Articles | Volume 13, issue 7
https://doi.org/10.5194/cp-13-943-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-13-943-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle
Daniel Baggenstos
CORRESPONDING AUTHOR
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
current address: Climate and Environmental Physics, University of Bern, Bern, Switzerland
Thomas K. Bauska
College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
Jeffrey P. Severinghaus
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
James E. Lee
College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
Hinrich Schaefer
National Institute of Water and Atmospheric Research Ltd, P.O. Box 14901, Kilbirnie, 301 Evans Bay Parade, Wellington, New Zealand
Christo Buizert
College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
Edward J. Brook
College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
Sarah Shackleton
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
Vasilii V. Petrenko
Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA
Related authors
Lars Mächler, Daniel Baggenstos, Florian Krauss, Jochen Schmitt, Bernhard Bereiter, Remo Walther, Christoph Reinhard, Béla Tuzson, Lukas Emmenegger, and Hubertus Fischer
Atmos. Meas. Tech., 16, 355–372, https://doi.org/10.5194/amt-16-355-2023, https://doi.org/10.5194/amt-16-355-2023, 2023
Short summary
Short summary
We present a new method to extract the gases from ice cores and measure their greenhouse gas composition. The ice is sublimated continuously with a near-infrared laser, releasing the gases, which are then analyzed on a laser absorption spectrometer. The main advantage over previous efforts is a low effective resolution of 1–2 cm. This capability is crucial for the analysis of highly thinned ice, as expected from ongoing drilling efforts to extend ice core history further back in time.
Sarah Shackleton, James A. Menking, Edward Brook, Christo Buizert, Michael N. Dyonisius, Vasilii V. Petrenko, Daniel Baggenstos, and Jeffrey P. Severinghaus
Clim. Past, 17, 2273–2289, https://doi.org/10.5194/cp-17-2273-2021, https://doi.org/10.5194/cp-17-2273-2021, 2021
Short summary
Short summary
In this study, we measure atmospheric noble gases trapped in ice cores to reconstruct ocean temperature during the last glaciation. Comparing the new reconstruction to other climate records, we show that the ocean reached its coldest temperatures before ice sheets reached maximum volumes and atmospheric CO2 reached its lowest concentrations. Ocean cooling played a major role in lowering atmospheric CO2 early in the glaciation, but it only played a minor role later.
Marcel Haeberli, Daniel Baggenstos, Jochen Schmitt, Markus Grimmer, Adrien Michel, Thomas Kellerhals, and Hubertus Fischer
Clim. Past, 17, 843–867, https://doi.org/10.5194/cp-17-843-2021, https://doi.org/10.5194/cp-17-843-2021, 2021
Short summary
Short summary
Using the temperature-dependent solubility of noble gases in ocean water, we reconstruct global mean ocean temperature (MOT) over the last 700 kyr using noble gas ratios in air enclosed in polar ice cores. Our record shows that glacial MOT was about 3 °C cooler compared to the Holocene. Interglacials before 450 kyr ago were characterized by about 1.5 °C lower MOT than the Holocene. In addition, some interglacials show transient maxima in ocean temperature related to changes in ocean circulation.
Bernhard Bereiter, Béla Tuzson, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Lars Mächler, Daniel Baggenstos, Jochen Schmitt, Hubertus Fischer, and Lukas Emmenegger
Atmos. Meas. Tech., 13, 6391–6406, https://doi.org/10.5194/amt-13-6391-2020, https://doi.org/10.5194/amt-13-6391-2020, 2020
Short summary
Short summary
The record of past greenhouse gas composition from ice cores is crucial for our understanding of global climate change. Deciphering this archive requires highly accurate and spatially resolved analysis of the very small amount of gas that is trapped in the ice. This is achieved with a mid-IR laser absorption spectrometer that provides simultaneous, high-precision measurements of CH4, N2O, CO2, and δ13C(CO2) and which will be coupled to a quantitative sublimation extraction method.
James A. Menking, Edward J. Brook, Sarah A. Shackleton, Jeffrey P. Severinghaus, Michael N. Dyonisius, Vasilii Petrenko, Joseph R. McConnell, Rachael H. Rhodes, Thomas K. Bauska, Daniel Baggenstos, Shaun Marcott, and Stephen Barker
Clim. Past, 15, 1537–1556, https://doi.org/10.5194/cp-15-1537-2019, https://doi.org/10.5194/cp-15-1537-2019, 2019
Short summary
Short summary
An ice core from Taylor Glacier, Antarctica, spans a period ~ 70 000 years ago when Earth entered the last ice age. Chemical analyses of the ice and air bubbles allow for an independent determination of the ages of the ice and gas bubbles. The difference between the age of the ice and the bubbles at any given depth, called ∆age, is unusually high in the Taylor Glacier core compared to the Taylor Dome ice core situated to the south. This implies a dramatic accumulation gradient between the sites.
Mohit L. Dubey, Andre Santos, Andrew B. Moyes, Ken Reichl, James E. Lee, Manvendra K. Dubey, Corentin LeYhuelic, Evan Variano, Emily Follansbee, Fotini K. Chow, and Sébastien C. Biraud
EGUsphere, https://doi.org/10.5194/egusphere-2024-3040, https://doi.org/10.5194/egusphere-2024-3040, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Orphaned wells, meaning wells lacking responsible owners, pose a significant and poorly understood environmental challenge. We propose, develop, and test a novel method for estimating emissions from orphaned wells using a Forced Advection Sampling Technique (FAST) that can overcome many of the limitations in current methods (cost, accuracy, safety). Our results suggest that the FAST method can provide a low-cost alternative to existing methods over a range of leak rates.
Jonathan F. Dooley, Kenneth Minschwaner, Manvendra K. Dubey, Sahar H. El Abbadi, Evan D. Sherwin, Aaron G. Meyer, Emily Follansbee, and James E. Lee
Atmos. Meas. Tech., 17, 5091–5111, https://doi.org/10.5194/amt-17-5091-2024, https://doi.org/10.5194/amt-17-5091-2024, 2024
Short summary
Short summary
Methane is a powerful greenhouse gas originating from both natural and human activities. We describe a new uncrewed aerial system (UAS) designed to measure methane emission rates over a wide range of scales. This system has been used for direct quantification of point sources and distributed emitters over scales of up to 1 km. The system uses simultaneous measurements of methane and ethane to distinguish between different kinds of natural and human-related emission sources.
Romilly Harris Stuart, Amaëlle Landais, Laurent Arnaud, Christo Buizert, Emilie Capron, Marie Dumont, Quentin Libois, Robert Mulvaney, Anaïs Orsi, Ghislain Picard, Frédéric Prié, Jeffrey Severinghaus, Barbara Stenni, and Patricia Martinerie
The Cryosphere, 18, 3741–3763, https://doi.org/10.5194/tc-18-3741-2024, https://doi.org/10.5194/tc-18-3741-2024, 2024
Short summary
Short summary
Ice core δO2/N2 records are useful dating tools due to their local insolation pacing. A precise understanding of the physical mechanism driving this relationship, however, remain ambiguous. By compiling data from 15 polar sites, we find a strong dependence of mean δO2/N2 on accumulation rate and temperature in addition to the well-documented insolation dependence. Snowpack modelling is used to investigate which physical properties drive the mechanistic dependence on these local parameters.
Vasilii V. Petrenko, Segev BenZvi, Michael Dyonisius, Benjamin Hmiel, Andrew M. Smith, and Christo Buizert
The Cryosphere, 18, 3439–3451, https://doi.org/10.5194/tc-18-3439-2024, https://doi.org/10.5194/tc-18-3439-2024, 2024
Short summary
Short summary
This manuscript presents the concept for a new proxy for past variations in the galactic cosmic ray flux (GCR). Past variations in GCR flux are important to understand for interpretation of records of isotopes produced by cosmic rays; these records are used for reconstructing solar variations and past land ice extent. The proxy involves using measurements of 14CO in ice cores, which should provide an uncomplicated and precise estimate of past GCR flux variations for the past few thousand years.
Benjamin Hmiel, Vasilii V. Petrenko, Christo Buizert, Andrew M. Smith, Michael N. Dyonisius, Philip Place, Bin Yang, Quan Hua, Ross Beaudette, Jeffrey P. Severinghaus, Christina Harth, Ray F. Weiss, Lindsey Davidge, Melisa Diaz, Matthew Pacicco, James A. Menking, Michael Kalk, Xavier Faïn, Alden Adolph, Isaac Vimont, and Lee T. Murray
The Cryosphere, 18, 3363–3382, https://doi.org/10.5194/tc-18-3363-2024, https://doi.org/10.5194/tc-18-3363-2024, 2024
Short summary
Short summary
The main aim of this research is to improve understanding of carbon-14 that is produced by cosmic rays in ice sheets. Measurements of carbon-14 in ice cores can provide a range of useful information (age of ice, past atmospheric chemistry, past cosmic ray intensity). Our results show that almost all (>99 %) of carbon-14 that is produced in the upper layer of ice sheets is rapidly lost to the atmosphere. Our results also provide better estimates of carbon-14 production rates in deeper ice.
