285

3.2 Relation between TEX86 values and lithology

After excluding samples with potentially biased TEX86 val-
ues, the remaining record shows short-term variability that
is strongly linked to the lithology (see Fig. 2). Sediments
from the greenish laminated, carbonate-poor (glacial) facies
produce statistically significant (t test p value < 0.005) lower
TEX86 values than values obtained from the grey carbonate-
rich bioturbated (interglacial) facies. For the entire record,
TEX86 values are on average 0.50 and 0.53 for the glacial
(laminated) and interglacial (bioturbated) lithologies, respec-
tively. Paleoceanographic changes between glacial and in-
terglacial periods may have affected the community struc-
ture of the Thaumarchaeota living over Site U1356, which
may have introduced a nonthermal component to the TEX86
record that could contribute to the observed difference be-
tween TEX86 values from laminated and bioturbated fa-
cies. To test if changes in the composition of the Thaumar-
chaeota community have contributed significantly to the ob-
served difference between TEX86 values from laminated fa-
cies and bioturbated facies, a t test was also performed on
the [2]/[3] ratios of laminated and bioturbated lithologies for
the entire record (Fig. 2). No significant difference was ob-
served between the laminated and bioturbated facies (t test
p value > 0.2).

3.3 Oligocene and Miocene long-term sea surface
temperature trend

Based on the linear temperature calibration of Kim et
al. (2010) (black curve in Fig. 3a), our TEX86 values yield
the highest temperatures around 30.5 Ma (up to 22.6±
5.2 ◦C), 25.5 Ma (up to 25.1 ◦C± 5.2 ◦C), and around 17 Ma
(up to 19.2± 5.2 ◦C), whereas the lowest temperatures are
recorded between 22 and 23.5 Ma (minimum temperatures
are 8.3 ◦C± 5.2 ◦C) and around 13 and 10.5 Ma (minima
around 7.6± 5.2 ◦C). On average SSTs based on the linear
calibration of Kim et al. (2010) are 16.6, 16.7, and 10.6 ◦C for
the Oligocene, MMCO, and MMCT, respectively. Oligocene
SST variability increases significantly (p value < 0.001 in
F test) after 26.5 Ma (see Fig. 3b). Before 26.5 Ma, the vari-
ation in the record (2σ ) is about 3.6 ◦C, while the 2σ is
6.8 ◦C after 26.5 Ma. We note a strong (9.5 ◦C) SST drop at
the lower boundary of what is interpreted to represent sub-
chron C6Cn.2n (23.03 Ma) (see Figs. 2 and 4), at the strati-
graphic position of maximum δ18O values related to Mi-1 in
the deep-sea records (Beddow et al., 2016; Liebrand et al.,
2011; Pälike et al., 2006b). Unfortunately, due to core recov-
ery issues and limited high-resolution chronobiostratigraphic
control in this interval, the age model generally lacks the res-
olution to identify some of the other known transient tem-
perature drops in our record (∼ 30, ∼ 24 Ma) to Oligocene
glaciation-related Oi events (Fig. 4).

The SST record for Site U1356 based on the BAYSPAR
model shows the same trend as the SST record generated

with the linear calibration, but for SST values below 20.5 ◦C
it is offset towards slightly warmer values for SSTs based
on the linear calibration. Above 20.5 ◦C, BAYSPAR-based
SSTs are slightly offset towards cooler values. On average,
BAYSPAR-based SSTs are 0.8 ◦C warmer than the SSTs
based on the linear calibration of Kim et al. (2010), and
they have a smaller calibration SE (±4.0 ◦C) (red curve in
Fig. 3a). This offset and the smaller calibration error result
primarily from the fact that the BAYSPAR calibration does
not take the TEX86 values for polar core tops into account.
Instead, it bases its calibration mostly on the modern 30–50◦

northern and southern latitudinal bands (see map in Fig. 3).
Nevertheless, the BAYSPAR-based SSTs lie well within the
±5.2 ◦C SE of the transfer function from Kim et al. (2010),
as well as within the SE of about ±4.0 ◦C for the BAYSPAR
SST calibration. Average SSTs for the Oligocene, MMCO,
and MMCT based on the BAYSPAR SST calibration are
17.2, 17.3, and 12 ◦C, respectively.

