Articles | Volume 14, issue 8
https://doi.org/10.5194/cp-14-1119-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-1119-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Testing the consistency between changes in simulated climate and Alpine glacier length over the past millennium
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Pierre-Yves Barriat
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Quentin Dalaiden
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
François Klein
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Ben Marzeion
Institut für Geographie, Universität Bremen, Bremen, Germany
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Bremen, Germany
Fabien Maussion
Department of Atmospheric and Cryospheric Sciences, Universität
Innsbruck, Innsbruck, Austria
Paolo Pelucchi
Imperial College, London, UK
Anouk Vlug
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Bremen, Germany
Faculty of Geosciences, University of Bremen, Bremen, Germany
Related authors
Marie Genevieve Paule Cavitte, Hugues Goosse, Quentin Dalaiden, and Nicolas Ghilain
EGUsphere, https://doi.org/10.5194/egusphere-2024-3140, https://doi.org/10.5194/egusphere-2024-3140, 2024
Short summary
Short summary
Ice cores in East Antarctica show contrasting records of past snowfall. We tested if large-scale weather patterns could explain this by combining ice core data with an atmospheric model and radar-derived errors. However, the reconstruction produced unrealistic wind patterns to fit the ice core records. We suggest that uncertainties are not fully captured and that small-scale local wind effects, not represented in the model, could significantly influence snowfall records in the ice cores.
Bianca Mezzina, Hugues Goosse, François Klein, Antoine Barthélemy, and François Massonnet
The Cryosphere, 18, 3825–3839, https://doi.org/10.5194/tc-18-3825-2024, https://doi.org/10.5194/tc-18-3825-2024, 2024
Short summary
Short summary
We analyze years with extraordinarily low sea ice extent in Antarctica during summer, until the striking record in 2022. We highlight common aspects among these events, such as the fact that the exceptional melting usually occurs in two key regions and that it is related to winds with a similar direction. We also investigate whether the summer conditions are preceded by an unusual state of the sea ice during the previous winter, as well as the physical processes involved.
Marie G. P. Cavitte, Hugues Goosse, Kenichi Matsuoka, Sarah Wauthy, Vikram Goel, Rahul Dey, Bhanu Pratap, Brice Van Liefferinge, Thamban Meloth, and Jean-Louis Tison
The Cryosphere, 17, 4779–4795, https://doi.org/10.5194/tc-17-4779-2023, https://doi.org/10.5194/tc-17-4779-2023, 2023
Short summary
Short summary
The net accumulation of snow over Antarctica is key for assessing current and future sea-level rise. Ice cores record a noisy snowfall signal to verify model simulations. We find that ice core net snowfall is biased to lower values for ice rises and the Dome Fuji site (Antarctica), while the relative uncertainty in measuring snowfall increases rapidly with distance away from the ice core sites at the ice rises but not at Dome Fuji. Spatial variation in snowfall must therefore be considered.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Koffi Worou, Thierry Fichefet, and Hugues Goosse
Weather Clim. Dynam., 4, 511–530, https://doi.org/10.5194/wcd-4-511-2023, https://doi.org/10.5194/wcd-4-511-2023, 2023
Short summary
Short summary
The Atlantic equatorial mode (AEM) of variability is partly responsible for the year-to-year rainfall variability over the Guinea coast. We used the current climate models to explore the present-day and future links between the AEM and the extreme rainfall indices over the Guinea coast. Under future global warming, the total variability of the extreme rainfall indices increases over the Guinea coast. However, the future impact of the AEM on extreme rainfall events decreases over the region.
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023, https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary
Short summary
The last deglaciation is a period of large warming from 21 000 to 9000 years ago, concomitant with ice sheet melting. Here, we evaluate the impact of different ice sheet reconstructions and different processes linked to their changes. Changes in bathymetry and coastlines, although not often accounted for, cannot be neglected. Ice sheet melt results in freshwater into the ocean with large effects on ocean circulation, but the timing cannot explain the observed abrupt climate changes.
Andrew P. Schurer, Gabriele C. Hegerl, Hugues Goosse, Massimo A. Bollasina, Matthew H. England, Michael J. Mineter, Doug M. Smith, and Simon F. B. Tett
Clim. Past, 19, 943–957, https://doi.org/10.5194/cp-19-943-2023, https://doi.org/10.5194/cp-19-943-2023, 2023
Short summary
Short summary
We adopt an existing data assimilation technique to constrain a model simulation to follow three important modes of variability, the North Atlantic Oscillation, El Niño–Southern Oscillation and the Southern Annular Mode. How it compares to the observed climate is evaluated, with improvements over simulations without data assimilation found over many regions, particularly the tropics, the North Atlantic and Europe, and discrepancies with global cooling following volcanic eruptions are reconciled.
Hugues Goosse, Sofia Allende Contador, Cecilia M. Bitz, Edward Blanchard-Wrigglesworth, Clare Eayrs, Thierry Fichefet, Kenza Himmich, Pierre-Vincent Huot, François Klein, Sylvain Marchi, François Massonnet, Bianca Mezzina, Charles Pelletier, Lettie Roach, Martin Vancoppenolle, and Nicole P. M. van Lipzig
The Cryosphere, 17, 407–425, https://doi.org/10.5194/tc-17-407-2023, https://doi.org/10.5194/tc-17-407-2023, 2023
Short summary
Short summary
Using idealized sensitivity experiments with a regional atmosphere–ocean–sea ice model, we show that sea ice advance is constrained by initial conditions in March and the retreat season is influenced by the magnitude of several physical processes, in particular by the ice–albedo feedback and ice transport. Atmospheric feedbacks amplify the response of the winter ice extent to perturbations, while some negative feedbacks related to heat conduction fluxes act on the ice volume.
Pepijn Bakker, Hugues Goosse, and Didier M. Roche
Clim. Past, 18, 2523–2544, https://doi.org/10.5194/cp-18-2523-2022, https://doi.org/10.5194/cp-18-2523-2022, 2022
Short summary
Short summary
Natural climate variability plays an important role in the discussion of past and future climate change. Here we study centennial temperature variability and the role of large-scale ocean circulation variability using different climate models, geological reconstructions and temperature observations. Unfortunately, uncertainties in models and geological reconstructions are such that more research is needed before we can describe the characteristics of natural centennial temperature variability.
Guillian Van Achter, Thierry Fichefet, Hugues Goosse, and Eduardo Moreno-Chamarro
The Cryosphere, 16, 4745–4761, https://doi.org/10.5194/tc-16-4745-2022, https://doi.org/10.5194/tc-16-4745-2022, 2022
Short summary
Short summary
We investigate the changes in ocean–ice interactions in the Totten Glacier area between the last decades (1995–2014) and the end of the 21st century (2081–2100) under warmer climate conditions. By the end of the 21st century, the sea ice is strongly reduced, and the ocean circulation close to the coast is accelerated. Our research highlights the importance of including representations of fast ice to simulate realistic ice shelf melt rate increase in East Antarctica under warming conditions.
Nidheesh Gangadharan, Hugues Goosse, David Parkes, Heiko Goelzer, Fabien Maussion, and Ben Marzeion
Earth Syst. Dynam., 13, 1417–1435, https://doi.org/10.5194/esd-13-1417-2022, https://doi.org/10.5194/esd-13-1417-2022, 2022
Short summary
Short summary
We describe the contributions of ocean thermal expansion and land-ice melting (ice sheets and glaciers) to global-mean sea-level (GMSL) changes in the Common Era. The mass contributions are the major sources of GMSL changes in the pre-industrial Common Era and glaciers are the largest contributor. The paper also describes the current state of climate modelling, uncertainties and knowledge gaps along with the potential implications of the past variabilities in the contemporary sea-level rise.
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Nicolas Ghilain, Stéphane Vannitsem, Quentin Dalaiden, Hugues Goosse, Lesley De Cruz, and Wenguang Wei
Earth Syst. Sci. Data, 14, 1901–1916, https://doi.org/10.5194/essd-14-1901-2022, https://doi.org/10.5194/essd-14-1901-2022, 2022
Short summary
Short summary
Modeling the climate at high resolution is crucial to represent the snowfall accumulation over the complex orography of the Antarctic coast. While ice cores provide a view constrained spatially but over centuries, climate models can give insight into its spatial distribution, either at high resolution over a short period or vice versa. We downscaled snowfall accumulation from climate model historical simulations (1850–present day) over Dronning Maud Land at 5.5 km using a statistical method.
Koffi Worou, Hugues Goosse, Thierry Fichefet, and Fred Kucharski
Earth Syst. Dynam., 13, 231–249, https://doi.org/10.5194/esd-13-231-2022, https://doi.org/10.5194/esd-13-231-2022, 2022
Short summary
Short summary
Over the Guinea Coast, the increased rainfall associated with warm phases of the Atlantic Niño is reasonably well simulated by 24 climate models out of 31, for the present-day conditions. In a warmer climate, general circulation models project a gradual decrease with time of the rainfall magnitude associated with the Atlantic Niño for the 2015–2039, 2040–2069 and 2070–2099 periods. There is a higher confidence in these changes over the equatorial Atlantic than over the Guinea Coast.
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sébastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, https://doi.org/10.5194/gmd-15-553-2022, 2022
Short summary
Short summary
We present PARASO, a circumpolar model for simulating the Antarctic climate. PARASO features five distinct models, each covering different Earth system subcomponents (ice sheet, atmosphere, land, sea ice, ocean). In this technical article, we describe how this tool has been developed, with a focus on the
coupling interfacesrepresenting the feedbacks between the distinct models used for contribution. PARASO is stable and ready to use but is still characterized by significant biases.
Hugues Goosse, Quentin Dalaiden, Marie G. P. Cavitte, and Liping Zhang
Clim. Past, 17, 111–131, https://doi.org/10.5194/cp-17-111-2021, https://doi.org/10.5194/cp-17-111-2021, 2021
Short summary
Short summary
Polynyas are ice-free oceanic areas within the sea ice pack. Small polynyas are regularly observed in the Southern Ocean, but large open-ocean polynyas have been rare over the past decades. Using records from available ice cores in Antarctica, we reconstruct past polynya activity and confirm that those events have also been rare over the past centuries, but the information provided by existing data is not sufficient to precisely characterize the timing of past polynya opening.
Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T. M. Lenaerts, and Elizabeth R. Thomas
The Cryosphere, 14, 4083–4102, https://doi.org/10.5194/tc-14-4083-2020, https://doi.org/10.5194/tc-14-4083-2020, 2020
Short summary
Short summary
Surface mass balance (SMB) and surface air temperature (SAT) are correlated at the regional scale for most of Antarctica, SMB and δ18O. Areas with low/no correlation are where wind processes (foehn, katabatic wind warming, and erosion) are sufficiently active to overwhelm the synoptic-scale snow accumulation. Measured in ice cores, the link between SMB, SAT, and δ18O is much weaker. Random noise can be removed by core record averaging but local processes perturb the correlation systematically.
David Parkes and Hugues Goosse
The Cryosphere, 14, 3135–3153, https://doi.org/10.5194/tc-14-3135-2020, https://doi.org/10.5194/tc-14-3135-2020, 2020
Short summary
Short summary
Direct records of glacier changes rarely go back more than the last 100 years and are few and far between. We used a sophisticated glacier model to simulate glacier length changes over the last 1000 years for those glaciers that we do have long-term records of, to determine whether the model can run in a stable, realistic way over a long timescale, reproducing recent observed trends. We find that post-industrial changes are larger than other changes in this time period driven by recent warming.
Zhiqiang Lyu, Anais J. Orsi, and Hugues Goosse
Clim. Past, 16, 1411–1428, https://doi.org/10.5194/cp-16-1411-2020, https://doi.org/10.5194/cp-16-1411-2020, 2020
Short summary
Short summary
This paper uses two different ways to perform model–data comparisons for the borehole temperature in Antarctica. The results suggest most models generally reproduce the long-term cooling in West Antarctica from 1000 to 1600 CE and the recent 50 years of warming in West Antarctica and Antarctic Peninsula. However, The 19th-century cooling in the Antarctic Peninsula (−0.94 °C) is not reproduced by any of the models, which tend to show warming instead.
Jeanne Rezsöhazy, Hugues Goosse, Joël Guiot, Fabio Gennaretti, Etienne Boucher, Frédéric André, and Mathieu Jonard
Clim. Past, 16, 1043–1059, https://doi.org/10.5194/cp-16-1043-2020, https://doi.org/10.5194/cp-16-1043-2020, 2020
Short summary
Short summary
Tree rings are the main data source for climate reconstructions over the last millennium. Statistical tree-growth models have limitations that process-based models could overcome. Here, we investigate the possibility of using a process-based ecophysiological model (MAIDEN) as a complex proxy system model for palaeoclimate applications. We show its ability to simulate tree-growth index time series that can fit robustly tree-ring width observations under certain conditions.