Jessica Ng, Jeffrey Severinghaus, Ryan Bay, and Delia Tosi
Clim. Past, 20, 1437–1449, https://doi.org/10.5194/cp-20-1437-2024, https://doi.org/10.5194/cp-20-1437-2024, 2024
Short summary
Short summary
The pattern of Earth’s ice age cycles shifted around a million years ago, becoming more extreme and longer in duration. Multiple projects are underway to obtain an Antarctic ice core that covers this time period, as ice cores contain important clues to why the transition happened. To make sure the ice is old enough at the bottom, we demonstrate how to use new technology to quickly measure dust patterns in the ice and compare them to dust in deep-ocean sediments whose ages are known.
Chloe A. Brashear, Tyler R. Jones, Valerie Morris, Bruce H. Vaughn, William H. G. Roberts, William B. Skorski, Abigail G. Hughes, Richard Nunn, Sune Olander Rasmussen, Kurt M. Cuffey, Bo M. Vinther, Todd Sowers, Christo Buizert, Vasileios Gkinis, Christian Holme, Mari F. Jensen, Sofia E. Kjellman, Petra M. Langebroek, Florian Mekhaldi, Kevin S. Rozmiarek, Jonathan W. Rheinlænder, Margit Simon, Giulia Sinnl, Silje Smith-Johnsen, and James W. C. White
EGUsphere, https://doi.org/10.5194/egusphere-2024-1003, https://doi.org/10.5194/egusphere-2024-1003, 2024
Short summary
Short summary
We use a series of spectral techniques to quantify the strength of high-frequency climate variability in Northeastern Greenland to 50,000 ka before present. Importantly, we find that variability consistently decreases hundreds of years prior to Dansgaard-Oeschger warming events. Model simulations suggest a change in North Atlantic sea ice behavior contributed to this pattern, thus providing new information on the conditions which proceeded abrupt climate change during the Last Glacial Period.
Xavier Faïn, Sophie Szopa, Vaishali Naïk, Patricia Martinerie, David M. Etheridge, Rachael H. Rhodes, Cathy M. Trudinger, Vasilii V. Petrenko, Kévin Fourteau, and Phillip Place
EGUsphere, https://doi.org/10.5194/egusphere-2024-653, https://doi.org/10.5194/egusphere-2024-653, 2024
Short summary
Short summary
Carbon monoxide (CO) plays a crucial role in the atmosphere's oxidizing capacity. In this study, we analyse how historical (1850–2014) [CO] outputs from state-of-the-art global chemistry-climate models over Greenland and Antarctica are able to capture both absolute values and trends recorded in multi-site ice archives. A disparity in [CO] growth rates emerges in the Northern Hemisphere between models and observations from 1920–1975 CE, possibly linked to uncertainties in CO emission factors.
Ryan N. Farley, James E. Lee, Laura-Hélèna Rivellini, Alex K. Y. Lee, Rachael Dal Porto, Christopher D. Cappa, Kyle Gorkowski, Abu Sayeed Md Shawon, Katherine B. Benedict, Allison C. Aiken, Manvendra K. Dubey, and Qi Zhang
Atmos. Chem. Phys., 24, 3953–3971, https://doi.org/10.5194/acp-24-3953-2024, https://doi.org/10.5194/acp-24-3953-2024, 2024
Short summary
Short summary
The black carbon aerosol composition and mixing state were characterized using a soot particle aerosol mass spectrometer. Single-particle measurements revealed the major role of atmospheric processing in modulating the black carbon mixing state. A significant fraction of soot particles were internally mixed with oxidized organic aerosol and sulfate, with implications for activation as cloud nuclei.
Frédéric Parrenin, Marie Bouchet, Christo Buizert, Emilie Capron, Ellen Corrick, Russell Drysdale, Kenji Kawamura, Amaëlle Landais, Robert Mulvaney, Ikumi Oyabu, and Sune Rasmussen
EGUsphere, https://doi.org/10.5194/egusphere-2023-2911, https://doi.org/10.5194/egusphere-2023-2911, 2024
Short summary
Short summary
The Paleochrono1 probablistic dating model allows to derive a common and optimized chronology for several paleoclimatic sites from various archives (ice cores, speleothems, marine cores, lake cores, etc.). It combines prior sedimentation scenarios with chronological information such as dated horizons, dated intervals, stratigraphic links and (for ice cores) Delta-depth observations. Paleochrono1 is available under the MIT open-source license.
John D. Patterson, Murat Aydin, Andrew M. Crotwell, Gabrielle Pétron, Jeffery P. Severinghaus, Paul B. Krummel, Ray L. Langenfelds, Vasilii V. Petrenko, and Eric S. Saltzman
Clim. Past, 19, 2535–2550, https://doi.org/10.5194/cp-19-2535-2023, https://doi.org/10.5194/cp-19-2535-2023, 2023
Short summary
Short summary
Atmospheric levels of molecular hydrogen (H2) can impact climate and air quality. Constraining past changes to atmospheric H2 is useful for understanding how H2 cycles through the Earth system and predicting the impacts of increasing anthropogenic emissions under the
hydrogen economy. Here, we use the aging air found in the polar snowpack to reconstruct H2 levels over the past 100 years. We find that H2 levels increased by 30 % over Greenland and 60 % over Antarctica during the 20th century.
Jenna A. Epifanio, Edward J. Brook, Christo Buizert, Erin C. Pettit, Jon S. Edwards, John M. Fegyveresi, Todd A. Sowers, Jeffrey P. Severinghaus, and Emma C. Kahle
The Cryosphere, 17, 4837–4851, https://doi.org/10.5194/tc-17-4837-2023, https://doi.org/10.5194/tc-17-4837-2023, 2023
Short summary
Short summary
The total air content (TAC) of polar ice cores has long been considered a potential proxy for past ice sheet elevation. This study presents a high-resolution record of TAC from the South Pole ice core. The record reveals orbital- and millennial-scale variability that cannot be explained by elevation changes. The orbital- and millennial-scale changes are likely a product of firn grain metamorphism near the surface of the ice sheet, due to summer insolation changes or local accumulation changes.
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Michaela Mühl, Jochen Schmitt, Barbara Seth, James E. Lee, Jon S. Edwards, Edward J. Brook, Thomas Blunier, and Hubertus Fischer
Clim. Past, 19, 999–1025, https://doi.org/10.5194/cp-19-999-2023, https://doi.org/10.5194/cp-19-999-2023, 2023
Short summary
Short summary
Our ice core measurements show that methane, ethane, and propane concentrations are significantly elevated above their past atmospheric background for Greenland ice samples containing mineral dust. The underlying co-production process happens during the classical discrete wet extraction of air from the ice sample and affects previous reconstructions of the inter-polar difference of methane as well as methane stable isotope records derived from dust-rich Greenland ice.
Christo Buizert, Sarah Shackleton, Jeffrey P. Severinghaus, William H. G. Roberts, Alan Seltzer, Bernhard Bereiter, Kenji Kawamura, Daniel Baggenstos, Anaïs J. Orsi, Ikumi Oyabu, Benjamin Birner, Jacob D. Morgan, Edward J. Brook, David M. Etheridge, David Thornton, Nancy Bertler, Rebecca L. Pyne, Robert Mulvaney, Ellen Mosley-Thompson, Peter D. Neff, and Vasilii V. Petrenko
Clim. Past, 19, 579–606, https://doi.org/10.5194/cp-19-579-2023, https://doi.org/10.5194/cp-19-579-2023, 2023
Short summary
Short summary
It is unclear how different components of the global atmospheric circulation, such as the El Niño effect, respond to large-scale climate change. We present a new ice core gas proxy, called krypton-86 excess, that reflects past storminess in Antarctica. We present data from 11 ice cores that suggest the new proxy works. We present a reconstruction of changes in West Antarctic storminess over the last 24 000 years and suggest these are caused by north–south movement of the tropical rain belt.
Michael N. Dyonisius, Vasilii V. Petrenko, Andrew M. Smith, Benjamin Hmiel, Peter D. Neff, Bin Yang, Quan Hua, Jochen Schmitt, Sarah A. Shackleton, Christo Buizert, Philip F. Place, James A. Menking, Ross Beaudette, Christina Harth, Michael Kalk, Heidi A. Roop, Bernhard Bereiter, Casey Armanetti, Isaac Vimont, Sylvia Englund Michel, Edward J. Brook, Jeffrey P. Severinghaus, Ray F. Weiss, and Joseph R. McConnell
The Cryosphere, 17, 843–863, https://doi.org/10.5194/tc-17-843-2023, https://doi.org/10.5194/tc-17-843-2023, 2023
Short summary
Short summary
Cosmic rays that enter the atmosphere produce secondary particles which react with surface minerals to produce radioactive nuclides. These nuclides are often used to constrain Earth's surface processes. However, the production rates from muons are not well constrained. We measured 14C in ice with a well-known exposure history to constrain the production rates from muons. 14C production in ice is analogous to quartz, but we obtain different production rates compared to commonly used estimates.