4 Discussion

4.1 Oligocene and Miocene Southern Ocean sea
surface temperatures

Our TEX86-derived SST record is the first for the South-
ern Ocean that covers almost the entire Oligocene. Abso-
lute temperature values are relatively high considering the
high-latitude position of Site U1356 (∼ 59◦ S; van Hinsber-
gen et al., 2015), but confidence can be obtained from the ob-
servation that TEX86-based reconstructed SSTs from glacial
lithologies are generally lower than those from interglacial
lithologies (Fig. 4). Several lines of evidence support the rel-
atively high Oligocene and mid-Miocene temperatures re-
constructed for Site U1356. Dinoflagellate cyst assemblages
from the same site (Sangiorgi et al., 2018; Bijl et al., 2018a)
mostly contain taxa related to those found between the PF
and the STF today, where mean annual SST is between 8 and
16 ◦C (Prebble et al., 2013). This is on the low end of our re-
constructed SSTs for the Oligocene and the MMCO but very
comparable to SSTs for the MMCT. Furthermore, the abun-
dance of in situ pollen of temperate vegetation in these sedi-
ments (Sangiorgi et al., 2018; Strother et al., 2017), which are
most likely derived from the Antarctic shores, also suggests
a relatively mild climate. Finally, the abundance of pelagic
carbonaceous facies in some of the Oligocene interglacial in-
tervals of these high-latitude strata is interpreted to occur un-
der the influence of warmer northern-sourced surface waters
at Site U1356 (Salabarnada et al., 2018). Our reconstructed
SST values for U1356 add to a picture of globally very warm
SSTs during the Oligocene and MMCO, as was also recon-
structed for the North Atlantic based on TEX86 with SST
values ranging between 24 and 35 ◦C (Super et al., 2018).

In general, Oligocene SST estimates are higher than the
SST estimates reconstructed with other proxies at other
high-latitude Southern Ocean Sites 511 and 689 (Fig. 3a).
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However, the reconstructed ∼ 12 ◦C (standard error: ±1.1–
3.5 ◦C) based on clumped isotopes from Site 689 is derived
from thermocline-dwelling foraminifera, whereas the tem-
perature of the surface waters was likely higher than that
at the thermocline (Petersen and Schrag, 2015). In addition,
when the newest calibration for clumped isotope data is ap-
plied (Kelson et al., 2017), higher temperature estimates,
12.8–14.5 ◦C, are also obtained. Temperature estimates be-
tween 6 and 10 ◦C have been obtained from ODP Site 511
(see Fig. 1) based on UK

′

37 (Plancq et al., 2014) and TEX86
values (Liu et al., 2009), the latter recalculated with the linear
calibration of Kim et al. (2010) and the BAYSPAR calibra-
tion used here (Fig. 3A). The influence of the cold Antarctic-
derived surface current at Site 511 (Bijl et al., 2011; Douglas
et al., 2014) (Fig. 1) might be the reason for these colder
estimates. Similar to the Eocene, Site U1356 was probably
one of the warmest regions around Antarctica during the
early Oligocene (Pross et al., 2012), situated at a relatively
northerly latitude (van Hinsbergen et al., 2015) and still un-
der the influence of the relatively warm PLC (Fig. 1) (Bijl et
al. 2011; 2018a).

Sangiorgi et al. (2018) compared TEXL
86-based recon-

structed temperatures (based on the 0–200 depth-integrated
calibration of Kim et al., 2012a) from the Miocene section
of Site U1356 with Mg /Ca-based SST values from plank-
tic foraminifera from ODP Site 1171, South Tasman Rise
(Shevenell et al., 2004), and TEXL