Quentin Dalaiden, Hugues Goosse, François Klein, Jan T. M. Lenaerts, Max Holloway, Louise Sime, and Elizabeth R. Thomas
The Cryosphere, 14, 1187–1207, https://doi.org/10.5194/tc-14-1187-2020, https://doi.org/10.5194/tc-14-1187-2020, 2020
Short summary
Short summary
Large uncertainties remain in Antarctic surface temperature reconstructions over the last millennium. Here, the analysis of climate model outputs reveals that snow accumulation is a more relevant proxy for surface temperature reconstructions than δ18O. We use this finding in data assimilation experiments to compare to observed surface temperatures. We show that our continental temperature reconstruction outperforms reconstructions based on δ18O, especially for East Antarctica.
Louis de Wergifosse, Frédéric André, Nicolas Beudez, François de Coligny, Hugues Goosse, François Jonard, Quentin Ponette, Hugues Titeux, Caroline Vincke, and Mathieu Jonard
Geosci. Model Dev., 13, 1459–1498, https://doi.org/10.5194/gmd-13-1459-2020, https://doi.org/10.5194/gmd-13-1459-2020, 2020
Short summary
Short summary
Given their key role in the simulation of climate impacts on tree growth, phenological and water balance processes must be integrated in models simulating forest dynamics under a changing environment. Here, we describe these processes integrated in HETEROFOR, a model accounting simultaneously for the functional, structural and spatial complexity to explore the forest response to forestry practices. The model evaluation using phenological and soil water content observations is quite promising.
François Klein, Nerilie J. Abram, Mark A. J. Curran, Hugues Goosse, Sentia Goursaud, Valérie Masson-Delmotte, Andrew Moy, Raphael Neukom, Anaïs Orsi, Jesper Sjolte, Nathan Steiger, Barbara Stenni, and Martin Werner
Clim. Past, 15, 661–684, https://doi.org/10.5194/cp-15-661-2019, https://doi.org/10.5194/cp-15-661-2019, 2019
Short summary
Short summary
Antarctic temperature changes over the past millennia have been reconstructed from isotope records in ice cores in several studies. However, the link between both variables is complex. Here, we investigate the extent to which this affects the robustness of temperature reconstructions using pseudoproxy and data assimilation experiments. We show that the reconstruction skill is limited, especially at the regional scale, due to a weak and nonstationary covariance between δ18O and temperature.
Chris S. M. Turney, Helen V. McGregor, Pierre Francus, Nerilie Abram, Michael N. Evans, Hugues Goosse, Lucien von Gunten, Darrell Kaufman, Hans Linderholm, Marie-France Loutre, and Raphael Neukom
Clim. Past, 15, 611–615, https://doi.org/10.5194/cp-15-611-2019, https://doi.org/10.5194/cp-15-611-2019, 2019
Short summary
Short summary
This PAGES (Past Global Changes) 2k (climate of the past 2000 years working group) special issue of Climate of the Past brings together the latest understanding of regional change and impacts from PAGES 2k groups across a range of proxies and regions. The special issue has emerged from a need to determine the magnitude and rate of change of regional and global climate beyond the timescales accessible within the observational record.
Feng Shi, Sen Zhao, Zhengtang Guo, Hugues Goosse, and Qiuzhen Yin
Clim. Past, 13, 1919–1938, https://doi.org/10.5194/cp-13-1919-2017, https://doi.org/10.5194/cp-13-1919-2017, 2017
Short summary
Short summary
We reconstructed the multi-proxy precipitation field for China over the past 500 years, which includes three leading modes (a monopole, a dipole, and a triple) of precipitation variability. The dipole mode may be controlled by the El Niño–Southern Oscillation variability. Such reconstruction is an essential source of information to document the climate variability over decadal to centennial timescales and can be used to assess the ability of climate models to simulate past climate change.
Kristina Seftigen, Hugues Goosse, Francois Klein, and Deliang Chen
Clim. Past, 13, 1831–1850, https://doi.org/10.5194/cp-13-1831-2017, https://doi.org/10.5194/cp-13-1831-2017, 2017
Short summary
Short summary
Comparisons of proxy data to GCM-simulated hydroclimate are still limited and inter-model variability remains poorly characterized. In this study, we bring together tree-ring paleoclimate evidence and CMIP5–PMIP3 model simulations of the last millennium hydroclimate variability across Scandinavia. We explore the consistency between the datasets and the role of external forcing versus internal variability in driving the hydroclimate changes regionally.
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elizabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Martin Werner, and Massimo Frezzotti
Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, https://doi.org/10.5194/cp-13-1609-2017, 2017
Short summary
Short summary
Within PAGES Antarctica2k, we build an enlarged database of ice core water stable isotope records. We produce isotopic composites and temperature reconstructions since 0 CE for seven distinct Antarctic regions. We find a significant cooling trend from 0 to 1900 CE across all regions. Since 1900 CE, significant warming trends are identified for three regions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of last-2000-year natural variability.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Chris S.~M. Turney, Andrew Klekociuk, Christopher J. Fogwill, Violette Zunz, Hugues Goosse, Claire L. Parkinson, Gilbert Compo, Matthew Lazzara, Linda Keller, Rob Allan, Jonathan G. Palmer, Graeme Clark, and Ezequiel Marzinelli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-51, https://doi.org/10.5194/tc-2017-51, 2017
Revised manuscript not accepted
Short summary
Short summary
We demonstrate that a mid-twentieth century decrease in geopotential height in the southwest Pacific marks a Rossby wave response to equatorial Pacific warming, leading to enhanced easterly airflow off George V Land. Our results suggest that in contrast to ozone hole-driven changes in the Amundsen Sea, the 1979–2015 increase in sea ice extent off George V Land may be in response to reduced northward Ekman drift and enhanced (near-coast) production as a consequence of low latitude forcing.
Chris S. M. Turney, Christopher J. Fogwill, Jonathan G. Palmer, Erik van Sebille, Zoë Thomas, Matt McGlone, Sarah Richardson, Janet M. Wilmshurst, Pavla Fenwick, Violette Zunz, Hugues Goosse, Kerry-Jayne Wilson, Lionel Carter, Mathew Lipson, Richard T. Jones, Melanie Harsch, Graeme Clark, Ezequiel Marzinelli, Tracey Rogers, Eleanor Rainsley, Laura Ciasto, Stephanie Waterman, Elizabeth R. Thomas, and Martin Visbeck
Clim. Past, 13, 231–248, https://doi.org/10.5194/cp-13-231-2017, https://doi.org/10.5194/cp-13-231-2017, 2017
Short summary
Short summary
The Southern Ocean plays a fundamental role in global climate but suffers from a dearth of observational data. As the Australasian Antarctic Expedition 2013–2014 we have developed the first annually resolved temperature record using trees from subantarctic southwest Pacific (52–54˚S) to extend the climate record back to 1870. With modelling we show today's high climate variability became established in the ~1940s and likely driven by a Rossby wave response originating from the tropical Pacific.
François Klein, Hugues Goosse, Nicholas E. Graham, and Dirk Verschuren
Clim. Past, 12, 1499–1518, https://doi.org/10.5194/cp-12-1499-2016, https://doi.org/10.5194/cp-12-1499-2016, 2016
Short summary
Short summary
This paper analyses global climate model simulations of long-term East African hydroclimate changes relative to proxy-based reconstructions over the last millennium. No common signal is found between model results and reconstructions as well as among the model time series, which suggests that simulated hydroclimate is mostly driven by internal variability rather than by common external forcing.
V. Zunz and H. Goosse
The Cryosphere, 9, 541–556, https://doi.org/10.5194/tc-9-541-2015, https://doi.org/10.5194/tc-9-541-2015, 2015
M. F. Loutre, T. Fichefet, H. Goosse, P. Huybrechts, H. Goelzer, and E. Capron
Clim. Past, 10, 1541–1565, https://doi.org/10.5194/cp-10-1541-2014, https://doi.org/10.5194/cp-10-1541-2014, 2014
F. Klein, H. Goosse, A. Mairesse, and A. de Vernal
Clim. Past, 10, 1145–1163, https://doi.org/10.5194/cp-10-1145-2014, https://doi.org/10.5194/cp-10-1145-2014, 2014
H. Goosse and V. Zunz
The Cryosphere, 8, 453–470, https://doi.org/10.5194/tc-8-453-2014, https://doi.org/10.5194/tc-8-453-2014, 2014
A. Mairesse, H. Goosse, P. Mathiot, H. Wanner, and S. Dubinkina
Clim. Past, 9, 2741–2757, https://doi.org/10.5194/cp-9-2741-2013, https://doi.org/10.5194/cp-9-2741-2013, 2013
S. Dubinkina and H. Goosse
Clim. Past, 9, 1141–1152, https://doi.org/10.5194/cp-9-1141-2013, https://doi.org/10.5194/cp-9-1141-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
P. Mathiot, H. Goosse, X. Crosta, B. Stenni, M. Braida, H. Renssen, C. J. Van Meerbeeck, V. Masson-Delmotte, A. Mairesse, and S. Dubinkina
Clim. Past, 9, 887–901, https://doi.org/10.5194/cp-9-887-2013, https://doi.org/10.5194/cp-9-887-2013, 2013
V. Zunz, H. Goosse, and F. Massonnet
The Cryosphere, 7, 451–468, https://doi.org/10.5194/tc-7-451-2013, https://doi.org/10.5194/tc-7-451-2013, 2013
Rodrigo Aguayo, Fabien Maussion, Lilian Schuster, Marius Schaefer, Alexis Caro, Patrick Schmitt, Jonathan Mackay, Lizz Ultee, Jorge Leon-Muñoz, and Mauricio Aguayo
The Cryosphere, 18, 5383–5406, https://doi.org/10.5194/tc-18-5383-2024, https://doi.org/10.5194/tc-18-5383-2024, 2024
Short summary
Short summary
Predicting how much water will come from glaciers in the future is a complex task, and there are many factors that make it uncertain. Using a glacier model, we explored 1920 scenarios for each glacier in the Patagonian Andes. We found that the choice of the historical climate data was the most important factor, while other factors such as different data sources, climate models and emission scenarios played a smaller role.
Lorenz Hänchen, Emily Potter, Cornelia Klein, Pierluigi Calanca, Fabien Maussion, Wolfgang Gurgiser, and Georg Wohlfahrt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3263, https://doi.org/10.5194/egusphere-2024-3263, 2024
Short summary
Short summary
In semi-arid regions, the timing and duration of the rainy season are crucial for agriculture. This study introduces a new framework for improving estimations of start and end of the rainy season by testing how well they fit local vegetation data. We improve the performance of existing methods and present a new one with higher performance. Our findings can help to make informed decisions about water usage, and the framework can be applied to other regions as well.
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
The Cryosphere, 18, 5045–5066, https://doi.org/10.5194/tc-18-5045-2024, https://doi.org/10.5194/tc-18-5045-2024, 2024
Short summary
Short summary
Glaciers are major contributors to sea-level rise and act as key water resources. Here, we model the global evolution of glaciers under the latest generation of climate scenarios. We show that the type of observations used for model calibration can strongly affect the projections at the local scale. Our newly projected 21st century global mass loss is higher than the current community estimate as reported in the latest Intergovernmental Panel on Climate Change (IPCC) report.
Marie Genevieve Paule Cavitte, Hugues Goosse, Quentin Dalaiden, and Nicolas Ghilain
EGUsphere, https://doi.org/10.5194/egusphere-2024-3140, https://doi.org/10.5194/egusphere-2024-3140, 2024
Short summary
Short summary
Ice cores in East Antarctica show contrasting records of past snowfall. We tested if large-scale weather patterns could explain this by combining ice core data with an atmospheric model and radar-derived errors. However, the reconstruction produced unrealistic wind patterns to fit the ice core records. We suggest that uncertainties are not fully captured and that small-scale local wind effects, not represented in the model, could significantly influence snowfall records in the ice cores.
Lea Hartl, Patrick Schmitt, Lilian Schuster, Kay Helfricht, Jakob Abermann, and Fabien Maussion
EGUsphere, https://doi.org/10.5194/egusphere-2024-3146, https://doi.org/10.5194/egusphere-2024-3146, 2024
Short summary
Short summary
We use regional observations of glacier area and volume change to inform glacier evolution modeling in the Ötztal and Stubai range (Austrian Alps) until 2100 in different climate scenarios. Glaciers in the region lost 23 % of their volume between 2006 and 2017. Under current warming trajectories, glacier loss in the region is expected to be near total by 2075. We show that integrating regional calibration and validation data in glacier models is important to improve confidence in projections.
Bianca Mezzina, Hugues Goosse, François Klein, Antoine Barthélemy, and François Massonnet
The Cryosphere, 18, 3825–3839, https://doi.org/10.5194/tc-18-3825-2024, https://doi.org/10.5194/tc-18-3825-2024, 2024
Short summary
Short summary
We analyze years with extraordinarily low sea ice extent in Antarctica during summer, until the striking record in 2022. We highlight common aspects among these events, such as the fact that the exceptional melting usually occurs in two key regions and that it is related to winds with a similar direction. We also investigate whether the summer conditions are preceded by an unusual state of the sea ice during the previous winter, as well as the physical processes involved.