Lars Mächler, Daniel Baggenstos, Florian Krauss, Jochen Schmitt, Bernhard Bereiter, Remo Walther, Christoph Reinhard, Béla Tuzson, Lukas Emmenegger, and Hubertus Fischer
Atmos. Meas. Tech., 16, 355–372, https://doi.org/10.5194/amt-16-355-2023, https://doi.org/10.5194/amt-16-355-2023, 2023
Short summary
Short summary
We present a new method to extract the gases from ice cores and measure their greenhouse gas composition. The ice is sublimated continuously with a near-infrared laser, releasing the gases, which are then analyzed on a laser absorption spectrometer. The main advantage over previous efforts is a low effective resolution of 1–2 cm. This capability is crucial for the analysis of highly thinned ice, as expected from ongoing drilling efforts to extend ice core history further back in time.
Jacob D. Morgan, Christo Buizert, Tyler J. Fudge, Kenji Kawamura, Jeffrey P. Severinghaus, and Cathy M. Trudinger
The Cryosphere, 16, 2947–2966, https://doi.org/10.5194/tc-16-2947-2022, https://doi.org/10.5194/tc-16-2947-2022, 2022
Short summary
Short summary
The composition of air bubbles in Antarctic ice cores records information about past changes in properties of the snowpack. We find that, near the South Pole, thinner snowpack in the past is often due to steeper surface topography, in which faster winds erode the snow and deposit it in flatter areas. The slope and wind seem to also cause a seasonal bias in the composition of air bubbles in the ice core. These findings will improve interpretation of other ice cores from places with steep slopes.
Giyoon Lee, Jinho Ahn, Hyeontae Ju, Florian Ritterbusch, Ikumi Oyabu, Christo Buizert, Songyi Kim, Jangil Moon, Sambit Ghosh, Kenji Kawamura, Zheng-Tian Lu, Sangbum Hong, Chang Hee Han, Soon Do Hur, Wei Jiang, and Guo-Min Yang
The Cryosphere, 16, 2301–2324, https://doi.org/10.5194/tc-16-2301-2022, https://doi.org/10.5194/tc-16-2301-2022, 2022
Short summary
Short summary
Blue-ice areas (BIAs) have several advantages for reconstructing past climate. However, the complicated ice flow in the area hinders constraining the age. We applied state-of-the-art techniques and found that the ages cover the last deglaciation period. Our study demonstrates that the BIA in northern Victoria Land may help reconstruct the past climate during the termination of the last glacial period.
Xavier Faïn, Rachael H. Rhodes, Philip Place, Vasilii V. Petrenko, Kévin Fourteau, Nathan Chellman, Edward Crosier, Joseph R. McConnell, Edward J. Brook, Thomas Blunier, Michel Legrand, and Jérôme Chappellaz
Clim. Past, 18, 631–647, https://doi.org/10.5194/cp-18-631-2022, https://doi.org/10.5194/cp-18-631-2022, 2022
Short summary
Short summary
Carbon monoxide (CO) is a regulated pollutant and one of the key components determining the oxidizing capacity of the atmosphere. In this study, we analyzed five ice cores from Greenland at high resolution for CO concentrations by coupling laser spectrometry with continuous melting. By combining these new datasets, we produced an upper-bound estimate of past atmospheric CO abundance since preindustrial times for the Northern Hemisphere high latitudes, covering the period from 1700 to 1957 CE.
Regina Gonzalez Moguel, Felix Vogel, Sébastien Ars, Hinrich Schaefer, Jocelyn C. Turnbull, and Peter M. J. Douglas
Atmos. Chem. Phys., 22, 2121–2133, https://doi.org/10.5194/acp-22-2121-2022, https://doi.org/10.5194/acp-22-2121-2022, 2022
Short summary
Short summary
Evaluating methane (CH4) sources in the Athabasca oil sands region (AOSR) is crucial to effectively mitigate CH4 emissions. We tested the use of carbon isotopes to estimate source contributions from key CH4 sources in the AOSR and found that 56 ± 18 % of CH4 emissions originated from surface mining and processing facilities, 34 ± 18 % from tailings ponds, and 10 ± < 1 % from wetlands, confirming previous findings and showing that this method can be successfully used to partition CH4 sources.
Ikumi Oyabu, Kenji Kawamura, Tsutomu Uchida, Shuji Fujita, Kyotaro Kitamura, Motohiro Hirabayashi, Shuji Aoki, Shinji Morimoto, Takakiyo Nakazawa, Jeffrey P. Severinghaus, and Jacob D. Morgan
The Cryosphere, 15, 5529–5555, https://doi.org/10.5194/tc-15-5529-2021, https://doi.org/10.5194/tc-15-5529-2021, 2021
Short summary
Short summary
We present O2/N2 and Ar/N2 records from the Dome Fuji ice core through the bubbly ice, bubble–clathrate transition, and clathrate ice zones without gas-loss fractionation. The insolation signal is preserved through the clathrate formation. The relationship between Ar/Ν2 and Ο2/Ν2 suggests that the fractionation for the bubble–clathrate transition is mass independent, while the bubble close-off process involves a combination of mass-independent and mass-dependent fractionation for O2 and Ar.
Sarah Shackleton, James A. Menking, Edward Brook, Christo Buizert, Michael N. Dyonisius, Vasilii V. Petrenko, Daniel Baggenstos, and Jeffrey P. Severinghaus
Clim. Past, 17, 2273–2289, https://doi.org/10.5194/cp-17-2273-2021, https://doi.org/10.5194/cp-17-2273-2021, 2021
Short summary
Short summary
In this study, we measure atmospheric noble gases trapped in ice cores to reconstruct ocean temperature during the last glaciation. Comparing the new reconstruction to other climate records, we show that the ocean reached its coldest temperatures before ice sheets reached maximum volumes and atmospheric CO2 reached its lowest concentrations. Ocean cooling played a major role in lowering atmospheric CO2 early in the glaciation, but it only played a minor role later.
Marcel Haeberli, Daniel Baggenstos, Jochen Schmitt, Markus Grimmer, Adrien Michel, Thomas Kellerhals, and Hubertus Fischer
Clim. Past, 17, 843–867, https://doi.org/10.5194/cp-17-843-2021, https://doi.org/10.5194/cp-17-843-2021, 2021
Short summary
Short summary
Using the temperature-dependent solubility of noble gases in ocean water, we reconstruct global mean ocean temperature (MOT) over the last 700 kyr using noble gas ratios in air enclosed in polar ice cores. Our record shows that glacial MOT was about 3 °C cooler compared to the Holocene. Interglacials before 450 kyr ago were characterized by about 1.5 °C lower MOT than the Holocene. In addition, some interglacials show transient maxima in ocean temperature related to changes in ocean circulation.
Benjamin Birner, William Paplawsky, Jeffrey Severinghaus, and Ralph F. Keeling
Atmos. Meas. Tech., 14, 2515–2527, https://doi.org/10.5194/amt-14-2515-2021, https://doi.org/10.5194/amt-14-2515-2021, 2021
Short summary
Short summary
The atmospheric helium-to-nitrogen ratio is a promising indicator for circulation changes in the upper atmosphere and fossil fuel burning by humans. We present a very precise analysis method to determine changes in the helium-to-nitrogen ratio of air samples. The method relies on stabilizing the gas flow to a mass spectrometer and continuous removal of reactive gases. These advances enable new insights and monitoring possibilities for anthropogenic and natural processes.
Vasilii V. Petrenko, Andrew M. Smith, Edward M. Crosier, Roxana Kazemi, Philip Place, Aidan Colton, Bin Yang, Quan Hua, and Lee T. Murray
Atmos. Meas. Tech., 14, 2055–2063, https://doi.org/10.5194/amt-14-2055-2021, https://doi.org/10.5194/amt-14-2055-2021, 2021
Short summary
Short summary
This paper presents an improved methodology for measurements of atmospheric concentration of carbon-14-containing carbon monoxide (14CO), as well as a 1-year dataset that demonstrates the methodology. Atmospheric 14CO concentration measurements are useful for improving the understanding of spatial and temporal variability of hydroxyl radical concentrations. Key improvements over prior methods include a greatly reduced air sample size and accurate procedural blank characterization.