86-based seawater temper-
atures from the ANDRILL AND-2A core, Ross Sea (Levy
et al., 2016). Based on these temperature reconstructions it
was established that temperatures at Site U1356 during the
MMCO are very comparable to the Mg /Ca-based SSTs
from the South Tasman Rise and are a few degrees cooler
during the MMCT, which was further supported by pollen
and dinocyst assemblages (Sangiorgi et al., 2018). We reach
the same conclusion based on the reconstructed SSTs using
the linear calibration of Kim et al. (2010) and the BAYSPAR
calibration for the Miocene TEX86 values from Site U1356
as well as site AND-2A (Fig. 3). Based on these recalibrated
SST values, we conclude, like Sangiorgi et al. (2018), that
during the MMCO there was a much reduced SST gradi-
ent between Site U1356 and Site 1171, which were at that
time positioned at approximately 60 and 54◦ S, respectively
(van Hinsbergen et al., 2015). Notably, however, the latitu-
dinal difference between Site U1356 and Site 1171 after the
MMCO increased and may be partly responsible for the in-
creased temperature gradient between the two sites at 14 Ma.

Biota-based temperature reconstructions at such high lat-
itudes are likely skewed towards summer conditions, as has
also been suggested for Site 689 and Site 511 (Petersen and
Schrag, 2015; Plancq et al., 2014). An important reason for
this could be the light limitation at high latitudes during win-
ter (e.g., Spilling et al., 2015), which is unfavorable for the
growth and bloom of phytoplankton and organisms feeding
on phytoplankton. The potential summer bias in high-latitude
TEX86-based SST reconstructions has been discussed exten-

sively for other past warm periods (e.g., Sluijs et al., 2008;
Bijl et al., 2009, 2010, 2013). Like in these past warm cli-
mates, we expect that primary productivity in the Oligocene
Southern Ocean was in sync with seasonal availability of
light, irrespective of the presence of sea ice or overall cli-
mate conditions. Indeed, isoGDGTs likely require pelleting
to sink effectively through the water column to the ocean
floor (e.g., Schouten et al., 2013) and therefore depend on the
presence of larger zooplankton that feed on the phytoplank-
ton. As phytoplankton blooms mostly occur during Antarctic
summer–autumn, when their predators also thrive (Schnack-
Schiel, 2001), we expect the highest isoGDGT fluxes to the
sediment during the summer in the Southern Ocean, despite
their highest production during a different season (Church
et al., 2003; Murray et al., 1998; Richey and Tierney, 2016;
Rodrigo-Gámiz et al., 2015). A bias towards summer temper-
atures is confirmed by the presence of sea ice dinoflagellate
cysts in some parts of the record, which would suggest SSTs
near freezing point during winter.

4.2 Long-term Oligocene and Miocene sea surface
temperature trends

We aim to explore the implications of the long-term trends in
our TEX86-based SST record by placing it in the context of
the global benthic δ18O and benthic foraminiferal Mg /Ca-
based BWT records in order to infer oceanographic changes
or changes in ice volume. Due to the relatively low sam-
ple resolution, and discontinuous sampling due to core gaps,
in comparison to the complete and quasi-continuous δ18O
records (Beddow et al., 2016; Billups et al., 2004; Hauptvo-
gel et al., 2017; Holbourn et al., 2015; Liebrand et al., 2017,
2016; Pälike et al., 2006a, b), we will here focus on the long-
term temperature trends. However, we can use the glacial–
interglacial alternations in the lithology, which cover the pe-
riod between 32 and 10 Ma, to differentiate between glacial
and interglacial SST and assess amplitudes (see Fig. 2). As
was mentioned, SSTs derived from the glacial facies show a
significantly lower mean than SSTs derived from interglacial
facies. Separating glacial and interglacial signals allows us to
interpret the long-term SST trend, as this removes a potential
sampling bias caused by irregularly spaced glacial or more
interglacial samples. To obtain both long-term glacial and
interglacial SST trends, LOESS curves are plotted through
SST estimates from the glacial and interglacial subsets of the
Oligocene (Fig. 4). For the Miocene we averaged SSTs from
glacial and interglacial samples for the three sample clus-
ters (at ∼ 17, ∼ 13.5 and ∼ 10.5 Ma). For both the SST es-
timates based on the linear calibration of Kim et al. (2010)
and those based on the BAYSPAR calibration, the glacial
and interglacial LOESS curves plotted through these SST
estimates show the same trend. Therefore, we have chosen
to show only the BAYSPAR-based SST data and LOESS
curves in Fig. 4. The SST LOESS curves based on the lin-
ear calibration of Kim et al. (2010) lie slightly below the
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BAYSPAR SST LOESS curves (i.e., a 0.9 ◦C offset for the
glacial LOESS curve and a 0.4 ◦C offset for the interglacial
LOESS curve).