Muhammad Shafeeque, Jan-Hendrik Malles, Anouk Vlug, Marco Möller, and Ben Marzeion
EGUsphere, https://doi.org/10.5194/egusphere-2024-2184, https://doi.org/10.5194/egusphere-2024-2184, 2024
Short summary
Short summary
The study explores how Greenland's peripheral glaciers will change due to future climate change using OGGM. They might lose 52 % of ice mass. We predict changes in ice discharge versus melting, affecting fjords, sea levels, and ocean currents. Freshwater runoff composition, seasonality, and peak water timing vary by regions and scenarios. Our findings stress the importance of reducing greenhouse gases to minimize impacts on these glaciers, which influence local ecosystems and global sea level.
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024, https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
Short summary
This study presents a coupling of the large-scale glacier model OGGM and the hydrological model CWatM. Projected future increase in discharge is less strong while future decrease in discharge is stronger when glacier runoff is explicitly included in the large-scale hydrological model. This is because glacier runoff is projected to decrease in nearly all basins. We conclude that an improved glacier representation can prevent underestimating future discharge changes in large river basins.
Finn Wimberly, Lizz Ultee, Lilian Schuster, Matthias Huss, David R. Rounce, Fabien Maussion, Sloan Coats, Jonathan Mackay, and Erik Holmgren
EGUsphere, https://doi.org/10.5194/egusphere-2024-1778, https://doi.org/10.5194/egusphere-2024-1778, 2024
Short summary
Short summary
Glacier models have historically been used to understand glacier melt’s contribution to sea level rise. The capacity to project seasonal glacier runoff is a relatively recent development for these models. In this study we provide the first model intercomparison of runoff projections for the glacier evolution models capable of simulating future runoff globally. We compare model projections from 2000 to 2100 for all major river basins larger than 3000 km2 with over 1 % of initial glacier cover.
Marin Kneib, Amaury Dehecq, Fanny Brun, Fatima Karbou, Laurane Charrier, Silvan Leinss, Patrick Wagnon, and Fabien Maussion
The Cryosphere, 18, 2809–2830, https://doi.org/10.5194/tc-18-2809-2024, https://doi.org/10.5194/tc-18-2809-2024, 2024
Short summary
Short summary
Avalanches are important for the mass balance of mountain glaciers, but few data exist on where and when they occur and which glaciers they affect the most. We developed an approach to map avalanches over large glaciated areas and long periods of time using satellite radar data. The application of this method to various regions in the Alps and High Mountain Asia reveals the variability of avalanches on these glaciers and provides key data to better represent these processes in glacier models.
Jan-Hendrik Malles, Ben Marzeion, and Paul G. Myers
EGUsphere, https://doi.org/10.5194/egusphere-2024-1425, https://doi.org/10.5194/egusphere-2024-1425, 2024
Short summary
Short summary
Glaciers in the northern hemisphere outside Greenland are losing mass at roughly half the Greenland ice sheet's (GrIS) rate. Still, this is usually not included in the freshwater input data for numerical ocean circulation models. Also, the submarine melt of glaciers (outside the ice sheets) has not been quantified yet. We tackle both issues by using a numerical glacier model's output as additional freshwater for the ocean model and by using the ocean model's output to quantify submarine melt.
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
EGUsphere, https://doi.org/10.5194/egusphere-2024-757, https://doi.org/10.5194/egusphere-2024-757, 2024
Short summary
Short summary
The Greenland Ice Sheet represents the second-largest contributor to global sea-level rise. We quantify atmosphere, ice and ocean-based processes related to the mass balance of glaciers in Northeast Greenland, focusing on Greenland’s largest floating ice tongue, the 79N Glacier. We find that together, the different in situ and remote sensing observations and model simulations to reveal a consistent picture of a coupled atmosphere-ice sheet-ocean system, that has entered a phase of major change.
Larissa van der Laan, Anouk Vlug, Adam A. Scaife, Fabien Maussion, and Kristian Förster
EGUsphere, https://doi.org/10.5194/egusphere-2024-387, https://doi.org/10.5194/egusphere-2024-387, 2024
Short summary
Short summary
Usually, glacier models are supplied with climate information from long (e.g. 100 year) simulations by global climate models. In this paper, we test the feasibility of supplying glacier models with shorter simulations, to get more accurate information on 5–10 year time scales. Reliable information on these time scales is very important, especially for water management experts to know how much meltwater to expect, for rivers, agriculture and drinking water.
Ryan L. Fogt, Quentin Dalaiden, and Gemma K. O'Connor
Clim. Past, 20, 53–76, https://doi.org/10.5194/cp-20-53-2024, https://doi.org/10.5194/cp-20-53-2024, 2024
Short summary
Short summary
Antarctic sea ice is rapidly changing, with record lows set in 2017, 2022, and 2023 following decades of increase. To place these changes in a longer historical context, reconstructions have been created; however, they are quite different prior to observations. Here we find that the differences are more strongly tied to the implied connection of each reconstruction with the atmospheric circulation rather than differences in seasonality or geographic representation.
Jordi Bolibar, Facundo Sapienza, Fabien Maussion, Redouane Lguensat, Bert Wouters, and Fernando Pérez
Geosci. Model Dev., 16, 6671–6687, https://doi.org/10.5194/gmd-16-6671-2023, https://doi.org/10.5194/gmd-16-6671-2023, 2023
Short summary
Short summary
We developed a new modelling framework combining numerical methods with machine learning. Using this approach, we focused on understanding how ice moves within glaciers, and we successfully learnt a prescribed law describing ice movement for 17 glaciers worldwide as a proof of concept. Our framework has the potential to discover important laws governing glacier processes, aiding our understanding of glacier physics and their contribution to water resources and sea-level rise.
Marie G. P. Cavitte, Hugues Goosse, Kenichi Matsuoka, Sarah Wauthy, Vikram Goel, Rahul Dey, Bhanu Pratap, Brice Van Liefferinge, Thamban Meloth, and Jean-Louis Tison
The Cryosphere, 17, 4779–4795, https://doi.org/10.5194/tc-17-4779-2023, https://doi.org/10.5194/tc-17-4779-2023, 2023
Short summary
Short summary
The net accumulation of snow over Antarctica is key for assessing current and future sea-level rise. Ice cores record a noisy snowfall signal to verify model simulations. We find that ice core net snowfall is biased to lower values for ice rises and the Dome Fuji site (Antarctica), while the relative uncertainty in measuring snowfall increases rapidly with distance away from the ice core sites at the ice rises but not at Dome Fuji. Spatial variation in snowfall must therefore be considered.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Koffi Worou, Thierry Fichefet, and Hugues Goosse
Weather Clim. Dynam., 4, 511–530, https://doi.org/10.5194/wcd-4-511-2023, https://doi.org/10.5194/wcd-4-511-2023, 2023
Short summary
Short summary
The Atlantic equatorial mode (AEM) of variability is partly responsible for the year-to-year rainfall variability over the Guinea coast. We used the current climate models to explore the present-day and future links between the AEM and the extreme rainfall indices over the Guinea coast. Under future global warming, the total variability of the extreme rainfall indices increases over the Guinea coast. However, the future impact of the AEM on extreme rainfall events decreases over the region.
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023, https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary
Short summary
The last deglaciation is a period of large warming from 21 000 to 9000 years ago, concomitant with ice sheet melting. Here, we evaluate the impact of different ice sheet reconstructions and different processes linked to their changes. Changes in bathymetry and coastlines, although not often accounted for, cannot be neglected. Ice sheet melt results in freshwater into the ocean with large effects on ocean circulation, but the timing cannot explain the observed abrupt climate changes.
Andrew P. Schurer, Gabriele C. Hegerl, Hugues Goosse, Massimo A. Bollasina, Matthew H. England, Michael J. Mineter, Doug M. Smith, and Simon F. B. Tett
Clim. Past, 19, 943–957, https://doi.org/10.5194/cp-19-943-2023, https://doi.org/10.5194/cp-19-943-2023, 2023
Short summary
Short summary
We adopt an existing data assimilation technique to constrain a model simulation to follow three important modes of variability, the North Atlantic Oscillation, El Niño–Southern Oscillation and the Southern Annular Mode. How it compares to the observed climate is evaluated, with improvements over simulations without data assimilation found over many regions, particularly the tropics, the North Atlantic and Europe, and discrepancies with global cooling following volcanic eruptions are reconciled.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Hugues Goosse, Sofia Allende Contador, Cecilia M. Bitz, Edward Blanchard-Wrigglesworth, Clare Eayrs, Thierry Fichefet, Kenza Himmich, Pierre-Vincent Huot, François Klein, Sylvain Marchi, François Massonnet, Bianca Mezzina, Charles Pelletier, Lettie Roach, Martin Vancoppenolle, and Nicole P. M. van Lipzig
The Cryosphere, 17, 407–425, https://doi.org/10.5194/tc-17-407-2023, https://doi.org/10.5194/tc-17-407-2023, 2023
Short summary
Short summary
Using idealized sensitivity experiments with a regional atmosphere–ocean–sea ice model, we show that sea ice advance is constrained by initial conditions in March and the retreat season is influenced by the magnitude of several physical processes, in particular by the ice–albedo feedback and ice transport. Atmospheric feedbacks amplify the response of the winter ice extent to perturbations, while some negative feedbacks related to heat conduction fluxes act on the ice volume.
Pepijn Bakker, Hugues Goosse, and Didier M. Roche
Clim. Past, 18, 2523–2544, https://doi.org/10.5194/cp-18-2523-2022, https://doi.org/10.5194/cp-18-2523-2022, 2022
Short summary
Short summary
Natural climate variability plays an important role in the discussion of past and future climate change. Here we study centennial temperature variability and the role of large-scale ocean circulation variability using different climate models, geological reconstructions and temperature observations. Unfortunately, uncertainties in models and geological reconstructions are such that more research is needed before we can describe the characteristics of natural centennial temperature variability.
Guillian Van Achter, Thierry Fichefet, Hugues Goosse, and Eduardo Moreno-Chamarro
The Cryosphere, 16, 4745–4761, https://doi.org/10.5194/tc-16-4745-2022, https://doi.org/10.5194/tc-16-4745-2022, 2022
Short summary
Short summary
We investigate the changes in ocean–ice interactions in the Totten Glacier area between the last decades (1995–2014) and the end of the 21st century (2081–2100) under warmer climate conditions. By the end of the 21st century, the sea ice is strongly reduced, and the ocean circulation close to the coast is accelerated. Our research highlights the importance of including representations of fast ice to simulate realistic ice shelf melt rate increase in East Antarctica under warming conditions.
Nidheesh Gangadharan, Hugues Goosse, David Parkes, Heiko Goelzer, Fabien Maussion, and Ben Marzeion
Earth Syst. Dynam., 13, 1417–1435, https://doi.org/10.5194/esd-13-1417-2022, https://doi.org/10.5194/esd-13-1417-2022, 2022
Short summary
Short summary
We describe the contributions of ocean thermal expansion and land-ice melting (ice sheets and glaciers) to global-mean sea-level (GMSL) changes in the Common Era. The mass contributions are the major sources of GMSL changes in the pre-industrial Common Era and glaciers are the largest contributor. The paper also describes the current state of climate modelling, uncertainties and knowledge gaps along with the potential implications of the past variabilities in the contemporary sea-level rise.
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Nicolas Ghilain, Stéphane Vannitsem, Quentin Dalaiden, Hugues Goosse, Lesley De Cruz, and Wenguang Wei
Earth Syst. Sci. Data, 14, 1901–1916, https://doi.org/10.5194/essd-14-1901-2022, https://doi.org/10.5194/essd-14-1901-2022, 2022
Short summary
Short summary
Modeling the climate at high resolution is crucial to represent the snowfall accumulation over the complex orography of the Antarctic coast. While ice cores provide a view constrained spatially but over centuries, climate models can give insight into its spatial distribution, either at high resolution over a short period or vice versa. We downscaled snowfall accumulation from climate model historical simulations (1850–present day) over Dronning Maud Land at 5.5 km using a statistical method.