Ikumi Oyabu, Kenji Kawamura, Kyotaro Kitamura, Remi Dallmayr, Akihiro Kitamura, Chikako Sawada, Jeffrey P. Severinghaus, Ross Beaudette, Anaïs Orsi, Satoshi Sugawara, Shigeyuki Ishidoya, Dorthe Dahl-Jensen, Kumiko Goto-Azuma, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Meas. Tech., 13, 6703–6731, https://doi.org/10.5194/amt-13-6703-2020, https://doi.org/10.5194/amt-13-6703-2020, 2020
Short summary
Short summary
Air in polar ice cores provides information on past atmosphere and climate. We present a new method for simultaneously measuring eight gases (CH4, N2O and CO2 concentrations; isotopic ratios of N2 and O2; elemental ratios between N2, O2 and Ar; and total air content) from single ice-core samples with high precision.
Jenna A. Epifanio, Edward J. Brook, Christo Buizert, Jon S. Edwards, Todd A. Sowers, Emma C. Kahle, Jeffrey P. Severinghaus, Eric J. Steig, Dominic A. Winski, Erich C. Osterberg, Tyler J. Fudge, Murat Aydin, Ekaterina Hood, Michael Kalk, Karl J. Kreutz, David G. Ferris, and Joshua A. Kennedy
Clim. Past, 16, 2431–2444, https://doi.org/10.5194/cp-16-2431-2020, https://doi.org/10.5194/cp-16-2431-2020, 2020
Short summary
Short summary
A new ice core drilled at the South Pole provides a 54 000-year paleo-environmental record including the composition of the past atmosphere. This paper describes the gas chronology for the South Pole ice core, based on a high-resolution methane record. The new gas chronology, in combination with the existing ice age scale from Winski et al. (2019), allows a model-independent reconstruction of the delta age record.
Bernhard Bereiter, Béla Tuzson, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Lars Mächler, Daniel Baggenstos, Jochen Schmitt, Hubertus Fischer, and Lukas Emmenegger
Atmos. Meas. Tech., 13, 6391–6406, https://doi.org/10.5194/amt-13-6391-2020, https://doi.org/10.5194/amt-13-6391-2020, 2020
Short summary
Short summary
The record of past greenhouse gas composition from ice cores is crucial for our understanding of global climate change. Deciphering this archive requires highly accurate and spatially resolved analysis of the very small amount of gas that is trapped in the ice. This is achieved with a mid-IR laser absorption spectrometer that provides simultaneous, high-precision measurements of CH4, N2O, CO2, and δ13C(CO2) and which will be coupled to a quantitative sublimation extraction method.
Benjamin Birner, Martyn P. Chipperfield, Eric J. Morgan, Britton B. Stephens, Marianna Linz, Wuhu Feng, Chris Wilson, Jonathan D. Bent, Steven C. Wofsy, Jeffrey Severinghaus, and Ralph F. Keeling
Atmos. Chem. Phys., 20, 12391–12408, https://doi.org/10.5194/acp-20-12391-2020, https://doi.org/10.5194/acp-20-12391-2020, 2020
Short summary
Short summary
With new high-precision observations from nine aircraft campaigns and 3-D chemical transport modeling, we show that the argon-to-nitrogen ratio (Ar / N2) in the lowermost stratosphere provides a useful constraint on the “age of air” (the time elapsed since entry of an air parcel into the stratosphere). Therefore, Ar / N2 in combination with traditional age-of-air indicators, such as CO2 and N2O, could provide new insights into atmospheric mixing and transport.
James E. Lee, Edward J. Brook, Nancy A. N. Bertler, Christo Buizert, Troy Baisden, Thomas Blunier, V. Gabriela Ciobanu, Howard Conway, Dorthe Dahl-Jensen, Tyler J. Fudge, Richard Hindmarsh, Elizabeth D. Keller, Frédéric Parrenin, Jeffrey P. Severinghaus, Paul Vallelonga, Edwin D. Waddington, and Mai Winstrup
Clim. Past, 16, 1691–1713, https://doi.org/10.5194/cp-16-1691-2020, https://doi.org/10.5194/cp-16-1691-2020, 2020
Short summary
Short summary
The Roosevelt Island ice core was drilled to investigate climate from the eastern Ross Sea, West Antarctica. We describe the ice age-scale and gas age-scale of the ice core for 0–763 m (83 000 years BP). Old ice near the bottom of the core implies the ice dome existed throughout the last glacial period and that ice streaming was active in the region. Variations in methane, similar to those used as evidence of early human influence on climate, were observed prior to significant human populations.
Anders Svensson, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Thomas Blunier, Sune O. Rasmussen, Bo M. Vinther, Paul Vallelonga, Emilie Capron, Vasileios Gkinis, Eliza Cook, Helle Astrid Kjær, Raimund Muscheler, Sepp Kipfstuhl, Frank Wilhelms, Thomas F. Stocker, Hubertus Fischer, Florian Adolphi, Tobias Erhardt, Michael Sigl, Amaelle Landais, Frédéric Parrenin, Christo Buizert, Joseph R. McConnell, Mirko Severi, Robert Mulvaney, and Matthias Bigler
Clim. Past, 16, 1565–1580, https://doi.org/10.5194/cp-16-1565-2020, https://doi.org/10.5194/cp-16-1565-2020, 2020
Short summary
Short summary
We identify signatures of large bipolar volcanic eruptions in Greenland and Antarctic ice cores during the last glacial period, which allows for a precise temporal alignment of the ice cores. Thereby the exact timing of unexplained, abrupt climatic changes occurring during the last glacial period can be determined in a global context. The study thus provides a step towards a full understanding of elements of the climate system that may also play an important role in the future.
Dominic A. Winski, Tyler J. Fudge, David G. Ferris, Erich C. Osterberg, John M. Fegyveresi, Jihong Cole-Dai, Zayta Thundercloud, Thomas S. Cox, Karl J. Kreutz, Nikolas Ortman, Christo Buizert, Jenna Epifanio, Edward J. Brook, Ross Beaudette, Jeffrey Severinghaus, Todd Sowers, Eric J. Steig, Emma C. Kahle, Tyler R. Jones, Valerie Morris, Murat Aydin, Melinda R. Nicewonger, Kimberly A. Casey, Richard B. Alley, Edwin D. Waddington, Nels A. Iverson, Nelia W. Dunbar, Ryan C. Bay, Joseph M. Souney, Michael Sigl, and Joseph R. McConnell
Clim. Past, 15, 1793–1808, https://doi.org/10.5194/cp-15-1793-2019, https://doi.org/10.5194/cp-15-1793-2019, 2019
Short summary
Short summary
A deep ice core was recently drilled at the South Pole to understand past variations in the Earth's climate. To understand the information contained within the ice, we present the relationship between the depth and age of the ice in the South Pole Ice Core. We found that the oldest ice in our record is from 54 302 ± 519 years ago. Our results show that, on average, 7.4 cm of snow falls at the South Pole each year.
Youngjoon Jang, Sang Bum Hong, Christo Buizert, Hun-Gyu Lee, Sang-Young Han, Ji-Woong Yang, Yoshinori Iizuka, Akira Hori, Yeongcheol Han, Seong Joon Jun, Pieter Tans, Taejin Choi, Seong-Joong Kim, Soon Do Hur, and Jinho Ahn
The Cryosphere, 13, 2407–2419, https://doi.org/10.5194/tc-13-2407-2019, https://doi.org/10.5194/tc-13-2407-2019, 2019
Short summary
Short summary
We can learn how human activity altered atmospheric air from the interstitial air in the porous snow layer (firn) on top of glaciers. However, old firn air (> 55 years) was observed only at sites where surface temperatures and snow accumulation rates are very low, such as the South Pole. In this study, we report an unusually old firn air with CO2 age of 93 years from Styx Glacier, near the Ross Sea coast in Antarctica. We hypothesize that the large snow density variations increase firn air ages.
Jens Mühle, Cathy M. Trudinger, Luke M. Western, Matthew Rigby, Martin K. Vollmer, Sunyoung Park, Alistair J. Manning, Daniel Say, Anita Ganesan, L. Paul Steele, Diane J. Ivy, Tim Arnold, Shanlan Li, Andreas Stohl, Christina M. Harth, Peter K. Salameh, Archie McCulloch, Simon O'Doherty, Mi-Kyung Park, Chun Ok Jo, Dickon Young, Kieran M. Stanley, Paul B. Krummel, Blagoj Mitrevski, Ove Hermansen, Chris Lunder, Nikolaos Evangeliou, Bo Yao, Jooil Kim, Benjamin Hmiel, Christo Buizert, Vasilii V. Petrenko, Jgor Arduini, Michela Maione, David M. Etheridge, Eleni Michalopoulou, Mike Czerniak, Jeffrey P. Severinghaus, Stefan Reimann, Peter G. Simmonds, Paul J. Fraser, Ronald G. Prinn, and Ray F. Weiss
Atmos. Chem. Phys., 19, 10335–10359, https://doi.org/10.5194/acp-19-10335-2019, https://doi.org/10.5194/acp-19-10335-2019, 2019
Short summary
Short summary
We discuss atmospheric concentrations and emissions of the strong greenhouse gas perfluorocyclobutane. A large fraction of recent emissions stem from China, India, and Russia, probably as a by-product from the production of fluoropolymers and fluorochemicals. Most historic emissions likely stem from developed countries. Total emissions are higher than what is being reported. Clearly, more measurements and better reporting are needed to understand emissions of this and other greenhouse gases.