A global benthic foraminiferal stacked δ18O curve has
been constructed by combining the benthic δ18O records of
the far-field Site 1218, eastern equatorial Pacific (Pälike et
al., 2006b); Sites 1264 and 1265, Walvis Ridge, southeast
Atlantic (Liebrand et al., 2017, 2016); Sites 926 and 929,
Ceara Rise, equatorial Atlantic (Pälike et al., 2006a; Zachos
et al., 2001); Site U1334, eastern equatorial Pacific (Bed-
dow et al., 2016); Site 1090, Agulhas Ridge, Atlantic sec-
tor of the Southern Ocean (Billups et al., 2004); Site U1337,
eastern equatorial Pacific (Holbourn et al., 2015); and Site
588, southwest Pacific (Flower and Kennett, 1993). To ob-
tain a global benthic δ18O stack in which the global long-
term trends are best represented, we have normalized the
data to the Site 1264 and 1265 record of Liebrand et al.
(2017, 2016), on which all records now overlap (Fig. 4).
Mg /Ca-based BWT records are obtained from Site 1218,
eastern equatorial Pacific (Lear et al., 2004); Site 747, Ker-
guelen Plateau, Southern Ocean (Billups and Schrag, 2002);
and Site 1171, Tasman Rise, Southern Ocean (Shevenell et
al., 2004). LOESS curves have been plotted through the ben-
thic δ18O stack as well as the individual Mg /Ca-based BWT
records (Fig. 4).

The LOESS curves through the glacial and interglacial
data show similar trends and show a good resemblance to the
global benthic δ18O stack (Fig. 4), particularly when consid-
ering the compromised sample resolution of our record. The
temperature optima and minima in the LOESS curves can
be directly linked to periods of relatively low and high ben-
thic δ18O values (maximum and minimum ice volume and
BWT), respectively. Temperatures increase from the earliest
Oligocene towards 30.5 Ma, while benthic δ18O values show
a decrease in the same interval, but reach a minimum ear-
lier, around 32 Ma. It is difficult to determine whether SSTs
are truly lagging the benthic δ18O values in this interval or
whether this is an artifact caused by the age model in this
part of the record. The recorded post-Oi-1 SST warming co-
incides with the disappearance of IRD (Escutia et al., 2011)
and sea-ice-related dinoflagellate cysts (Houben et al., 2013)
in the same record (Fig. 4). Following this temperature op-
timum, there is a cooling trend until a minimum is reached
around 28–27 Ma, which coincides with relatively high ben-
thic δ18O values and the Oi-2a and Oi-2b glacials. Subse-
quently, there is a warming towards a long-term tempera-
ture optimum around 25 Ma, which coincides with a mini-
mum in the benthic δ18O record known as the late Oligocene
warming. This temperature optimum around 25 Ma is char-
acterized by the influx of the temperate dinocyst species Ne-
matosphaeropsis labyrinthus (Bijl et al., 2018a). This seems
to indicate a strong influence of northern-sourced surface wa-
ters at Site U1356, as this species is currently associated
with the SF and winter and summer temperatures of 6–13
and 8–17 ◦C, respectively (Esper and Zonneveld, 2007; Mar-

ret and De Vernal, 1997; Prebble et al., 2013). Finally, the
Oligocene LOESS temperature curves show a cooling to-
wards the Oligocene–Miocene transition at 23 Ma. In com-
parison to the benthic δ18O record, this cooling trend is rather
gradual and starts 1 Myr earlier than the steeper benthic δ18O
record increase that starts at 24 Ma and continues towards the
Mi-1 glaciation. We consider this to represent a realistic cli-
mate signal, notably so since the age model is sufficiently
well constrained in this part of the record. Glacial and inter-
glacial averages for the Miocene data clustered around 17,
13.5, and 10.5 Ma show a declining trend and follow the in-
creasing benthic δ18O trend that characterizes the MMCT.
High amounts of N. labyrinthus within the MMCO inter-
val support warm surface water conditions (Sangiorgi et al.,
2018). After the MMCO, increased amounts of sea ice di-
noflagellates and IRD indicate that Site U1356 came under
the influence of seasonal sea ice, and therefore cooler condi-
tions. However, increases in N. labyrinthus after the MMCT
indicate that warmer northern-sourced waters still periodi-
cally influenced Site U1356 (Sangiorgi et al., 2018).