Lorenz Hänchen, Cornelia Klein, Fabien Maussion, Wolfgang Gurgiser, Pierluigi Calanca, and Georg Wohlfahrt
Earth Syst. Dynam., 13, 595–611, https://doi.org/10.5194/esd-13-595-2022, https://doi.org/10.5194/esd-13-595-2022, 2022
Short summary
Short summary
To date, farmers' perceptions of hydrological changes do not match analysis of meteorological data. In contrast to rainfall data, we find greening of vegetation, indicating increased water availability in the past decades. The start of the season is highly variable, making farmers' perceptions comprehensible. We show that the El Niño–Southern Oscillation has complex effects on vegetation seasonality but does not drive the greening we observe. Improved onset forecasts could help local farmers.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Koffi Worou, Hugues Goosse, Thierry Fichefet, and Fred Kucharski
Earth Syst. Dynam., 13, 231–249, https://doi.org/10.5194/esd-13-231-2022, https://doi.org/10.5194/esd-13-231-2022, 2022
Short summary
Short summary
Over the Guinea Coast, the increased rainfall associated with warm phases of the Atlantic Niño is reasonably well simulated by 24 climate models out of 31, for the present-day conditions. In a warmer climate, general circulation models project a gradual decrease with time of the rainfall magnitude associated with the Atlantic Niño for the 2015–2039, 2040–2069 and 2070–2099 periods. There is a higher confidence in these changes over the equatorial Atlantic than over the Guinea Coast.
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sébastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, https://doi.org/10.5194/gmd-15-553-2022, 2022
Short summary
Short summary
We present PARASO, a circumpolar model for simulating the Antarctic climate. PARASO features five distinct models, each covering different Earth system subcomponents (ice sheet, atmosphere, land, sea ice, ocean). In this technical article, we describe how this tool has been developed, with a focus on the
coupling interfacesrepresenting the feedbacks between the distinct models used for contribution. PARASO is stable and ready to use but is still characterized by significant biases.
Ben Marzeion
Earth Syst. Dynam., 12, 1057–1060, https://doi.org/10.5194/esd-12-1057-2021, https://doi.org/10.5194/esd-12-1057-2021, 2021
Short summary
Short summary
The oceans are typically darker than land surfaces. Expanding oceans through sea-level rise may thus lead to a darker planet Earth, reflecting less sunlight. The additionally absorbed sunlight may heat planet Earth, leading to further sea-level rise. Here, we provide a rough estimate of the strength of this feedback: it turns out to be very weak, but clearly positive, thereby destabilizing the Earth system.
Jan-Hendrik Malles and Ben Marzeion
The Cryosphere, 15, 3135–3157, https://doi.org/10.5194/tc-15-3135-2021, https://doi.org/10.5194/tc-15-3135-2021, 2021
Short summary
Short summary
To better estimate the uncertainty in glacier mass change modeling during the 20th century we ran an established model with an ensemble of meteorological data sets. We find that the total ensemble uncertainty, especially in the early 20th century, when glaciological and meteorological observations at glacier locations were sparse, increases considerably compared to individual ensemble runs. This stems from regions with a lot of ice mass but few observations (e.g., Greenland periphery).
Gerard H. Roe, John Erich Christian, and Ben Marzeion
The Cryosphere, 15, 1889–1905, https://doi.org/10.5194/tc-15-1889-2021, https://doi.org/10.5194/tc-15-1889-2021, 2021
Short summary
Short summary
The worldwide retreat of mountain glaciers and consequent loss of ice mass is one of the most obvious signs of a changing climate and has significant implications for the hydrology and natural hazards in mountain landscapes. Consistent with our understanding of the human role in temperature change, we demonstrate that the central estimate of the size of the human-caused mass loss is essentially 100 % of the observed loss. This assessment resolves some important inconsistencies in the literature.
Lilian Schuster, Fabien Maussion, Lukas Langhamer, and Gina E. Moseley
Weather Clim. Dynam., 2, 1–17, https://doi.org/10.5194/wcd-2-1-2021, https://doi.org/10.5194/wcd-2-1-2021, 2021
Short summary
Short summary
Precipitation and moisture sources over an arid region in northeast Greenland are investigated from 1979 to 2017 by a Lagrangian moisture source diagnostic driven by reanalysis data. Dominant winter moisture sources are the North Atlantic above 45° N. In summer local and north Eurasian continental sources dominate. In positive phases of the North Atlantic Oscillation, evaporation and moisture transport from the Norwegian Sea are stronger, resulting in more precipitation.
Hugues Goosse, Quentin Dalaiden, Marie G. P. Cavitte, and Liping Zhang
Clim. Past, 17, 111–131, https://doi.org/10.5194/cp-17-111-2021, https://doi.org/10.5194/cp-17-111-2021, 2021
Short summary
Short summary
Polynyas are ice-free oceanic areas within the sea ice pack. Small polynyas are regularly observed in the Southern Ocean, but large open-ocean polynyas have been rare over the past decades. Using records from available ice cores in Antarctica, we reconstruct past polynya activity and confirm that those events have also been rare over the past centuries, but the information provided by existing data is not sufficient to precisely characterize the timing of past polynya opening.
Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T. M. Lenaerts, and Elizabeth R. Thomas
The Cryosphere, 14, 4083–4102, https://doi.org/10.5194/tc-14-4083-2020, https://doi.org/10.5194/tc-14-4083-2020, 2020
Short summary
Short summary
Surface mass balance (SMB) and surface air temperature (SAT) are correlated at the regional scale for most of Antarctica, SMB and δ18O. Areas with low/no correlation are where wind processes (foehn, katabatic wind warming, and erosion) are sufficiently active to overwhelm the synoptic-scale snow accumulation. Measured in ice cores, the link between SMB, SAT, and δ18O is much weaker. Random noise can be removed by core record averaging but local processes perturb the correlation systematically.
Denise Cáceres, Ben Marzeion, Jan Hendrik Malles, Benjamin Daniel Gutknecht, Hannes Müller Schmied, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020, https://doi.org/10.5194/hess-24-4831-2020, 2020
Short summary
Short summary
We analysed how and to which extent changes in water storage on continents had an effect on global ocean mass over the period 1948–2016. Continents lost water to oceans at an accelerated rate, inducing sea level rise. Shrinking glaciers explain 81 % of the long-term continental water mass loss, while declining groundwater levels, mainly due to sustained groundwater pumping for irrigation, is the second major driver. This long-term decline was partly offset by the impoundment of water in dams.
David Parkes and Hugues Goosse
The Cryosphere, 14, 3135–3153, https://doi.org/10.5194/tc-14-3135-2020, https://doi.org/10.5194/tc-14-3135-2020, 2020
Short summary
Short summary
Direct records of glacier changes rarely go back more than the last 100 years and are few and far between. We used a sophisticated glacier model to simulate glacier length changes over the last 1000 years for those glaciers that we do have long-term records of, to determine whether the model can run in a stable, realistic way over a long timescale, reproducing recent observed trends. We find that post-industrial changes are larger than other changes in this time period driven by recent warming.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Zhiqiang Lyu, Anais J. Orsi, and Hugues Goosse
Clim. Past, 16, 1411–1428, https://doi.org/10.5194/cp-16-1411-2020, https://doi.org/10.5194/cp-16-1411-2020, 2020
Short summary
Short summary
This paper uses two different ways to perform model–data comparisons for the borehole temperature in Antarctica. The results suggest most models generally reproduce the long-term cooling in West Antarctica from 1000 to 1600 CE and the recent 50 years of warming in West Antarctica and Antarctic Peninsula. However, The 19th-century cooling in the Antarctic Peninsula (−0.94 °C) is not reproduced by any of the models, which tend to show warming instead.
Jeanne Rezsöhazy, Hugues Goosse, Joël Guiot, Fabio Gennaretti, Etienne Boucher, Frédéric André, and Mathieu Jonard
Clim. Past, 16, 1043–1059, https://doi.org/10.5194/cp-16-1043-2020, https://doi.org/10.5194/cp-16-1043-2020, 2020
Short summary
Short summary
Tree rings are the main data source for climate reconstructions over the last millennium. Statistical tree-growth models have limitations that process-based models could overcome. Here, we investigate the possibility of using a process-based ecophysiological model (MAIDEN) as a complex proxy system model for palaeoclimate applications. We show its ability to simulate tree-growth index time series that can fit robustly tree-ring width observations under certain conditions.
Quentin Dalaiden, Hugues Goosse, François Klein, Jan T. M. Lenaerts, Max Holloway, Louise Sime, and Elizabeth R. Thomas
The Cryosphere, 14, 1187–1207, https://doi.org/10.5194/tc-14-1187-2020, https://doi.org/10.5194/tc-14-1187-2020, 2020
Short summary
Short summary
Large uncertainties remain in Antarctic surface temperature reconstructions over the last millennium. Here, the analysis of climate model outputs reveals that snow accumulation is a more relevant proxy for surface temperature reconstructions than δ18O. We use this finding in data assimilation experiments to compare to observed surface temperatures. We show that our continental temperature reconstruction outperforms reconstructions based on δ18O, especially for East Antarctica.
Louis de Wergifosse, Frédéric André, Nicolas Beudez, François de Coligny, Hugues Goosse, François Jonard, Quentin Ponette, Hugues Titeux, Caroline Vincke, and Mathieu Jonard
Geosci. Model Dev., 13, 1459–1498, https://doi.org/10.5194/gmd-13-1459-2020, https://doi.org/10.5194/gmd-13-1459-2020, 2020
Short summary
Short summary
Given their key role in the simulation of climate impacts on tree growth, phenological and water balance processes must be integrated in models simulating forest dynamics under a changing environment. Here, we describe these processes integrated in HETEROFOR, a model accounting simultaneously for the functional, structural and spatial complexity to explore the forest response to forestry practices. The model evaluation using phenological and soil water content observations is quite promising.
Julia Eis, Fabien Maussion, and Ben Marzeion
The Cryosphere, 13, 3317–3335, https://doi.org/10.5194/tc-13-3317-2019, https://doi.org/10.5194/tc-13-3317-2019, 2019
Short summary
Short summary
To provide estimates of past glacier mass changes, an adequate initial state is required. However, information about past glacier states at regional or global scales is largely incomplete. Our study presents a new way to initialize the Open Global Glacier Model from past climate information and present-day geometries. We show that even with perfectly known but incomplete boundary conditions, the problem of model initialization leads to nonunique solutions, and we propose an ensemble approach.
Beatriz Recinos, Fabien Maussion, Timo Rothenpieler, and Ben Marzeion
The Cryosphere, 13, 2657–2672, https://doi.org/10.5194/tc-13-2657-2019, https://doi.org/10.5194/tc-13-2657-2019, 2019
Short summary
Short summary
We have implemented a frontal ablation parameterization into the Open Global Glacier Model and have shown that inversion methods based on mass conservation systematically underestimate the mass turnover (and therefore the thickness) of tidewater glaciers when neglecting frontal ablation. This underestimation can rise up to 19 % on a regional scale. Not accounting for frontal ablation will have an impact on the estimate of the glaciers’ potential contribution to sea level rise.
Johannes Horak, Marlis Hofer, Fabien Maussion, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Hydrol. Earth Syst. Sci., 23, 2715–2734, https://doi.org/10.5194/hess-23-2715-2019, https://doi.org/10.5194/hess-23-2715-2019, 2019
Short summary
Short summary
This study presents an in-depth evaluation of the Intermediate Complexity Atmospheric Research (ICAR) model for high-resolution precipitation fields in complex topography. ICAR is evaluated with data from weather stations located in the Southern Alps of New Zealand. While ICAR underestimates rainfall amounts, it clearly improves over a coarser global model and shows potential to generate precipitation fields for long-term impact studies focused on the local impact of a changing global climate.
François Klein, Nerilie J. Abram, Mark A. J. Curran, Hugues Goosse, Sentia Goursaud, Valérie Masson-Delmotte, Andrew Moy, Raphael Neukom, Anaïs Orsi, Jesper Sjolte, Nathan Steiger, Barbara Stenni, and Martin Werner
Clim. Past, 15, 661–684, https://doi.org/10.5194/cp-15-661-2019, https://doi.org/10.5194/cp-15-661-2019, 2019
Short summary
Short summary
Antarctic temperature changes over the past millennia have been reconstructed from isotope records in ice cores in several studies. However, the link between both variables is complex. Here, we investigate the extent to which this affects the robustness of temperature reconstructions using pseudoproxy and data assimilation experiments. We show that the reconstruction skill is limited, especially at the regional scale, due to a weak and nonstationary covariance between δ18O and temperature.
Chris S. M. Turney, Helen V. McGregor, Pierre Francus, Nerilie Abram, Michael N. Evans, Hugues Goosse, Lucien von Gunten, Darrell Kaufman, Hans Linderholm, Marie-France Loutre, and Raphael Neukom
Clim. Past, 15, 611–615, https://doi.org/10.5194/cp-15-611-2019, https://doi.org/10.5194/cp-15-611-2019, 2019
Short summary
Short summary
This PAGES (Past Global Changes) 2k (climate of the past 2000 years working group) special issue of Climate of the Past brings together the latest understanding of regional change and impacts from PAGES 2k groups across a range of proxies and regions. The special issue has emerged from a need to determine the magnitude and rate of change of regional and global climate beyond the timescales accessible within the observational record.