James A. Menking, Edward J. Brook, Sarah A. Shackleton, Jeffrey P. Severinghaus, Michael N. Dyonisius, Vasilii Petrenko, Joseph R. McConnell, Rachael H. Rhodes, Thomas K. Bauska, Daniel Baggenstos, Shaun Marcott, and Stephen Barker
Clim. Past, 15, 1537–1556, https://doi.org/10.5194/cp-15-1537-2019, https://doi.org/10.5194/cp-15-1537-2019, 2019
Short summary
Short summary
An ice core from Taylor Glacier, Antarctica, spans a period ~ 70 000 years ago when Earth entered the last ice age. Chemical analyses of the ice and air bubbles allow for an independent determination of the ages of the ice and gas bubbles. The difference between the age of the ice and the bubbles at any given depth, called ∆age, is unusually high in the Taylor Glacier core compared to the Taylor Dome ice core situated to the south. This implies a dramatic accumulation gradient between the sites.
Isaac J. Vimont, Jocelyn C. Turnbull, Vasilii V. Petrenko, Philip F. Place, Colm Sweeney, Natasha Miles, Scott Richardson, Bruce H. Vaughn, and James W. C. White
Atmos. Chem. Phys., 19, 8547–8562, https://doi.org/10.5194/acp-19-8547-2019, https://doi.org/10.5194/acp-19-8547-2019, 2019
Short summary
Short summary
Stable isotopes of Carbon Monoxide (CO) and radiocarbon carbon dioxide were measured over three summers at Indianapolis, Indiana, US, and for 1 year at a site thought to be strongly influenced by CO from oxidized volatile organic compounds (VOCs) in South Carolina, US. The Indianapolis results were used to provide an estimate of the carbon and oxygen isotopic signatures of CO produced from oxidized VOCs. This updated estimate agrees well with the data from South Carolina during the summer.
Jai Chowdhry Beeman, Léa Gest, Frédéric Parrenin, Dominique Raynaud, Tyler J. Fudge, Christo Buizert, and Edward J. Brook
Clim. Past, 15, 913–926, https://doi.org/10.5194/cp-15-913-2019, https://doi.org/10.5194/cp-15-913-2019, 2019
Short summary
Short summary
Atmospheric CO2 was likely an important amplifier of global-scale orbitally-driven warming during the last deglaciation. However, the mechanisms responsible for the rise in CO2, and the coherent rise in Antarctic isotopic temperature records, are under debate. Using a stochastic method, we detect variable lags between coherent changes in Antarctic temperature and CO2. This implies that the climate mechanisms linking the two records changed or experienced modulations during the deglaciation.
Mai Winstrup, Paul Vallelonga, Helle A. Kjær, Tyler J. Fudge, James E. Lee, Marie H. Riis, Ross Edwards, Nancy A. N. Bertler, Thomas Blunier, Ed J. Brook, Christo Buizert, Gabriela Ciobanu, Howard Conway, Dorthe Dahl-Jensen, Aja Ellis, B. Daniel Emanuelsson, Richard C. A. Hindmarsh, Elizabeth D. Keller, Andrei V. Kurbatov, Paul A. Mayewski, Peter D. Neff, Rebecca L. Pyne, Marius F. Simonsen, Anders Svensson, Andrea Tuohy, Edwin D. Waddington, and Sarah Wheatley
Clim. Past, 15, 751–779, https://doi.org/10.5194/cp-15-751-2019, https://doi.org/10.5194/cp-15-751-2019, 2019
Short summary
Short summary
We present a 2700-year timescale and snow accumulation history for an ice core from Roosevelt Island, Ross Ice Shelf, Antarctica. We observe a long-term slightly decreasing trend in accumulation during most of the period but a rapid decline since the mid-1960s. The latter is linked to a recent strengthening of the Amundsen Sea Low and the expansion of regional sea ice. The year 1965 CE may thus mark the onset of significant increases in sea-ice extent in the eastern Ross Sea.
Hinrich Schaefer, Dan Smale, Sylvia E. Nichol, Tony M. Bromley, Gordon W. Brailsford, Ross J. Martin, Rowena Moss, Sylvia Englund Michel, and James W. C. White
Biogeosciences, 15, 6371–6386, https://doi.org/10.5194/bg-15-6371-2018, https://doi.org/10.5194/bg-15-6371-2018, 2018
Short summary
Short summary
To quantify the impact of El Nino–Southern Oscillation (ENSO) climate events on the methane budget, we studied the correlation between CH4 time series and ENSO indices. We find that ENSO explains less than one-third of the variability in CH4 levels and their stable carbon isotopes, which constrain the source processes of emissions. ENSO forcing of the CH4 cycle is too small, episodic, and regional to force atmospheric trends, which are more likely caused by agricultural or industrial emissions.
Benjamin Birner, Christo Buizert, Till J. W. Wagner, and Jeffrey P. Severinghaus
The Cryosphere, 12, 2021–2037, https://doi.org/10.5194/tc-12-2021-2018, https://doi.org/10.5194/tc-12-2021-2018, 2018
Short summary
Short summary
Ancient air enclosed in bubbles of the Antarctic ice sheet is a key source of information about the Earth's past climate. However, a range of physical processes in the snow layer atop an ice sheet may change the trapped air's chemical composition before it is occluded in the ice. We developed the first detailed 2-D computer simulation of these processes and found a new method to improve the reconstruction of past climate from air in ice cores bubbles.
Taku Umezawa, Carl A. M. Brenninkmeijer, Thomas Röckmann, Carina van der Veen, Stanley C. Tyler, Ryo Fujita, Shinji Morimoto, Shuji Aoki, Todd Sowers, Jochen Schmitt, Michael Bock, Jonas Beck, Hubertus Fischer, Sylvia E. Michel, Bruce H. Vaughn, John B. Miller, James W. C. White, Gordon Brailsford, Hinrich Schaefer, Peter Sperlich, Willi A. Brand, Michael Rothe, Thomas Blunier, David Lowry, Rebecca E. Fisher, Euan G. Nisbet, Andrew L. Rice, Peter Bergamaschi, Cordelia Veidt, and Ingeborg Levin
Atmos. Meas. Tech., 11, 1207–1231, https://doi.org/10.5194/amt-11-1207-2018, https://doi.org/10.5194/amt-11-1207-2018, 2018
Short summary
Short summary
Isotope measurements are useful for separating different methane sources. However, the lack of widely accepted standards and calibration methods for stable carbon and hydrogen isotopic ratios of methane in air has caused significant measurement offsets among laboratories. We conducted worldwide interlaboratory comparisons, surveyed the literature and assessed them systematically. This study may be of help in future attempts to harmonize data sets of isotopic composition of atmospheric methane.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
Alan M. Seltzer, Christo Buizert, Daniel Baggenstos, Edward J. Brook, Jinho Ahn, Ji-Woong Yang, and Jeffrey P. Severinghaus
Clim. Past, 13, 1323–1338, https://doi.org/10.5194/cp-13-1323-2017, https://doi.org/10.5194/cp-13-1323-2017, 2017
Short summary
Short summary
To explore whether the oxygen-18 to oxygen-16 ratio of atmospheric O2 is sensitive to the position of the tropical rain belts, we (1) present a record of ice core bubble oxygen isotope measurements from two Antarctic ice cores, and (2) examine the sensitivity of oxygen isotopes in precipitation, weighted by photosynthesis, to the location of oxygen production over the modern-day seasonal cycle. We find a strong modern relationship and discuss implications for past shifts in tropical rainfall.
Dennis L. Nielson, Chris Delahunty, John W. Goodge, and Jeffery P. Severinghaus
Sci. Dril., 22, 29–33, https://doi.org/10.5194/sd-22-29-2017, https://doi.org/10.5194/sd-22-29-2017, 2017
Short summary
Short summary
The North American Testing (NAT) was designed to test critical functions of a Rapid Access Ice Drill (RAID) at a site in northern Utah. The RAID was designed to rapidly drill in Antarctica through over 2500 m of ice and then take a core sample of the bedrock. The system has many innovative features that required field testing before the system was shipped to Antarcitca. The NAT facility consisted of a borehole where we froze a column of ice to test drilling and fluid circulation functions.