The fact that the LOESS temperature trends mirror the
benthic δ18O record may suggest that (1) changes in the
Wilkes Land SST correspond to SST changes in the region of
deep-water formation, which is reflected in the benthic δ18O
records, and (2) changes in the Wilkes Land SST reflect long-
term changes in paleoceanography that simultaneously affect
or are related to the size of the Antarctic Ice Sheet (AIS) and
therefore the deep-sea δ18O of the sea water, or a combina-
tion of both.

Considering (1), in the modern-day Southern Ocean, bot-
tom water forms through mixing along the Antarctic Slope
Front (ASF) of Circumpolar Deep Water (CDW) and High-
Salinity Shelf Water (HSSW), which forms as a consequence
of sea ice formation (Gill, 1973; Jacobs, 1991). Associated
with the ASF is the westward-flowing Antarctic Slope Cur-
rent (ASC), which contributes to the bottom-water formation
and results from the geostrophic adjustment of Ekman trans-
port to the south, which is driven by the predominantly east-
erly winds around Antarctica (Gill, 1973). It has been sug-
gested that, after the establishment of its shallower westward-
flowing counterpart, the ACCC, around 49 Ma (Bijl et al.,
2013), an ASC was established near Site U1356 in the early
Oligocene (Scher et al., 2015). In areas where sea ice was
formed during the Oligocene and Miocene the ASC could
have enhanced mixing between HSSW and CDW similar to
today. For the Wilkes Land margin this might have been the
case for the earliest Oligocene and MMCT for which we
find sea ice indicators in the dinoflagellate cyst assemblages
(Bijl et al., 2018b; Houben et al., 2013). These sea ice di-
noflagellate cysts seem to indicate that winter temperatures
at the Wilkes Land margin were cold enough to allow sea
ice formation and therefore maybe formation of deep waters
along the Wilkes Land coast during the earliest Oligocene
and MMCT. However, most of the record is devoid of sea ice
indicators, suggesting that modern-day processing of deep-
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water formation is unlikely to have occurred at the Wilkes
Land margin. Still, neodymium isotopes of fossil fish teeth
from Site U1356 have suggested that deep-water formation
took place at the Adélie and Wilkes Land margin during
the Eocene (Huck et al., 2017), when pollen indicates near-
tropical warmth (Pross et al., 2012) . Model studies have sug-
gested that during such warm periods seasonal density differ-
ences may still induce deep-water formation or downwelling
of waters around Antarctica (Goldner et al., 2014; Lunt et
al., 2010). Alternatively and more likely, sea ice may have
formed in the cooler Ross Sea and been transported along the
Wilkes Land coast similar to today during the Oligocene and
Miocene, meaning that deep water formed in the Ross Sea
where glaciers extended onto the Antarctic shelf (see Sorlien
et al., 2007). In that case, the absence of sea ice dinoflag-
ellate cysts during most of the Oligocene and the MMCO
at Site U1356 would mean that, in contrast to the earliest
Oligocene and MMCT, sea ice coming from the Ross Sea
was prevented from reaching Site U1356 by too warm win-
ter SSTs. This is in accordance with the relatively warmer
(summer) SST values for Site U1356 during most of the
Oligocene and the MMCO. If the reconstructed SST trends
of Site U1356 are representative for the climatic trends of a
larger region (i.e., including the Ross Sea as a potential re-
gion for deep-water formation), this climatic signal may have
been relayed to the deep ocean and recorded in the stable
oxygen isotope composition of benthic foraminifera at far-
field sites. In fact, Southern Ocean-sourced deep waters may
have reached as far as the north Pacific during the Oligocene
(Borelli and Katz, 2015). If this is the case, the consistent
long-term trends between the SST of Site U1356 and the ben-
thic δ18O record would imply that the size of the AIS is less
variable on these long-term timescales than the benthic δ18O
record would suggest under the assumption of constant BWT
(e.g., Liebrand et al., 2017; see Fig. 4): much of the variation
will be due to deep-sea temperature variation. The small AIS
may have been relatively stable during the Oligocene and
Miocene, most likely because there was less marine-based
ice in comparison to land-based ice as topographic recon-
structions of Antarctica would suggest (Gasson et al., 2016;
Wilson et al., 2012).