Fabien Maussion, Anton Butenko, Nicolas Champollion, Matthias Dusch, Julia Eis, Kévin Fourteau, Philipp Gregor, Alexander H. Jarosch, Johannes Landmann, Felix Oesterle, Beatriz Recinos, Timo Rothenpieler, Anouk Vlug, Christian T. Wild, and Ben Marzeion
Geosci. Model Dev., 12, 909–931, https://doi.org/10.5194/gmd-12-909-2019, https://doi.org/10.5194/gmd-12-909-2019, 2019
Short summary
Short summary
Mountain glaciers are one of the few remaining subsystems of the global climate system for which no globally applicable community-driven model exists. Here we present the Open Global Glacier Model (OGGM; www.oggm.org), developed to provide a modular and open-source numerical model framework for simulating past and future change of any glacier in the world.
Tobias Zolles, Fabien Maussion, Stephan Peter Galos, Wolfgang Gurgiser, and Lindsey Nicholson
The Cryosphere, 13, 469–489, https://doi.org/10.5194/tc-13-469-2019, https://doi.org/10.5194/tc-13-469-2019, 2019
Short summary
Short summary
A mass and energy balance model was subjected to sensitivity and uncertainty analysis on two different Alpine glaciers. The global sensitivity analysis allowed for a mass balance measurement independent assessment of the model sensitivity and functioned as a reduction of the model free parameter space. A novel approach of a multi-objective optimization estimates the uncertainty of the simulated mass balance and the energy fluxes. The final model uncertainty is up to 1300 kg m−3 per year.
Ulrich Strasser, Thomas Marke, Ludwig Braun, Heidi Escher-Vetter, Irmgard Juen, Michael Kuhn, Fabien Maussion, Christoph Mayer, Lindsey Nicholson, Klaus Niedertscheider, Rudolf Sailer, Johann Stötter, Markus Weber, and Georg Kaser
Earth Syst. Sci. Data, 10, 151–171, https://doi.org/10.5194/essd-10-151-2018, https://doi.org/10.5194/essd-10-151-2018, 2018
Short summary
Short summary
A hydrometeorological and glaciological data set is presented with recordings from several research sites in the Rofental (1891–3772 m a.s.l., Ötztal Alps, Austria). The data sets are spanning 150 years and represent a unique pool of high mountain observations, enabling combined research of atmospheric, cryospheric and hydrological processes in complex terrain, and the development of state-of-the-art hydroclimatological and glacier mass balance models.
Feng Shi, Sen Zhao, Zhengtang Guo, Hugues Goosse, and Qiuzhen Yin
Clim. Past, 13, 1919–1938, https://doi.org/10.5194/cp-13-1919-2017, https://doi.org/10.5194/cp-13-1919-2017, 2017
Short summary
Short summary
We reconstructed the multi-proxy precipitation field for China over the past 500 years, which includes three leading modes (a monopole, a dipole, and a triple) of precipitation variability. The dipole mode may be controlled by the El Niño–Southern Oscillation variability. Such reconstruction is an essential source of information to document the climate variability over decadal to centennial timescales and can be used to assess the ability of climate models to simulate past climate change.
Kristina Seftigen, Hugues Goosse, Francois Klein, and Deliang Chen
Clim. Past, 13, 1831–1850, https://doi.org/10.5194/cp-13-1831-2017, https://doi.org/10.5194/cp-13-1831-2017, 2017
Short summary
Short summary
Comparisons of proxy data to GCM-simulated hydroclimate are still limited and inter-model variability remains poorly characterized. In this study, we bring together tree-ring paleoclimate evidence and CMIP5–PMIP3 model simulations of the last millennium hydroclimate variability across Scandinavia. We explore the consistency between the datasets and the role of external forcing versus internal variability in driving the hydroclimate changes regionally.
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elizabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Martin Werner, and Massimo Frezzotti
Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, https://doi.org/10.5194/cp-13-1609-2017, 2017
Short summary
Short summary
Within PAGES Antarctica2k, we build an enlarged database of ice core water stable isotope records. We produce isotopic composites and temperature reconstructions since 0 CE for seven distinct Antarctic regions. We find a significant cooling trend from 0 to 1900 CE across all regions. Since 1900 CE, significant warming trends are identified for three regions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of last-2000-year natural variability.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Stephan Peter Galos, Christoph Klug, Fabien Maussion, Federico Covi, Lindsey Nicholson, Lorenzo Rieg, Wolfgang Gurgiser, Thomas Mölg, and Georg Kaser
The Cryosphere, 11, 1417–1439, https://doi.org/10.5194/tc-11-1417-2017, https://doi.org/10.5194/tc-11-1417-2017, 2017
Riccardo E. M. Riva, Thomas Frederikse, Matt A. King, Ben Marzeion, and Michiel R. van den Broeke
The Cryosphere, 11, 1327–1332, https://doi.org/10.5194/tc-11-1327-2017, https://doi.org/10.5194/tc-11-1327-2017, 2017
Short summary
Short summary
The reduction of ice masses stored on land has made an important contribution to sea-level rise over the last century, as well as changed the Earth's shape. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have varied strongly throughout the last century, which affects the interpretation and extrapolation of recent observations of vertical land motion and sea-level change.
Chris S.~M. Turney, Andrew Klekociuk, Christopher J. Fogwill, Violette Zunz, Hugues Goosse, Claire L. Parkinson, Gilbert Compo, Matthew Lazzara, Linda Keller, Rob Allan, Jonathan G. Palmer, Graeme Clark, and Ezequiel Marzinelli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-51, https://doi.org/10.5194/tc-2017-51, 2017
Revised manuscript not accepted
Short summary
Short summary
We demonstrate that a mid-twentieth century decrease in geopotential height in the southwest Pacific marks a Rossby wave response to equatorial Pacific warming, leading to enhanced easterly airflow off George V Land. Our results suggest that in contrast to ozone hole-driven changes in the Amundsen Sea, the 1979–2015 increase in sea ice extent off George V Land may be in response to reduced northward Ekman drift and enhanced (near-coast) production as a consequence of low latitude forcing.
Daniel Farinotti, Douglas J. Brinkerhoff, Garry K. C. Clarke, Johannes J. Fürst, Holger Frey, Prateek Gantayat, Fabien Gillet-Chaulet, Claire Girard, Matthias Huss, Paul W. Leclercq, Andreas Linsbauer, Horst Machguth, Carlos Martin, Fabien Maussion, Mathieu Morlighem, Cyrille Mosbeux, Ankur Pandit, Andrea Portmann, Antoine Rabatel, RAAJ Ramsankaran, Thomas J. Reerink, Olivier Sanchez, Peter A. Stentoft, Sangita Singh Kumari, Ward J. J. van Pelt, Brian Anderson, Toby Benham, Daniel Binder, Julian A. Dowdeswell, Andrea Fischer, Kay Helfricht, Stanislav Kutuzov, Ivan Lavrentiev, Robert McNabb, G. Hilmar Gudmundsson, Huilin Li, and Liss M. Andreassen
The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, https://doi.org/10.5194/tc-11-949-2017, 2017
Short summary
Short summary
ITMIX – the Ice Thickness Models Intercomparison eXperiment – was the first coordinated performance assessment for models inferring glacier ice thickness from surface characteristics. Considering 17 different models and 21 different test cases, we show that although solutions of individual models can differ considerably, an ensemble average can yield uncertainties in the order of 10 ± 24 % the mean ice thickness. Ways forward for improving such estimates are sketched.
Chris S. M. Turney, Christopher J. Fogwill, Jonathan G. Palmer, Erik van Sebille, Zoë Thomas, Matt McGlone, Sarah Richardson, Janet M. Wilmshurst, Pavla Fenwick, Violette Zunz, Hugues Goosse, Kerry-Jayne Wilson, Lionel Carter, Mathew Lipson, Richard T. Jones, Melanie Harsch, Graeme Clark, Ezequiel Marzinelli, Tracey Rogers, Eleanor Rainsley, Laura Ciasto, Stephanie Waterman, Elizabeth R. Thomas, and Martin Visbeck
Clim. Past, 13, 231–248, https://doi.org/10.5194/cp-13-231-2017, https://doi.org/10.5194/cp-13-231-2017, 2017
Short summary
Short summary
The Southern Ocean plays a fundamental role in global climate but suffers from a dearth of observational data. As the Australasian Antarctic Expedition 2013–2014 we have developed the first annually resolved temperature record using trees from subantarctic southwest Pacific (52–54˚S) to extend the climate record back to 1870. With modelling we show today's high climate variability became established in the ~1940s and likely driven by a Rossby wave response originating from the tropical Pacific.
François Klein, Hugues Goosse, Nicholas E. Graham, and Dirk Verschuren
Clim. Past, 12, 1499–1518, https://doi.org/10.5194/cp-12-1499-2016, https://doi.org/10.5194/cp-12-1499-2016, 2016
Short summary
Short summary
This paper analyses global climate model simulations of long-term East African hydroclimate changes relative to proxy-based reconstructions over the last millennium. No common signal is found between model results and reconstructions as well as among the model time series, which suggests that simulated hydroclimate is mostly driven by internal variability rather than by common external forcing.
S. Biskop, F. Maussion, P. Krause, and M. Fink
Hydrol. Earth Syst. Sci., 20, 209–225, https://doi.org/10.5194/hess-20-209-2016, https://doi.org/10.5194/hess-20-209-2016, 2016
Short summary
Short summary
In this study, the hydrological model J2000g was extended and applied to four selected endorheic lake basins in the southern-central part of the TP aiming to provide a more quantitative understanding of the key factors controlling their water balance. The model results indicated that the relative contribution of glacier runoff to total water inflow (between 14 and 30 %) plays a less important role compared to runoff generation from rainfall and snowmelt in non-glacierized land areas.
B. Marzeion, P. W. Leclercq, J. G. Cogley, and A. H. Jarosch
The Cryosphere, 9, 2399–2404, https://doi.org/10.5194/tc-9-2399-2015, https://doi.org/10.5194/tc-9-2399-2015, 2015
Short summary
Short summary
We show that estimates of global glacier mass change during the 20th century, obtained from glacier-length-based reconstructions and from a glacier model driven by gridded climate observations are now consistent with each other and also with an estimate for the years 2003-2009 that is mostly based on remotely sensed data. This consistency is found throughout the entire common periods of the respective data sets. Inconsistencies of reconstructions and observations persist on regional scales.
F. Maussion, W. Gurgiser, M. Großhauser, G. Kaser, and B. Marzeion
The Cryosphere, 9, 1663–1683, https://doi.org/10.5194/tc-9-1663-2015, https://doi.org/10.5194/tc-9-1663-2015, 2015
Short summary
Short summary
Using a newly developed open-source tool, we downscale the glacier surface energy and mass balance fluxes at Shallap Glacier. This allows an unprecedented quantification of the ENSO influence on a tropical glacier at climatological time scales (1980-2013). We find a stronger and steadier anti-correlation between Pacific sea-surface temperature (SST) and glacier mass balance than previously reported and provide keys to understand its mechanism.
E. Collier, F. Maussion, L. I. Nicholson, T. Mölg, W. W. Immerzeel, and A. B. G. Bush
The Cryosphere, 9, 1617–1632, https://doi.org/10.5194/tc-9-1617-2015, https://doi.org/10.5194/tc-9-1617-2015, 2015
Short summary
Short summary
We investigate the impact of surface debris on glacier energy and mass fluxes and on atmosphere-glacier feedbacks in the Karakoram range, by including debris in an interactively coupled atmosphere-glacier model. The model is run from 1 May to 1 October 2004, with a simple specification of debris thickness. We find an appreciable reduction in ablation that exceeds 5m w.e. on glacier tongues, as well as significant alterations to near-surface air temperatures and boundary layer dynamics.