Léa Gest, Frédéric Parrenin, Jai Chowdhry Beeman, Dominique Raynaud, Tyler J. Fudge, Christo Buizert, and Edward J. Brook
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-71, https://doi.org/10.5194/cp-2017-71, 2017
Revised manuscript has not been submitted
Short summary
Short summary
In this manuscript, we place the atmospheric CO2 and Antarctic temperature records onto a common age scale during the last deglaciation. Moreover, we evaluate the phase relationship between those two records in order to discuss possible climatic and carbon cycle scenarios. Indeed, this phase relationship is central to determine the role of the former in past (and therefore future) climatic variations. This scientific problem was even discussed by some policy makers (e.g., in the USA senate).
Christo Buizert and Jeffrey P. Severinghaus
The Cryosphere, 10, 2099–2111, https://doi.org/10.5194/tc-10-2099-2016, https://doi.org/10.5194/tc-10-2099-2016, 2016
Short summary
Short summary
The upper 50–100 m of the world's ice sheets consists of the firn layer, a porous layer of snow that is slowly compacted by overlying snow. Understanding air movement inside the firn is critical for ice core climate reconstructions. Buizert and Severinghaus identify and describe a new mechanism of firn air movement. High- and low-pressure systems force air movement in the firn that drives strong mixing, called dispersion. Dispersion is the main mechanism for air mixing in the deep firn.
Rachael H. Rhodes, Xavier Faïn, Edward J. Brook, Joseph R. McConnell, Olivia J. Maselli, Michael Sigl, Jon Edwards, Christo Buizert, Thomas Blunier, Jérôme Chappellaz, and Johannes Freitag
Clim. Past, 12, 1061–1077, https://doi.org/10.5194/cp-12-1061-2016, https://doi.org/10.5194/cp-12-1061-2016, 2016
Short summary
Short summary
Local artifacts in ice core methane data are superimposed on consistent records of past atmospheric variability. These artifacts are not related to past atmospheric history and care should be taken to avoid interpreting them as such. By investigating five polar ice cores from sites with different conditions, we relate isolated methane spikes to melt layers and decimetre-scale variations as "trapping signal" associated with a difference in timing of air bubble closure in adjacent firn layers.
Michael Sigl, Tyler J. Fudge, Mai Winstrup, Jihong Cole-Dai, David Ferris, Joseph R. McConnell, Ken C. Taylor, Kees C. Welten, Thomas E. Woodruff, Florian Adolphi, Marion Bisiaux, Edward J. Brook, Christo Buizert, Marc W. Caffee, Nelia W. Dunbar, Ross Edwards, Lei Geng, Nels Iverson, Bess Koffman, Lawrence Layman, Olivia J. Maselli, Kenneth McGwire, Raimund Muscheler, Kunihiko Nishiizumi, Daniel R. Pasteris, Rachael H. Rhodes, and Todd A. Sowers
Clim. Past, 12, 769–786, https://doi.org/10.5194/cp-12-769-2016, https://doi.org/10.5194/cp-12-769-2016, 2016
Short summary
Short summary
Here we present a chronology (WD2014) for the upper part (0–2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide ice core, which is based on layer counting of distinctive annual cycles preserved in the elemental, chemical and electrical conductivity records. We validated the chronology by comparing it to independent high-accuracy, absolutely dated chronologies. Given its demonstrated high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere.
C. Buizert, K. M. Cuffey, J. P. Severinghaus, D. Baggenstos, T. J. Fudge, E. J. Steig, B. R. Markle, M. Winstrup, R. H. Rhodes, E. J. Brook, T. A. Sowers, G. D. Clow, H. Cheng, R. L. Edwards, M. Sigl, J. R. McConnell, and K. C. Taylor
Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015, https://doi.org/10.5194/cp-11-153-2015, 2015
T. K. Bauska, E. J. Brook, A. C. Mix, and A. Ross
Atmos. Meas. Tech., 7, 3825–3837, https://doi.org/10.5194/amt-7-3825-2014, https://doi.org/10.5194/amt-7-3825-2014, 2014
D. Helmig, V. Petrenko, P. Martinerie, E. Witrant, T. Röckmann, A. Zuiderweg, R. Holzinger, J. Hueber, C. Thompson, J. W. C. White, W. Sturges, A. Baker, T. Blunier, D. Etheridge, M. Rubino, and P. Tans
Atmos. Chem. Phys., 14, 1463–1483, https://doi.org/10.5194/acp-14-1463-2014, https://doi.org/10.5194/acp-14-1463-2014, 2014
S. O. Rasmussen, P. M. Abbott, T. Blunier, A. J. Bourne, E. Brook, S. L. Buchardt, C. Buizert, J. Chappellaz, H. B. Clausen, E. Cook, D. Dahl-Jensen, S. M. Davies, M. Guillevic, S. Kipfstuhl, T. Laepple, I. K. Seierstad, J. P. Severinghaus, J. P. Steffensen, C. Stowasser, A. Svensson, P. Vallelonga, B. M. Vinther, F. Wilhelms, and M. Winstrup
Clim. Past, 9, 2713–2730, https://doi.org/10.5194/cp-9-2713-2013, https://doi.org/10.5194/cp-9-2713-2013, 2013
K. Kawamura, J. P. Severinghaus, M. R. Albert, Z. R. Courville, M. A. Fahnestock, T. Scambos, E. Shields, and C. A. Shuman
Atmos. Chem. Phys., 13, 11141–11155, https://doi.org/10.5194/acp-13-11141-2013, https://doi.org/10.5194/acp-13-11141-2013, 2013
H. Fischer, J. Severinghaus, E. Brook, E. Wolff, M. Albert, O. Alemany, R. Arthern, C. Bentley, D. Blankenship, J. Chappellaz, T. Creyts, D. Dahl-Jensen, M. Dinn, M. Frezzotti, S. Fujita, H. Gallee, R. Hindmarsh, D. Hudspeth, G. Jugie, K. Kawamura, V. Lipenkov, H. Miller, R. Mulvaney, F. Parrenin, F. Pattyn, C. Ritz, J. Schwander, D. Steinhage, T. van Ommen, and F. Wilhelms
Clim. Past, 9, 2489–2505, https://doi.org/10.5194/cp-9-2489-2013, https://doi.org/10.5194/cp-9-2489-2013, 2013
V. V. Petrenko, P. Martinerie, P. Novelli, D. M. Etheridge, I. Levin, Z. Wang, T. Blunier, J. Chappellaz, J. Kaiser, P. Lang, L. P. Steele, S. Hammer, J. Mak, R. L. Langenfelds, J. Schwander, J. P. Severinghaus, E. Witrant, G. Petron, M. O. Battle, G. Forster, W. T. Sturges, J.-F. Lamarque, K. Steffen, and J. W. C. White
Atmos. Chem. Phys., 13, 7567–7585, https://doi.org/10.5194/acp-13-7567-2013, https://doi.org/10.5194/acp-13-7567-2013, 2013
Related subject area
Subject: Ice Dynamics | Archive: Ice Cores | Timescale: Pleistocene
Enhanced moisture delivery into Victoria Land, East Antarctica, during the early Last Interglacial: implications for West Antarctic Ice Sheet stability
A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core
Yuzhen Yan, Nicole E. Spaulding, Michael L. Bender, Edward J. Brook, John A. Higgins, Andrei V. Kurbatov, and Paul A. Mayewski
Clim. Past, 17, 1841–1855, https://doi.org/10.5194/cp-17-1841-2021, https://doi.org/10.5194/cp-17-1841-2021, 2021
Short summary
Short summary
Here we reconstruct the rate of snow accumulation during the Last Interglacial period in an East Antarctic ice core located near the present-day northern edge of the Ross Ice Shelf. We find an order-of-magnitude increase in the accumulation rate during the peak warming in the Last Interglacial. This large increase in mass accumulation is compatible with less ice cover in the Ross Sea, perhaps created by a partly collapsed West Antarctic Ice Sheet, whose stability in a warming world is uncertain.
S. O. Rasmussen, P. M. Abbott, T. Blunier, A. J. Bourne, E. Brook, S. L. Buchardt, C. Buizert, J. Chappellaz, H. B. Clausen, E. Cook, D. Dahl-Jensen, S. M. Davies, M. Guillevic, S. Kipfstuhl, T. Laepple, I. K. Seierstad, J. P. Severinghaus, J. P. Steffensen, C. Stowasser, A. Svensson, P. Vallelonga, B. M. Vinther, F. Wilhelms, and M. Winstrup
Clim. Past, 9, 2713–2730, https://doi.org/10.5194/cp-9-2713-2013, https://doi.org/10.5194/cp-9-2713-2013, 2013
Cited articles
Aarons, S., Aciego, S., Gabrielli, P., Delmonte, B., Koornneef, J., Wegner, A., and Blakowski, M.: The impact of glacier retreat from the Ross Sea on local climate: Characterization of mineral dust in the Taylor Dome ice core, East Antarctica, Earth Planet. Sc. Lett., 444, 34–44, https://doi.org/10.1016/j.epsl.2016.03.035, 2016.