Only one BWT record is available for the Oligocene,
which is based on Mg /Ca ratios from Site 1218 (equatorial
Pacific). Mg /Ca was obtained from the benthic foraminifer
Oridorsalis umbonatus (Lear et al. 2004; Fig. 4), an infau-
nal species that is to some extent insulated from long-term
changes in carbonate ion concentrations (Ford et al., 2016;
Lear et al., 2015). Although absolute temperatures may de-
pend on local factors, such as pore water chemistry, the long-
term trends should reflect the trends in BWT (Lear et al.,
2015). The BWT record of Site 1218 shows a long-term
deep-sea warming between 27 and 25 Ma, similar to our
SST record. The temperature optimum at 30.5 Ma in our
TEX86-based SST record cannot be recognized in the BWT
record of Site 1218. Similar to the benthic δ18O record, an

optimum is reached earlier (∼ 32 Ma) and this mismatch
could be due to uncertainties in the age model of the lower
part of the Oligocene section of Hole U1356A. The con-
tinued temperature rise after 25 Ma in the BWT record of
Site 1218 is also not observed in our TEX86-based tem-
perature trend. This could be because the equatorial Pacific
mainly receives bottom water from a warmer Pacific sec-
tor of the Southern Ocean, east of the Tasmanian Gateway,
and not from the Wilkes Land margin, and the Pacific sector
is influenced by warming. Alternatively, there is an increas-
ing influence of a warmer deep-water mass from elsewhere.
Notably, Mg /Ca-based BWTs from the Kerguelen Plateau
(Site 747) show a temperature optimum around 25 Ma pre-
ceding the δ18O minimum at 24 Ma, similar to the SST trend
at Site U1356. For the mid-Miocene, BWT records of both
Site 747 (Kerguelen Plateau) and Site 1171 (South Tasman
Rise) show slowly decreasing trends consistent with decreas-
ing TEX86-based SSTs of Site U1356. The similarities of the
three Mg /Ca records to our TEX86-based SST record sup-
port the transfer of a regional SST signal towards the deep
ocean through deep-water formation. However, the temper-
ature differences between temperature optima (e.g., the late
Oligocene and MMCO) and minima (e.g., the mid-Oligocene
and MMCT) are much larger for the TEX86-based SSTs than
for the Mg /Ca-based BWTs. This difference in the degree
of change could be explained by the fact that the formation of
deep waters during winter is constrained at the lower end by
the freezing point of water, which would limit the degree of
change during relatively cold intervals. The degree of change
could also be reduced by a shift in the location of deep-water
formation to higher latitudes during warmer intervals.

Alternatively, long-term SST trends as well as Southern
Ocean BWT trends (Sites 747 and 1171) are governed by
large-scale tectonic processes, such as the opening and clo-
sure of the Drake Passage, as was suggested by Lagabrielle
et al. (2009). Opening of the Drake Passage could result in
increased isolation of the Antarctic continent through the es-
tablishment of a (proto-)ACC. In turn, this would result in ef-
fective blocking of northerly sourced warmer waters as well
as ice sheet expansion, thereby resulting in a simultaneous
benthic δ18O increase and SST decrease.