V. Zunz and H. Goosse
The Cryosphere, 9, 541–556, https://doi.org/10.5194/tc-9-541-2015, https://doi.org/10.5194/tc-9-541-2015, 2015
J. Curio, F. Maussion, and D. Scherer
Earth Syst. Dynam., 6, 109–124, https://doi.org/10.5194/esd-6-109-2015, https://doi.org/10.5194/esd-6-109-2015, 2015
M. Hofer, B. Marzeion, and T. Mölg
Geosci. Model Dev., 8, 579–593, https://doi.org/10.5194/gmd-8-579-2015, https://doi.org/10.5194/gmd-8-579-2015, 2015
M. F. Loutre, T. Fichefet, H. Goosse, P. Huybrechts, H. Goelzer, and E. Capron
Clim. Past, 10, 1541–1565, https://doi.org/10.5194/cp-10-1541-2014, https://doi.org/10.5194/cp-10-1541-2014, 2014
E. Collier, L. I. Nicholson, B. W. Brock, F. Maussion, R. Essery, and A. B. G. Bush
The Cryosphere, 8, 1429–1444, https://doi.org/10.5194/tc-8-1429-2014, https://doi.org/10.5194/tc-8-1429-2014, 2014
F. Klein, H. Goosse, A. Mairesse, and A. de Vernal
Clim. Past, 10, 1145–1163, https://doi.org/10.5194/cp-10-1145-2014, https://doi.org/10.5194/cp-10-1145-2014, 2014
H. Goosse and V. Zunz
The Cryosphere, 8, 453–470, https://doi.org/10.5194/tc-8-453-2014, https://doi.org/10.5194/tc-8-453-2014, 2014
E. Dietze, F. Maussion, M. Ahlborn, B. Diekmann, K. Hartmann, K. Henkel, T. Kasper, G. Lockot, S. Opitz, and T. Haberzettl
Clim. Past, 10, 91–106, https://doi.org/10.5194/cp-10-91-2014, https://doi.org/10.5194/cp-10-91-2014, 2014
B. Marzeion, A. H. Jarosch, and J. M. Gregory
The Cryosphere, 8, 59–71, https://doi.org/10.5194/tc-8-59-2014, https://doi.org/10.5194/tc-8-59-2014, 2014
A. Mairesse, H. Goosse, P. Mathiot, H. Wanner, and S. Dubinkina
Clim. Past, 9, 2741–2757, https://doi.org/10.5194/cp-9-2741-2013, https://doi.org/10.5194/cp-9-2741-2013, 2013
W. Gurgiser, B. Marzeion, L. Nicholson, M. Ortner, and G. Kaser
The Cryosphere, 7, 1787–1802, https://doi.org/10.5194/tc-7-1787-2013, https://doi.org/10.5194/tc-7-1787-2013, 2013
S. Dubinkina and H. Goosse
Clim. Past, 9, 1141–1152, https://doi.org/10.5194/cp-9-1141-2013, https://doi.org/10.5194/cp-9-1141-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
E. Collier, T. Mölg, F. Maussion, D. Scherer, C. Mayer, and A. B. G. Bush
The Cryosphere, 7, 779–795, https://doi.org/10.5194/tc-7-779-2013, https://doi.org/10.5194/tc-7-779-2013, 2013
P. Mathiot, H. Goosse, X. Crosta, B. Stenni, M. Braida, H. Renssen, C. J. Van Meerbeeck, V. Masson-Delmotte, A. Mairesse, and S. Dubinkina
Clim. Past, 9, 887–901, https://doi.org/10.5194/cp-9-887-2013, https://doi.org/10.5194/cp-9-887-2013, 2013
V. Zunz, H. Goosse, and F. Massonnet
The Cryosphere, 7, 451–468, https://doi.org/10.5194/tc-7-451-2013, https://doi.org/10.5194/tc-7-451-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Centennial-Decadal
Using a process-based dendroclimatic proxy system model in a data assimilation framework: a test case in the Southern Hemisphere over the past centuries
Investigating stable oxygen and carbon isotopic variability in speleothem records over the last millennium using multiple isotope-enabled climate models
Comparison of the oxygen isotope signatures in speleothem records and iHadCM3 model simulations for the last millennium
Long-term Surface Temperature (LoST) database as a complement for GCM preindustrial simulations
Inconsistencies between observed, reconstructed, and simulated precipitation indices for England since the year 1650 CE
Temperature variability in the Iberian Range since 1602 inferred from tree-ring records
North American regional climate reconstruction from ground surface temperature histories
Comparison of simulated and reconstructed variations in East African hydroclimate over the last millennium
Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 3: Practical considerations, relaxed assumptions, and using tree-ring data to address the amplitude of solar forcing
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Janica C. Bühler, Josefine Axelsson, Franziska A. Lechleitner, Jens Fohlmeister, Allegra N. LeGrande, Madhavan Midhun, Jesper Sjolte, Martin Werner, Kei Yoshimura, and Kira Rehfeld
Clim. Past, 18, 1625–1654, https://doi.org/10.5194/cp-18-1625-2022, https://doi.org/10.5194/cp-18-1625-2022, 2022
Short summary
Short summary
We collected and standardized the output of five isotope-enabled simulations for the last millennium and assess differences and similarities to records from a global speleothem database. Modeled isotope variations mostly arise from temperature differences. While lower-resolution speleothems do not capture extreme changes to the extent of models, they show higher variability on multi-decadal timescales. As no model excels in all comparisons, we advise a multi-model approach where possible.
Janica C. Bühler, Carla Roesch, Moritz Kirschner, Louise Sime, Max D. Holloway, and Kira Rehfeld
Clim. Past, 17, 985–1004, https://doi.org/10.5194/cp-17-985-2021, https://doi.org/10.5194/cp-17-985-2021, 2021
Short summary
Short summary
We present three new isotope-enabled simulations for the last millennium (850–1850 CE) and compare them to records from a global speleothem database. Offsets between the simulated and measured oxygen isotope ratios are fairly small. While modeled oxygen isotope ratios are more variable on decadal timescales, proxy records are more variable on (multi-)centennial timescales. This could be due to a lack of long-term variability in complex model simulations, but proxy biases cannot be excluded.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, Eduardo Zorita, and Fernando Jaume-Santero
Clim. Past, 15, 1099–1111, https://doi.org/10.5194/cp-15-1099-2019, https://doi.org/10.5194/cp-15-1099-2019, 2019
Short summary
Short summary
A database of North American long-term ground surface temperatures, from approximately 1300 CE to 1700 CE, was assembled from geothermal data. These temperatures are useful for studying the future stability of permafrost, as well as for evaluating simulations of preindustrial climate that may help to improve estimates of climate models’ equilibrium climate sensitivity. The database will be made available to the climate science community.
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Clim. Past, 15, 307–334, https://doi.org/10.5194/cp-15-307-2019, https://doi.org/10.5194/cp-15-307-2019, 2019
Short summary
Short summary
Our understanding of future climate changes increases if different sources of information agree on past climate variations. Changing climates particularly impact local scales for which future changes in precipitation are highly uncertain. Here, we use information from observations, model simulations, and climate reconstructions for regional precipitation over the British Isles. We find these do not agree well on precipitation variations over the past few centuries.
Ernesto Tejedor, Miguel Ángel Saz, José María Cuadrat, Jan Esper, and Martín de Luis
Clim. Past, 13, 93–105, https://doi.org/10.5194/cp-13-93-2017, https://doi.org/10.5194/cp-13-93-2017, 2017
Short summary
Short summary
Through this study, and inferred from 316 series of tree-ring width, we developed a maximum temperature reconstruction that is significant for much of the Iberian Peninsula (IP). This reconstruction will not only help to understand the past climate of the IP but also serve to improve future climate change scenarios particularly affecting the Mediterranean area.
Fernando Jaume-Santero, Carolyne Pickler, Hugo Beltrami, and Jean-Claude Mareschal
Clim. Past, 12, 2181–2194, https://doi.org/10.5194/cp-12-2181-2016, https://doi.org/10.5194/cp-12-2181-2016, 2016
Short summary
Short summary
Within the framework of the PAGES NAm2k project, we estimated regional trends in the ground surface temperature change for the past 500 years in North America. The mean North American ground surface temperature history suggests a warming of 1.8 °C between preindustrial times and 2000. A regional analysis of mean temperature changes over the last 5 centuries shows that all regions experienced warming, but this warming displays large spatial variability and is more marked in high-latitude regions.
François Klein, Hugues Goosse, Nicholas E. Graham, and Dirk Verschuren
Clim. Past, 12, 1499–1518, https://doi.org/10.5194/cp-12-1499-2016, https://doi.org/10.5194/cp-12-1499-2016, 2016
Short summary
Short summary
This paper analyses global climate model simulations of long-term East African hydroclimate changes relative to proxy-based reconstructions over the last millennium. No common signal is found between model results and reconstructions as well as among the model time series, which suggests that simulated hydroclimate is mostly driven by internal variability rather than by common external forcing.
A. Moberg, R. Sundberg, H. Grudd, and A. Hind
Clim. Past, 11, 425–448, https://doi.org/10.5194/cp-11-425-2015, https://doi.org/10.5194/cp-11-425-2015, 2015
Short summary
Short summary
Experiments with climate models can help to understand causes of past climate changes. We develop a statistical framework for comparing data from simulation experiments with temperature reconstructions for the last millennium. A combination of several external factors is found to explain a significant part of the observed variations, but our selection of data cannot tell which of two alternative choices of past solar forcing gives the best fit between simulations and reconstructions.
Cited articles
Abram, N. J., McGregor, H. V., Tierney, J. E., Evans, M. N., McKay, N. P.,
Kaufman, D. S., and the PAGES 2k Consortium: Early onset of industrial-era
warming across the oceans and continents, Nature, 536, 411–418,
https://doi.org/10.1038/nature19082, 2016.
Allison, I. and Kruss, P.: Estimation of recent climate change in Irian Jaya
by numerical modeling of its tropical glaciers, Arctic Alpine Res.,
9, 49–60, 1977.
Barth A. M., Clark, P. U., Clark, J., Roe, G. H., Marcott, S. A., Marshall
McCabe, A. , Caffee, M. W., He, F., Cuzzone, J. K., and Dunlop, P.:
Persistent millennial-scale glacier fluctuations in Ireland between 24 ka
and 10 ka, Geology, 46, 151–154,
https://doi.org/10.1130/G39796.1, 2017.
Bliss, A., Hock, R., and Radić, V.: Global response of glacier runoff to
twenty-first century climate change, J. Geophys. Res.-Earth Surf., 119,
717–730, https://doi.org/10.1002/2015MS000447, 2014.
Cuffey, K. and Paterson, W.: The Physics of Glaciers, 4th Edition, Academic
Press, 2010.
Dee, S. Emile-Geay, J., Evans, M. N., Allam, A., Steig, E. J., and Thompson,
D.M.: PRYSM: An open-source framework for proxy system modeling, with
applications to oxygen-isotope systems, J. Adv. Model. Earth Syst., 7,
1220–1247, 2015.
Doughty, A. M., Mackintosh, A. N., Anderson, B. M., Dadic, R., Putnam, A. E.,
Barrell, D. J. A., Denton, G. H., Chinn, T. J. H., and Schaefer, J. M.: An
exercise in glacier length modeling: Interannual climatic variability alone
cannot explain Holocene glacier fluctuations in New Zealand, Earth Planet.
Sc. Lett., 470, 48–53, https://doi.org/10.1016/j.epsl.2017.04.032, 2017.
Dufresne, J. L., Foujols, M., Denvil, S., Caubel, A., Marti, O., Aumont, O.,
Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L.,
Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., de Noblet, N., Duvel, J. P., Ethé, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J. Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M. P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate
change projections using the IPSL-CM5 Earth System Model: From CMIP3 to
CMIP5, Clim. Dyn., 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1, 2013.
Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K. J.:
Applications of proxy system modeling in high resolution paleoclimatology,
Quaternary Sci. Rev., 76, 16–28,
https://doi.org/10.1016/j.quascirev.2013.05.024, 2013.
Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Füst, J. J., Frey, H.,
Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., Leclercq, P. W.,
Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M.,
Mosbeux, C., Pandit, A., Portmann, A., Rabatel, A., Ramsankaran, R., Reerink,
T. J., Sanchez, O., Stentoft, P. A., Singh Kumari, S., van Pelt, W. J. J.,
Anderson, B., Benham, T., Binder, D., Dowdeswell, J. A., Fischer, A.,
Helfricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R., Gudmundsson, G. H.,
Li, H., and Andreassen, L. M.: How accurate are estimates of glacier ice
thickness? Results from ITMIX, the Ice Thickness Models Intercomparison
eXperiment, The Cryosphere, 11, 949–970,
https://doi.org/10.5194/tc-11-949-2017, 2017.
Fernández-Donado, L., González-Rouco, J. F., Raible, C. C., Ammann, C.
M., Barriopedro, D., García-Bustamante, E., Jungclaus, J. H., Lorenz, S.
J., Luterbacher, J., Phipps, S. J., Servonnat, J., Swingedouw, D., Tett, S.
F. B., Wagner, S., Yiou, P., and Zorita, E.: Large-scale temperature response
to external forcing in simulations and reconstructions of the last
millennium, Clim. Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013,
2013.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M.,
Worley, P. H., Yang, Z.-L., and Zhang, M.: The Community Climate System
Model Version 4, J. Clim., 24, 4973–4991, https://doi.org/10.1175/2011JCLI4083.1, 2011.
Giesen, R. H. and Oerlemans, J.: Calibration of a surface mass balance model
for global-scale applications, The Cryosphere, 6, 1463–1481,
https://doi.org/10.5194/tc-6-1463-2012, 2012.
Goehring, B. M., Schaefer, J. M., Schluechter, C., Lifton, N. A., Finkel R.
C., Timothy Jull, A. J., Akçar, N., and Alley, R. B.: The Rhone Glacier
was smaller than today for most of the Holocene, Geology 39, 679–682,
https://doi.org/10.1130/G32145.1, 2011
Gonzalez-Rouco, J. F., Beltrami, H., Zorita, E., and von Storch, H.:
Simulation and inversion of borehole temperature profiles in surrogate
climates: spatial distribution and surface coupling, Geophys. Res. Lett., 33,
L01703, https://doi.org/10.1029/2005GL024693, 2006.