Aciego, S. M., Cuffey, K. M., Kavanaugh, J. L., Morse, D. L., and Severinghaus, J. P.: Pleistocene ice and paleo-strain rates at Taylor Glacier, Antarctica, Quaternary Res., 68, 303–313, https://doi.org/10.1016/j.yqres.2007.07.013, 2007.
Ahn, J. and Brook, E. J.: Atmospheric CO2 and climate from 65 to 30 ka B.P., Geophys. Res. Lett., 34, L10703, https://doi.org/10.1029/2007GL029551, 2007.
Alley, R. B. and Fitzpatrick, J. J.: Conditions for bubble elongation in cold ice-sheet ice, J. Glaciol., 45, 147–154, https://doi.org/10.1017/S0022143000003129, 1999.
Baggenstos, D. and Severinghaus, J. P.: Antarctic Glaciological Data Center (AGDC): The Taylor Glacier gas data, National Snow and Ice Data Center (NSIDC), https://doi.org/10.15784/601033, last access: July 2017.
Bauska, T. K., Baggenstos, D., Brook, E. J., Mix, A. C., Marcott, S. A., Petrenko, V. V., Schaefer, H., Severinghaus, J. P., and Lee, J. E.: Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation, P. Natl. Acad. Sci. USA, 113, 3465–3470, https://doi.org/10.1073/pnas.1513868113, 2016.
Bell, A.: Vergence: an evaluation, J. Struct. Geol., 3, 197–202, https://doi.org/10.1016/0191-8141(81)90015-8, 1981.
Bender, M., Sowers, T., Dickson, M. L., Orchardo, J., Grootes, P., Mayewski, P. A., and Meese, D. A.: Climate Correlations Between Greenland And Antarctica During The Past 100 000 Years, Nature, 372, 663–666, https://doi.org/10.1038/372663a0, 1994.
Bender, M. L., Barnett, B., Dreyfus, G., Jouzel, J., and Porcelli, D.: The contemporary degassing rate of 40Ar from the solid Earth, P. Natl. Acad. Sci. USA, 105, 8232–8237, https://doi.org/10.1073/pnas.0711679105, 2008.
Bindschadler, R., Vornberger, P., Fleming, A., Fox, A., Mullins, J., Binnie, D., Paulsen, S. J., Granneman, B., and Gorodetzky, D.: The Landsat Image Mosaic of Antarctica, Remote Sens. Environ., 112, 4214–4226, https://doi.org/10.1016/j.rse.2008.07.006, 2008.
Bintanja, R.: On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas, Rev. Geophys., 37, 337–359, https://doi.org/10.1029/1999RG900007, 1999.
Bliss, A. K., Cuffey, K. M., and Kavanaugh, J. L.: Sublimation and surface energy budget of Taylor Glacier, Antarctica, J. Glaciol., 57, 684–696, https://doi.org/10.3189/002214311797409767, 2011.
Blunier, T., Spahni, R., Barnola, J.-M., Chappellaz, J., Loulergue, L., and Schwander, J.: Synchronization of ice core records via atmospheric gases, Clim. Past, 3, 325–330, https://doi.org/10.5194/cp-3-325-2007, 2007.
Brook, E. J., Harder, S., Severinghaus, J., Steig, E. J., and Sucher, C. M.: On the origin and timing of rapid changes in atmospheric methane during the last glacial period, Global Biogeochem. Cy., 14, 559–572, https://doi.org/10.1029/1999GB001182, 2000.
Brook, E. J., White, J. W. C., Schilla, A. S. M., Bender, M. L., Barnett, B., Severinghaus, J. P., Taylor, K. C., Alley, R. B., and Steig, E. J.: Timing of millennial-scale climate change at Siple Dome, West Antarctica, during the last glacial period, Quaternary Sci. Rev., 24, 1333–1343, https://doi.org/10.1016/j.quascirev.2005.02.002, 2005.
Buizert, C., Baggenstos, D., Jiang, W., Purtschert, R., Petrenko, V. V., Lu, Z.-T., Müller, P., Kuhl, T., Lee, J., Severinghaus, J. P., and Brook, E. J.: Radiometric 81Kr dating identifies 120 000-year-old ice at Taylor Glacier, Antarctica, P. Natl. Acad. Sci., 111, 6876–6881, https://doi.org/10.1073/pnas.1320329111, 2014.
Buizert, C., Cuffey, K. M., Severinghaus, J. P., Baggenstos, D., Fudge, T. J., Steig, E. J., Markle, B. R., Winstrup, M., Rhodes, R. H., Brook, E. J., Sowers, T. A., Clow, G. D., Cheng, H., Edwards, R. L., Sigl, M., McConnell, J. R., and Taylor, K. C.: The WAIS Divide deep ice core WD2014 chronology - Part 1: Methane synchronization (68–31 ka BP) and the gas age-ice age difference, Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015, 2015.
Capron, E., Landais, A., Lemieux-Dudon, B., Schilt, A., Masson-Delmotte, V., Buiron, D., Chappellaz, J., Dahl-Jensen, D., Johnsen, S., Leuenberger, M., Loulergue, L., and Oerter, H.: Synchronising EDML and NorthGRIP ice cores using δ18O of atmospheric oxygen (δ18Oatm) and CH4 measurements over MIS5 (80–123 kyr), Quaternary Sci. Rev., 29, 222–234, https://doi.org/10.1016/j.quascirev.2009.07.014, 2010.
Chappellaz, J., Brook, E., Blunier, T., and Malaizé, B.: CH4 and δ18O of O2 records from Antarctic and Greenland ice: A clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and the Greenland Ice Sheet Project 2 ice cores, J. Geophys. Res.-Ocean., 102, 26547–26557, https://doi.org/10.1029/97JC00164, 1997.
Craig, H., Horibe, Y., and Sowers, T.: Gravitational Separation Of Gases And Isotopes In Polar Ice Caps, Science, 242, 1675–1678, https://doi.org/10.1126/science.242.4886.1675, 1988.
Custer, S.: Eemian records of δ18Oatm and CH4 correlated to the Vostok EGT4 timescale from the Moulton blue ice field, West Antarctica, BSc thesis, Pennsylvania State University, 46 pp., 2006.
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M., Ligtenberg, S. R. M., van den Broeke, M. R., and Moholdt, G.: Calving fluxes and basal melt rates of Antarctic ice shelves, Nature, 502, 89–92, https://doi.org/10.1038/nature12567, 2013.
Dlugokencky, E. J., Myers, R. C., Lang, P. M., Masarie, K. A., Crotwell, A. M., Thoning, K. W., Hall, B. D., Elkins, J. W., and Steele, L. P.: Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale, J. Geophys. Res.-Atmos., 110, D18306, https://doi.org/10.1029/2005JD006035, d18306, 2005.
Dunbar, N. W., McIntosh, W. C., and Esser, R. P.: Physical setting and tephrochronology of the summit caldera ice record at Mount Moulton, West Antarctica, Geol. Soc. Am. Bull., 120, 796–812, https://doi.org/10.1130/B26140.1, 2008.
EPICA Community Members: Eight glacial cycles from an Antarctic ice core, Nature, 429, 623–628, https://doi.org/10.1038/nature02599, 2004.
Fogwill, C. J., Turney, C. S. M., Golledge, N. R., Etheridge, D. M., Rubino, M., Thornton, D. P., Baker, A., Woodward, J., Winter, K., van Ommen, T. D., Moy, A. D., Curran, M. A. J., Davies, S. M., Weber, M. E., Bird, M. I., Munksgaard, N. C., Menviel, L., Rootes, C. M., Ellis, B., Millman, H., Vohra, J., Rivera, A., and Cooper, A.: Antarctic ice sheet discharge driven by atmosphere-ocean feedbacks at the Last Glacial Termination, Sci. rep., 7, 39979, https://doi.org/10.1038/srep39979, 2017.
Fountain, A., Lyons, W., Burkins, M., Dana, G., Doran, P., Lewis, K., McKnight, D., Moorhead, D., Parsons, A., Priscu, J., Wall, D., Wharton, R., and Virginia, R.: Physical controls on the Taylor Valley ecosystem, Antarctica, Bioscience, 49, 961–971, 1999.
Google Maps: Taylor Glacier [Satellite imagery], retrieved from: http://goo.gl/2qwnqC (last access: July 2017), 2015.
Higgins, J. A., Kurbatov, A. V., Spaulding, N. E., Brook, E., Introne, D. S., Chimiak, L. M., Yan, Y., Mayewski, P. A., and Bender, M. L.: Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica, P. Natl. Acad. Sci. USA, 112, 6887–6891, https://doi.org/10.1073/pnas.1420232112, 2015.