As an alternative hypothesis, reconstructed SSTs at Wilkes
Land may depend on the volume of the ice sheet in the hin-
terland. In that scenario most of the long-term trends in the
δ18O record are due to ice volume growth and decline. A
more expanded ice sheet will lower SSTs and enhance the
formation of sea ice around Antarctica (Goldner et al., 2014).
Expansion of this cool (proto-)AASW and the ocean frontal
systems to lower latitudes during glacials may have cooled
SSTs at Site U1356, while ice volume decrease and the re-
treat of the ocean frontal systems during interglacials may
have resulted in warmer SSTs at Site U1356. However, the
warmth of even the glacial SSTs in our SST record, as well
as the overall absence of sea ice indicators during most of the
Oligocene in these glacial intervals, strongly argues against
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this alternative. Only during the MMCT, when dinoflagellate
cysts and IRD suggest an increased influence of icebergs or
sea ice (Sangiorgi et al., 2018), might the ice sheet have been
large enough during the glacial periods to allow the influence
of a cool (proto-)AASW at Site U1356.

4.3 Sea surface temperature variability at
glacial–interglacial timescales

For the Oligocene, the offset between the glacial and inter-
glacial LOESS curves is constant over time (Fig. 4). Irrespec-
tive of the chosen calibration (i.e., TEX86 or BAYSPAR),
SSTs are on average 1.5–3.1 ◦C higher during interglacial
intervals than during adjacent glacial times. Notably, this
glacial–interglacial SST difference is smaller than the vari-
ability that can be observed in samples from within one sed-
imentary facies. Particularly around 31 Ma, when we have a
higher sampling resolution within a short interval, temper-
ature variability shows a 5 ◦C range and is therefore larger
than the glacial–interglacial temperature difference. We em-
phasize that the glacial–interglacial facies changes reflect
obliquity-paced shifts in the position of bottom-water cur-
rents (Salabarnada et al., 2018).

This glacial–interglacial SST difference is also smaller
than the observed amplitude of the variability in our tempera-
ture record (2σ = 3.6 ◦C before 27 Ma) because it takes rela-
tively warm glacials and cool interglacial SST values into ac-
count. Also considering that part of the 2σ variability is due
to the relatively large calibration error of the BAYSPAR cali-
bration (±4.0 ◦C), the difference of 1.5–3.1 ◦C may be a bet-
ter representation of average glacial–interglacial SST varia-
tion than the 2σ . It has been shown that glacial–interglacial
variability could be overestimated due to increased GDGT
export from deeper waters during Pleistocene glacial peri-
ods (Hertzberg et al., 2016). These authors showed that dur-
ing the Last Glacial Maximum in the equatorial Pacific a re-
duced nutrient availability and primary productivity lowered
the nitrite maximum in the water column and consequently
the position of the highest Thaumarchaeota export produc-
tion. If export of GDGTs consistently took place in deeper
waters during the glacial periods in our record, we would
expect that [2]/[3] ratios were higher during the glacials.
We show (Fig. 2) that this is not the case. In addition, di-
noflagellate cysts suggest that the surface waters overlying
Site U1356 become more oligotrophic during the interglacial
periods, meaning that the nitrite maximum in the water col-
umn and therefore GDGT export production would be deeper
during the interglacials. Interglacial TEX86-derived temper-
atures would hence underestimate true SST values.

The average consistent offset between glacial and inter-
glacial values seems to disappear for each of the Miocene
data clusters at ∼ 17, ∼ 13.5, and ∼ 10.5 Ma. Several causes
could explain this. It could be the result of a less variable
climate during the Miocene, which causes both subsets to
overlap more. Indeed, for the MMCO this may be the case

because the MMCO is a time interval of exceptional warmth,
with retreated ice sheets and vegetated coastlines of Wilkes
Land (Sangiorgi et al., 2018). In such a climate, the glacial
intervals may not have been fundamentally colder than the
interglacials. We cannot, however, explain the apparent ab-
sence of glacial–interglacial temperature variability around
14 and 10.5 Ma, when dinoflagellate cysts suggest profound
variability in sea ice extent, upwelling, and temperature (San-
giorgi et al., 2018). It could be that the samples taken by
Sangiorgi et al. (2018) do not capture the true glacial and
interglacial extremes, but this cannot be verified at this stage.
Because a detailed lithological log was not available to San-
giorgi et al. (2018), there is also an uneven distribution be-
tween glacial and interglacial samples.