Goosse, H., Renssen, H., Timmermann, A., and Bradley, R. S.: Internal and
forced climate variability during the last millennium: a model-data
comparison using ensemble simulations, Quaternary Sci. Rev., 24, 1345–1360,
https://doi.org/10.1016/j.quascirev.2004.12.009, 2005.
Goosse, H., Crespin, E, Dubinkina, S., Loutre, M. F., Mann, M. E., Renssen,
H., Sallaz-Damaz, Y., and Shindell, D.: The role of forcing and internal
dynamics in explaining the “Medieval Climate Anomaly”, Clim. Dyn., 39,
2847–2866, https://doi.org/10.1007/s00382-012-1297-0, 2012a.
Goosse, H., Guiot, J., Mann, M. E., Dubinkina, S., and Sallaz-Damaz, Y.: The
medieval climate anomaly in Europe: comparison of the summer and annual mean
signals in two reconstructions and in simulations with data assimilation,
Global Planet. Change, 84–85, 35–407,
https://doi.org/10.1016/j.gloplacha.2011.07.002, 2012b.
Goosse, H., Barriat, P.-Y., Dalaiden, Q., Klein, F., Marzeion, B., Maussion,
F., Pelucchi P., and Vlug, A.: Simulated length of 71 Alpine glaciers over
the last millennium using OGGM [Data set], Zenodo,
http://doi.org/10.5281/zenodo.1319334, 2018.
Gregory J. M., White, N. J., Church, J. A., Bierkens, M. F. P., Box, J. E.,
van den Broeke, M. R., Cogley, J. G., Fettweis, X., Hanna, E., Huybrechts,
P., Konikow, L. F., Leclercq, P. W., Marzeion, B., Oerlemans, J., Tamisiea,
M. E., Wada, Y., Wake, L. M., and van de Wale, R. S. W.: Twentieth-century
global-mean sea level rise: Is the whole greater than the sum of the parts?,
J. Clim., 26, 4476–4499, https://doi.org/10.1175/JCLI-D-12-00319.1, 2013.
Grove, J. M.: Little Ice Ages: Ancient and Modern, second ed., vol. 2,
Routledge, London and New York, 2004.
Guiot, J., Corona, C., and ESCARSEL members: Growing season temperatures in
Europe and climate forcings over the past 1400 years, PLOS One, 5, e9972,
https://doi.org/10.1371/journal.pone.0009972.g001, 2010.
Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated high-resolution
grids of monthly climatic observations – the CRU TS3.10 Dataset, Int. J.
Clim., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Hegerl, G., Luterbacher, J., González-Rouco, F., Tett, S. F. B., Crowley
T., and Xoplaki, E.: Influence of human and natural forcing on European
seasonal temperatures, Nat. Geos., 4, 99–103, https://doi.org/10.1038/NGEO1057, 2011.
Holzhauser, H., Magny, M., and Zumbühl, H. J.: Glacier and lake-level
variations in west-central Europe over the last 3500 years, Holocene, 15,
789–801, 2005.
Huss, M. and Hock, R.: A new model for global glacier change and sea-level
rise, Front. Earth Sci., 3, 1–22, https://doi.org/10.3389/feart.2015.00054, 2015.
Huss, M., Bauder, A., Funk, M., and Hock, R.: Determination of the seasonal
mass balance of four Alpine glaciers since 1865, J. Geophys. Res., 113,
F01015, https://doi.org/10.1029/2007JF000803, 2008.
Hutter, K.: The effect of longitudinal strain on the shear stress of an ice
sheet: in defence of using streched coordinates, J. Glaciol., 27, 39–56,
1981.
Hutter, K.: Theoretical glaciology: material science of ice and the mechanics
of glaciers and ice sheets, Springer, 483 pp., 1983.
Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P. W., and
Schlüchter, C.: Latest Pleistocene and Holocene glacier variations in the
European Alps, Quaternary Sci. Rev., 28, 2137–2149, 2009.
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled seamless
SRTM data V4, International Centre for Tropical Agriculture (CIAT), available
at: http://srtm.csi.cgiar.org (last access: 15 November 2017), 2008.
Jòhannesson, T., Raymond, C. F., and Waddington, E. D.: A simple method
for determining the response time of glaciers, in: Glacier Fluctuations and
Climatic Change, 343–352, Kluwer Academic Publishers, 1989.
Jomelli, V., Khodri, M., Favier, V., Brunstein, D., Ledru, M. P., Wagnon, P.,
Blard, P. H., Sicart, J. E., Braucher, R., Grancher, D., Bourlès, D. L.,
Braconnot, P., and Vuille, M.: Irregular tropical glacier retreat over the
Holocene epoch driven by progressive warming, Nature, 474, 196–200,
https://doi.org/10.1038/nature10150, 2011.
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Ommen, T.,
Vinther, B. M., Luterbacher, J., Zwiers, F. W., Wahl, E., Schmidt, G.,
Ammann, C., Mann, M. E., Wanner, H., Buckley, B. M., Cobb, K., Esper, J.,
Goosse, H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Mosley-Thompson,
E., Overpeck, J. T., Schulz, M., Tudhope, S., Villalba, R., and Wolff, E.:
High-resolution paleoclimatology of the last millennium: a review of the
current status and future prospects, The Holocene, 19, 3–49, 2009.
Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V.,
Six, K., Segschneider, J., Giorgetta, M. A., Crowley, T. J., Pongratz, J.,
Krivova, N. A., Vieira, L. E., Solanki, S. K., Klocke, D., Botzet, M., Esch,
M., Gayler, V., Haak, H., Raddatz, T. J., Roeckner, E., Schnur, R., Widmann,
H., Claussen, M., Stevens, B., and Marotzke, J.: Climate and carbon-cycle
variability over the last millennium, Clim. Past, 6, 723–737,
https://doi.org/10.5194/cp-6-723-2010, 2010.
Klein, F., Goosse, H., Graham, N. E., and Verschuren, D.: Comparison of
simulated and reconstructed variations in East African hydroclimate over the
last millennium, Clim. Past, 12, 1499–1518,
https://doi.org/10.5194/cp-12-1499-2016, 2016.
Kotlarski, S., Lüthi, D., and Schär, C.: The elevation dependency of
21st century European climate change: an RCM ensemble perspective, Int. J.
Climatol., 35, 3902–3920, https://doi.org/10.1002/joc.4254, 2015.
Landrum, L., Otto-Bliesner, B. L., Wahl, E. R., Conley, A., Lawrence, P. J.,
Rosenbloom, N., and Teng, H.: Last millennium
climate and its variability in CCSM4, J. Climate., 26, 1085–1111,
https://doi.org/10.1175/JCLI-D-11-00326.1, 2013.
Leclercq, P. W. and Oerlemans, J.: Global and hemispheric temperature
reconstruction from glacier length fluctuations, Clim. Dynam., 38,
1065–1079, 2012.
Leclercq, P. W., Pitte, P., Giesen, R. H., Masiokas, M. H., and Oerlemans,
J.: Modelling and climatic interpretation of the length fluctuations of
Glaciar Frías (north Patagonian Andes, Argentina) 1639–2009 AD, Clim.
Past, 8, 1385–1402, https://doi.org/10.5194/cp-8-1385-2012,
2012.
Leclercq, P. W., Oerlemans, J., Basagic, H. J., Bushueva, I., Cook, A. J.,
and Le Bris, R.: A data set of worldwide glacier length fluctuations, The
Cryosphere, 8, 659–672, https://doi.org/10.5194/tc-8-659-2014, 2014.
Le Roy, M., Nicolussi, K., Deline, P., Astrade, L., Edouard, J.L., Miramont,
C., and Arnaud, F.: Calendar-dated glacier variations in the western European
Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif,
Quaternary Sci. Rev., 108, 1–22,
https://doi.org/10.1016/j.quascirev.2014.10.033, 2015.
Leysinger Vieli, G. J.-M. C. and Gudmundsson, G. H.: On estimating length
fluctuations of glaciers caused by changes in climatic forcing, J. Geophys.
Res., 109, F01007, https://doi.org/10.1029/2003JF000027, 2004.
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H.:
European seasonal and annual temperature variability, trends, and extremes
xince 1500, Science, 5, 303, 1499–1503, https://doi.org/10.1126/science.1093877, 2004.
Luterbacher, J., Werner, J. P., Smerdon, J. E., Fernández-Donado, L.,
González-Rouco, F. J., Barriopedro, D., Ljungqvist F. C., Büntgen,
U., Zorita, E., Wagner, S., Esper, J., McCarroll, D., Toreti, A., Frank, D.,
Jungclaus, J. H., Barriendos, M., Bertolin, C., Bothe, O., Brázdil, R.,
Camuffo, D., Dobrovolný, P., Gagen, M., García-Bustamante, E., Ge,
Q., Gómez-Navarro, J. J., Guiot, J., Hao, Z., Hegerl G. C., Holmgren, K.,
Klimenko, V. V., Martín-Chivelet, J., Pfister, C., Roberts, N.,
Schindler, A., Schurer, A., Solomina, O., von Gunten, L., Wahl, E., Wanner,
H., Wetter, O., Xoplaki, E., Yuan, N., Zanchettin, D., Zhang, H., and
Zerefos, C.: European summer temperatures since Roman times, Environ. Res.
Lett., 11, 024001, https://doi.org/10.1088/1748-9326/11/2/024001, 2016.
Lüthi, M. P.: Little Ice Age climate reconstruction from ensemble
reanalysis of Alpine glacier fluctuations, The Cryosphere, 8, 639–650,
https://doi.org/10.5194/tc-8-639-2014, 2014.
Mackintosh, A. N., Anderson, B. M., and Pierrehumbert, R. T.: Reconstructing
climate from glaciers, An. Rev. Earth Planet, Sciences, 45, 649–680,
https://doi.org/10.1146/annurev-earth-063016-020643, 2017.
Malone, A. G. O., Pierrehumbert, R. T., Lowell, T. V., Kelly, M. A., and
Stroup, J. S.: Constraints on southern hemisphere tropical climate change
during the Little Ice Age and Younger Dryas based on glacier modeling of the
Quelccaya Ice Cap, Peru, Quaternary Sci. Rev., 125, 106–116,
https://doi.org/10.1016/j.quascirev.2015.08.001, 2015.
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes M. K.,
Shindell, D., Ammann, C., Faluvegi, G., and Ni, F.: Global signatures and
dynamical origins of the Little Ice Age and Medieval Climate Anomaly,
Science, 326, 1256–1260, https://doi.org/10.1126/science.1177303, 2009.
Maraun, D. and Widmann, M.: Statistical downscaling and bias correction for
climate research, Cambridge University Press, 2018.
Marzeion, B., Jarosch, A. H., and Hofer, M.: Past and future sea-level change
from the surface mass balance of glaciers, The Cryosphere, 6, 1295–1322,
https://doi.org/10.5194/tc-6-1295-2012, 2012.
Marzeion, B., Kaser, G., Maussion, F., and Champollion, N.: Limited
influence of climate change mitigation on short-term glacier mass loss,
Nature Climate Change, 8, 305–308, https://doi.org/10.1038/s41558-018-0093-1, 2018.
Masiokas, M. H., Luckman, B., Villalba, R., Delgado, S., Skvarca, P., and
Ripalta, A.: Little Ice Age fluctuations of small glaciers in the Monte Fitz
Roy and Lago del Desierto areas, south Patagonian Andes, Argentina,
Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 351–362,
https://doi.org/10.1016/j.palaeo.2007.10.031, 2009.
Maussion, F., Butenko, A., Eis, J., Fourteau, K., Jarosch, A. H., Landmann,
J., Oesterle, F., Recinos, B., Rothenpieler, T., Vlug, A., Wild, C. T., and
Marzeion, B.: The Open Global Glacier Model (OGGM) v1.0, Geosci. Model Dev.
Discuss., https://doi.org/10.5194/gmd-2018-9, in review, 2018.
Maussion, F., Rothenpieler, T., Recinos B., Vlug, A., Marzeion, B., Oesterle,
F., Landmann, J., Jarosch, A. H., Eis J., Butenko, A., Fourneau K., and Wild
C. T.: OGGM/oggm: v1.0.0 (Version v1.0.0), Zenodo,
https://doi.org/10.5281/zenodo.1149701, 2018.
Moberg, A., Sundberg, R., Grudd, H., and Hind, A.: Statistical framework for
evaluation of climate model simulations by use of climate proxy data from the
last millennium – Part 3: Practical considerations, relaxed assumptions, and
using tree-ring data to address the amplitude of solar forcing, Clim. Past,
11, 425–448, https://doi.org/10.5194/cp-11-425-2015, 2015.
Moran, A. P., Ivy Ochs, S., Christl, M., and Kerschner, H.: Exposure dating
of a pronounced glacier advance at the onset of the late-Holocene, in the
central Tyrolean Alps, The Holocene, 27, 1350–1358, 2017.