If the recorded glacial–interglacial SST variability in the
Oligocene is representative for the SST variability at the re-
gion of deep-water formation, it should be considered when
interpreting benthic foraminiferal δ18O records in terms of
ice volume variability. As such, a larger part of the variabil-
ity in δ18O than so far assumed (Hauptvogel et al., 2017;
Liebrand et al., 2017) should be ascribed to deep-sea temper-
ature rather than ice volume changes. If the region of deep-
water formation experienced the same SST variability, 40–
70 % of the 1 ‰ deep-sea δ18O variability over Oligocene
glacial–interglacial cycles can be related to deep-sea tem-
perature. However, it is plausible that not the entire range
of SST variability is relayed to the deep sea and that in the
more southerly positioned Ross Sea, the most likely region
of Oligocene deep-water formation, temperatures were not
as variable as in the Wilkes Land sector. Indeed, Mg /Ca-
based reconstructed bottom-water temperatures from Site
1218 show much less glacial–interglacial variation (1.1 ◦C,
Fig. 5) (Lear et al., 2004) than our record. Still, our record
provides evidence that polar SST experienced considerable
variability, both on the short-term glacial–interglacial cycles
as well as in the long-term.

A considerable influence of deep-sea temperature on ben-
thic δ18O could explain the level of symmetry in glacial–
interglacial cycles in the Oligocene (Liebrand et al., 2017), as
the temperature would vary in a sinusoidal fashion, whereas
ice sheets would respond nonlinearly to climate forcing. The
sedimentary record of Site U1356 lacks the potential of ob-
taining a resolution comparable to that of deep-sea δ18O
records in order to verify these claims. However, ice vol-
ume reconstructions from δ18O records on both long-term
and short-term timescales should consider that an important
component of the signal could potentially be ascribed to tem-
perature variability.

5 Conclusions

We reconstruct (summer-biased) SSTs of around 17 ◦C on
average for the Wilkes Land margin during the Oligocene,
albeit with a high degree of variability (up to a 6.8 ◦C dou-
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ble standard deviation during the late Oligocene). The re-
constructed temperatures are a few degrees higher than pre-
viously published high-latitude early Oligocene Southern
Ocean estimates. Because alternations in the lithology reflect
glacial–interglacial cycles, an estimated temperature differ-
ence of 1.5 to 3.1 ◦C between glacials and interglacials could
be interpreted for the Oligocene. The long-term trends in
both glacial and interglacial records show a temperature in-
crease towards 30.5 Ma, followed by a minimum around
27 Ma, an optimum around 25 Ma, and finally a decrease
towards the end of the Oligocene, generally following the
long-term trends in the global benthic δ18O record as well
as parts of the available Mg /Ca-based BWT records for the
Oligocene. Recalibrated SSTs based on previously published
TEX86 data for the mid-Miocene decrease from around 17 ◦C
to 11 ◦C between ∼ 17 and ∼ 10.5 Ma. A distinct glacial–
interglacial SST difference was not observed for the mid-
Miocene. Nevertheless, the recorded temperature decline
also follows the trend observed in benthic δ18O and Mg /Ca-
based BWT records. Our results suggest that considerable
SST variability prevailed during the Oligocene and Miocene.
This may have implications for the dynamics of marine-
based ice sheets, if present, and the extent of the Antarctic
ice sheet in general. Assuming that the reconstructed SST
trends and glacial–interglacial variability have been relayed
to the deep water at nearby bottom-water formation sites, our
results indicate that the long-term δ18O trend may be con-
trolled for a considerable part by bottom-water temperature.
This implies that the Antarctic Ice Sheet was less dynamic
during the Oligocene and Miocene, which could be due to the
presence of relatively more land-based versus marine-based
ice.

Data availability. GDGT concentrations are available in the Sup-
plement Table S1 as integrated peak values obtained from the
(U)HPLC-MS chromatograms. Based on these concentrations,
TEX86, BIT, MI, GDGT-2/Cren, GDGT-0/Cren, 1RI, GDGT-
2/GDGT-3, and #ringstetra were calculated and are also presented
in Table S1.
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