Mountain Research Initiative EDW Working Group: Pepin, N., Bradley, R. S.,
Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood,
G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi,
E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M.
B., Williamson, S. N., and Yang, D. Q.: Elevation-dependent warming in
mountain regions of the world, Nature Clim. Change, 5, 424–430,
https://doi.org/10.1038/nclimate2563, 2015.
Neukom, R., Gergis, J., Karoly, D., Wanner, H., Curran, M., Elbert, J.,
González-Rouco, F., Linsley, B., Moy, A., Mundo, I., Raible, C., Steig,
E., van Ommen, T., Vance, T., Villalba, R., Zinke, J., and Frank, D.:
Inter-hemispheric temperature variability over the last millennium, Nat.
Clim. Change, 4, 362–367, https://doi.org/10.1038/nclimate2174, 2014.
New, M., Lister, D., Hulme, M., and Makin, I.: A high-resolution data set of
surface climate over global land areas, Climate Research, 21, 1–25,
https://doi.org/10.3354/cr021001, 2002.
Nussbaumer, S. U. and Zumbühl, H. J.: The Little Ice Age history of the
Glacier des Bossons (Mont Blanc massif, France): a new high-resolution
glacier length curve based on historical documents, Clim. Change, 111,
301–334, https://doi.org/10.1007/s10584-011-0130-9, 2012.
Oerlemans, J.: Glaciers as indicators of a carbon dioxide warming, Nature,
320, 607–609, https://doi.org/10.1038/320607a0, 1986.
Oerlemans, J.: Holocene glacier fluctuations: is the current rate of retreat
exceptional?, Ann. Glaciol., 31, 39–44,
https://doi.org/10.3189/172756400781820246, 2000.
Oerlemans, J.: Glaciers and climate change. A. A. Balkema Publishers,
148 pp., 2001.
Oerlemans, J.: Extracting a climate signal from 169 Glacier records, Science,
308, 675–677, https://doi.org/10.1126/science.1107046, 2005.
Otto-Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L.,
Stevenson, S., Rosenbloom, N., Mai, A., and Strand, G.: Climate variability
and change since 850 C.E. An ensemble approach with the Community Earth
System Model (CESM), B. Am. Meteor. Soc., 97, 735–754,
https://doi.org/10.1175/BAMS-D-14-00233.1, 2016.
PAGES 2k Consortium: Continental-scale temperature variability during the
last two millennia, Nat. Geosci., 6, 339–346, https://doi.org/10.1038/ngeo1797, 2013.
PAGES2k Consortium: A global multiproxy database for temperature
reconstructions of the Common Era, Scientific Data, 4, 170088,
https://doi.org/10.1038/sdata.2017.88, 2017.
PAGES 2k-PMIP3 group: Continental-scale temperature variability in PMIP3
simulations and PAGES 2k regional temperature reconstructions over the past
millennium, Clim. Past, 11, 1673–1699,
https://doi.org/10.5194/cp-11-1673-2015, 2015.
Painter, T. H., Flanner, M. G., Kaser, G., Marzeion, B., VanCuren, R. A., and
Abdalati, W.: End of the Little Ice Age in the Alps forced by industrial
black carbon, P. Natl. Acad. Sci. USA, 110, 15216–15221,
https://doi.org/10.1073/pnas.1302570110, 2013.
Phipps, S. J., McGregor, H. V., Gergis, J., Gallant, A. J., Neukom, R.,
Stevenson, S., and Van Ommen, T. D.: Paleoclimate data–model comparison and
the role of climate forcings over the past 1500 years, J. Clim., 26,
6915–6936, https://doi.org/10.1175/JCLI-D-12-00108.1, 2013.
Purdie, H., Anderson, B., Chinn, T., Owens, I., Mackintosh, A., and Lawson,
W.: Franz Josef and Fox Glaciers, New Zealand: Historic length records,
Global Planet. Change, 121, 41–52, https://doi.org/10.1016/j.gloplacha.2014.06.008,
2014.
Raible, C. C., Casty, C., Luterbacher, J., Pauling, A., Esper, J., Frank, D.
C., Büntgen, U., Roesch, A. C., Tschuck, P., Wild, M., Vidale, P.-L.,
Schär, C., and Wanner, H.: Climate variability – observations,
reconstructions, and model simulations for the Atlantic-European and Alpine
region from 1500–2100 AD, Clim. Change, 79, 9–29,
https://doi.org/10.1007/s10584-006-9061-2, 2006.
RGI Consortium: Randolph Glacier Inventory – A dataset of global glacier
outlines: Version 5.0: Technical Report, Global Land Ice Measurements from
Space, Colorado, USA, Digital Media, https://doi.org/10.7265/N5-RGI-50,
2015.
Roe, G. H.: What do glaciers tell us about climate variability and climate
change?, J. Glaciol., 57, 567–579,
https://doi.org/10.3189/002214311796905640, 2011.
Roe, G. H. and O'Neal, M. A.: The response of glaciers to intrinsic climate
variability: observations and models of late-Holocene variations in the
Pacific Northwest, J. Glaciol., 55, 839–854,
https://doi.org/10.3189/002214309790152438, 2009.
Roe, G. H., Baker, M. B., and Herla, F.: Centennial glacier retreat as
categorical evidence of regional climate change, Nature Geosci., 10, 95–99,
https://doi.org/10.1038/ngeo2863, 2017.
Sagredo, E. A., Lowell, T. V, Kelly, M. A., Rupper, S., Carlos Aravena, J.,
Ward, D. J., and Malone, A. G. O.: Equilibrium line altitudes along the Andes
during the Last millennium: Paleoclimatic implications, The Holocene, 27,
1019–1033, https://doi.org/10.1177/0959683616678458, 2017.
Schimmelpfennig, I., Schaefera, J. M., Akçarc, N., Koffmana, T.,
Ivy-Ochse, S., Schwartz, R., Finkel, R. C., Zimmerman, S., and
Schlüchter, C.: A chronology of Holocene and Little Ice Age glacier
culminations of the Steingletscher, Central Alps, Switzerland, based on
high-sensitivity beryllium-10 moraine dating, Earth Plan. Sc. Lett., 393,
220–230, 2014.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P.,
Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R.,
Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K.,
Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for
use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev., 4,
33–45, https://doi.org/10.5194/gmd-4-33-2011, 2011.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P.,
Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R.,
Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K.,
Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for
use in PMIP simulations of the Last Millennium (v1.1), Geosci. Model Dev., 5,
185–191, https://doi.org/10.5194/gmd-5-185-2012, 2012.
Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L.,
Aleinov, I., Bauer, M., Bauer, S. E., Bhat, M. K., Bleck, R., Canuto, V.,
Chen, Y., Cheng, Y., Clune, T. L., Genio, A. D., Fainchtein, R. D.,
Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, D., Lacis,
A., Legrande, A. N., Lerner, J., Lo, K. K., Matthews, E. E., Menon, S.,
Miller, R. L., Oinas, V., Oloso, A. O., Perlwitz, J. P., Puma, M. J.,
Putman,W. M., Rund, D., Romanou, A., Sato, M., Shindell, D. T., Sun, S.,
Syed, R. A., Tausnev, N., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao,
M.-S., and Zhang, J.: Configuration and assessment of the GISS ModelE2
contributions to the CMIP5 archive, J. Advan. in Mode. Earth Syst., 6,
141–184, https://doi.org/10.1002/2013MS000265, 2014.
Sigl, M., Abram, N. J., Gabrieli, J., Jenk, T. M., Osmont, D., and
Schwikowski, M.: No role for industrial black carbon in forcing 19th century
glacier retreat in the Alps, The Cryosphere Discuss.,
https://doi.org/10.5194/tc-2018-22, in review, 2018.
Slangen A. B. A., Adloff, F., Jevrejeva, S., Leclercq, P. W., Marzeion, B.,
Wada, Y., and Winkelmann, R.: A review of recent updates of sea-level
projections at global and regional scales, Surv. Geophys., 38, 385–406,
https://doi.org/10.1007/s10712-016-9374-2, 2016.
Solomina, O. N., Bradley, R. S., Jomelli, V., Geirsdottir, A., Kaufman, D.
S., Kochf, J., McKay, N. P., Masiokas, M., Miller, G., Nesjei, A., Nicolussi,
K., Owenl, L. A., Putnammn, A. E., Wanner, H., Wiles, Gr., and Yang, B.:
Glacier fluctuations during the past 2000 years, Quaternary Sci. Rev., 149,
61–90, https://doi.org/10.1016/j.quascirev.2016.04.008, 2016.
Steiner, D., Walter, H. J., and Zumbühl, H. J.: The application of a
non-linear back-propagation neural network to study the mass balance of
Grosse Aletschgletscher, Switzerland, J. Glaciol., 51, 313–323, 2005.
Steiner, D., Pauling, A., Nussbaumer, S. U., Nesje, A., Luterbacher, J.,
Wanner, H., and Zumbühl, H. J.: Sensitivity of European glaciers to
precipitation and temperature – two case studies, Clim. Change, 90,
413–441, https://doi.org/10.1007/s10584-008-9393-1, 2008.
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and
Roeckner, E.: The atmospheric component of the MPI-M earth system model:
ECHAM6, J. Adv. Model. Earth Syst., 5, 1–27, https://doi.org/10.1002/jame.20015, 2013.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Vincent, C., Le Meur, E., Six, D., and Funk, M.: Solving the paradox of the
end of the Little Ice Age in the Alps, Geophys. Res. Lett., 32, 1–4,
https://doi.org/10.1029/2005GL022552, 2005.
WGMS: Fluctuations of Glaciers Database, World Glacier Monitoring Service,
Zurich, Switzerland, https://doi.org/10.5904/wgms-fog-2017-10, 2017.
Weber, S. L. and Oerlemans, J.: Holocene glacier variability: three case
studies using an intermediate-complexity climate model, The Holocene, 13,
353–363, 2003.
Wiles, G. C., Lawson, D. L., Lyon, E., and Wiesenberg, N.: Tree-ring dates on
two pre-Little Ice Age advances in Glacier Bay National Park and Preserve,
Quat. Res., 76, 190–195, https://doi.org/10.1016/j.yqres.2011.05.005,
2011.
Wu, T., Song, L., Li, W., Wang, Z., Zhang, H., Xin, X., Zhang, Y., Zhang,
L., Li, J., Wu, F., Liu, Y., Zhang, F., Shi, X., Chu, M., Zhang, J., Fang,
Y., Wang, F., Lu, Y., Liu, X., Wei, M., Liu, Q., Zhou, W., Dong, M., Zhao,
Q., Ji, J., Li, L., and Zhou, M.: An overview of BCC climate system model
development and application for climate change studies, J. Met. Res., 28,
34–56, https://doi.org/10.1007/s13351-014-3041-7, 2014.
Zecchetto, S., Serandrei-Barbero, R., and Donnici, S.: Temperature
reconstruction from the length fluctuations of small glaciers in the eastern
Alps (northeastern Italy), Clim. Dyn., 49, 363–374,
https://doi.org/10.1007/s00382-016-3347-5, 2017.
Zekollari, H., Fürst, J. J., and Huybrechts, P.: Modelling the evolution
of Vadret da Morteratsch, Switzerland, since the Little Ice Age and into the
future, J. Glaciol., 60, 1155–1159, https://doi.org/10.3189/2014JoG14J053, 2014.
Zemp, M., Hoelzle, M., and Haeberli, W.: Six decades of glacier mass-balance
observations: a review of the worldwide monitoring network, Ann. Glaciol.,
50, 101–111, https://doi.org/10.3189/172756409787769591, 2009.
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S.U., Hoelzle, M.,
Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B.,
Bajracharya, S., Baroni, C., Braun, L. N., Cáceres, B. E., Casassa, G.,
Cobos, G., Dávila, L. R., Delgado Granados, H., Demuth, M. N., Espizua,
L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J. O.,
Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V.,
Portocarrero, C. A., Prinz, R., Sangewar, C. V., Severskiy, I., Sigurđsson, O., Soruco, A., Usubaliev, R., and Vincent, C.: Historically
unprecedented global glacier decline in the early 21st century, J. Glaciol.
61, 745–762, https://doi.org/10.3189/2015JoG15J017, 2015.
Zumbühl, H. J. and Nussbaumer, S.: Little ice age glacier history of the
central and western Alps from pictorial documents, Cuadernos de
Investigacíon Geográfica, 44, 115–136, https://doi.org/10.18172/cig.3363, 2018.
Short summary
Glaciers provide iconic illustrations of past climate change, but records of glacier length fluctuations have not been used systematically to test the ability of models to reproduce past changes. One reason is that glacier length depends on several complex factors and so cannot be simply linked to the climate simulated by models. This is done here, and it is shown that the observed glacier length fluctuations are generally well within the range of the simulations.
Glaciers provide iconic illustrations of past climate change, but records of glacier length...