Hudleston, P. J. and Treagus, S. H.: Information from folds: a review, J. Struct. Geol., 32, 2042–2071, https://doi.org/10.1016/j.jsg.2010.08.011, 2010.
Jacobel, R., Gades, A., Gottschling, D., Hodge, S., and Wright, D.: Interpretation of radar-detected internal layer folding in West Antarctic ice streams, J. Glaciol., 39, 528–537, 1993.
Jacobson, H. P.: Folding of stratigraphic layers in ice domes, Thesis (Ph. D.), University of Washington, http://hdl.handle.net/1773/6837 (last access: July 2017), 2001.
Kavanaugh, J. L. and Cuffey, K. M.: Dynamics and mass balance of Taylor Glacier, Antarctica: 2. Force balance and longitudinal coupling, J. Geophys. Res.-Earth, 114, F04011, https://doi.org/10.1029/2009JF001329, 2009.
Kavanaugh, J. L., Cuffey, K. M., Morse, D. L., Bliss, A. K., and Aciego, S. M.: Dynamics and mass balance of Taylor Glacier, Antarctica: 3. State of mass balance, J. Geophys. Res.-Earth, 114, F04012, https://doi.org/10.1029/2009JF001331, 2009a.
Kavanaugh, J. L., Cuffey, K. M., Morse, D. L., Conway, H., and Rignot, E.: Dynamics and mass balance of Taylor Glacier, Antarctica: 1. Geometry and surface velocities, J. Geophys. Res.-Earth, 114, F04010, https://doi.org/10.1029/2009JF001309, 2009b.
Kawamura, K., Severinghaus, J. P., Ishidoya, S., Sugawara, S., Hashida, G., Motoyama, H., Fujii, Y., Aoki, S., and Nakazawa, T.: Convective mixing of air in firn at four polar sites, Earth Planet. Sc. Lett., 244, 672–682, https://doi.org/10.1016/j.epsl.2006.02.017, 2006.
Koci, B. R. and Kuivinen, K. C.: Instruments and Methods: The Pico Lightweight Coring Auger, J. Glaciol., 30, 244–245, https://doi.org/10.1017/S0022143000006018, 1984.
Korotkikh, E. V., Mayewski, P. A., Handley, M. J., Sneed, S. B., Introne, D. S., Kurbatov, A. V., Dunbar, N. W., and McIntosh, W. C.: The last interglacial as represented in the glaciochemical record from Mount Moulton Blue Ice Area, West Antarctica, Quaternary Sci. Rev., 30, 1940–1947, https://doi.org/10.1016/j.quascirev.2011.04.020, 2011.
Lisiecki, L. E. and Lisiecki, P. A.: Application of dynamic programming to the correlation of paleoclimate records, Paleoceanography, 17, 1–12, https://doi.org/10.1029/2001PA000733, 2002.
Lutz, S., Anesio, A. M., Raiswell, R., Edwards, A., Newton, R. J., Gill, F., and Benning, L. G.: The biogeography of red snow microbiomes and their role in melting arctic glaciers, Nat. Commun., 7, 11968, https://doi.org/10.1038/ncomms11968, 2016.
Marcott, S. A., Bauska, T. K., Buizert, C., Steig, E. J., Rosen, J. L., Cuffey, K. M., Fudge, T. J., Severinghaus, J. P., Ahn, J., Kalk, M. L., McConnell, J. R., Sowers, T., Taylor, K. C., White, J. W. C., and Brook, E. J.: Centennial-scale changes in the global carbon cycle during the last deglaciation, Nature, 514, 616–619, https://doi.org/10.1038/nature13799, 2014.
Mitchell, L., Brook, E., Lee, J. E., Buizert, C., and Sowers, T.: Constraints on the Late Holocene Anthropogenic Contribution to the Atmospheric Methane Budget, Science, 342, 964–966, https://doi.org/10.1126/science.1238920, 2013.
Mitchell, L. E., Brook, E. J., Sowers, T., McConnell, J. R., and Taylor, K.: Multidecadal variability of atmospheric methane, 1000–1800 C.E., J. Geophys. Res.-Biogeo., 116, G02007, https://doi.org/10.1029/2010JG001441, 2011.
Moore, J. C., Nishio, F., Fujita, S., Narita, H., Pasteur, E., Grinsted, A., Sinisalo, A., and Maeno, N.: Interpreting ancient ice in a shallow ice core from the South Yamato (Antarctica) blue ice area using flow modeling and compositional matching to deep ice cores, J. Geophys. Res.-Atmos., 111, D16302, https://doi.org/10.1029/2005JD006343, 2006.
Morse, D. L., Waddington, E. D., and Steig, E. J.: Ice age storm trajectories inferred from radar stratigraphy at Taylor Dome, Antarctica, Geophys. Res. Lett., 25, 3383–3386, https://doi.org/10.1029/98GL52486, 1998.
Morse, D. L., Waddington, E. D., and Rasmussen, L. A.: Ice deformation in the vicinity of the ice-core site at Taylor Dome, Antarctica, and a derived accumulation rate history, J. Glaciol., 53, 449–460, https://doi.org/10.3189/002214307783258530, 2007.
Petrenko, V.: Encyclopedia of Quaternary Science, 2nd Edn., Ice Core Records: Ice Margin Sites, Elsevier, 416–430, 2013.
Petrenko, V., Severinghaus, J., Brook, E., Reeh, N., and Schaefer, H.: Gas records from the West Greenland ice margin covering the Last Glacial Termination: a horizontal ice core, Quaternary Sci. Rev., 25, 865–875, https://doi.org/10.1016/j.quascirev.2005.09.005, 2006.
Petrenko, V. V., Smith, A. M., Brook, E. J., Lowe, D., Riedel, K., Brailsford, G., Hua, Q., Schaefer, H., Reeh, N., Weiss, R. F., Etheridge, D., and Severinghaus, J. P.: 14CH4 Measurements in Greenland Ice: Investigating Last Glacial Termination CH4 Sources, Science, 324, 506–508, https://doi.org/10.1126/science.1168909, 2009.
Petrenko, V. V., Severinghaus, J. P., Schaefer, H., Smith, A. M., Kuhl, T., Baggenstos, D., Hua, Q., Brook, E. J., Rose, P., Kulin, R., Bauska, T., Harth, C., Buizert, C., Orsi, A., Emanuele, G., Lee, J. E., Brailsford, G., Keeling, R., and Weiss, R. F.: Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates, Geochim. Cosmochim. Ac., 177, 62–77, https://doi.org/10.1016/j.gca.2016.01.004, 2016.
Petrenko, V. V., Smith, A. M., Schaefer, H., Riedel, K., Brook, E., Baggenstos, D., Harth, C., Hua, Q., Buizert, C., Schilt, A., Fain, X., Mitchell, L., Bauska, T. K., Orsi, A., Weiss, R. F., and Severinghaus, J. P.: Minimal geologic methane emissions during Younger Dryas – Preboreal abrupt warming event, Nature, in press, 2017.
Popp, T. J.: The Speed and Timing of Climate Change: Detailed Ice Core Stable Isotope Records from NorthGRIP, Greenland and Mt. Moulton, West Antarctica, Ph.D. thesis, University of Colorado, Boulder, 156 pp., 2008.
Reeh, N., Oerter, H., Letréguilly, A., Miller, H., and Hubberten, H.-W.: A new, detailed ice-age oxygen-18 record from the ice-sheet margin in central West Greenland, Glob. Planet. Change, 4, 373–383, https://doi.org/10.1016/0921-8181(91)90003-F, 1991.
Rhodes, R. H., Brook, E. J., Chiang, J. C. H., Blunier, T., Maselli, O. J., McConnell, J. R., Romanini, D., and Severinghaus, J. P.: Enhanced tropical methane production in response to iceberg discharge in the North Atlantic, Science, 348, 1016–1019, https://doi.org/10.1126/science.1262005, 2015.
Robinson, P.: Ice dynamics and thermal regime of Taylor Glacier, South Victoria Land, Antarctica, J. Glaciol., 30, 153–160, 1984.
Schaefer, H., Petrenko, V., Brook, E., Severinghaus, J., Reeh, N., Melton, J., and Mitchell, L.: Ice stratigraphy at the Pakitsoq ice margin, West Greenland, derived from gas records, J. Glaciol., 55, 411–421, https://doi.org/10.3189/002214309788816704, 2009.
Schilt, A., Baumgartner, M., Schwander, J., Buiron, D., Capron, E., Chappellaz, J., Loulergue, L., Schüpbach, S., Spahni, R., Fischer, H., and Stocker, T. F.: Atmospheric nitrous oxide during the last 140,000 years, Earth Planet. Sc. Lett., 300, 33–43, https://doi.org/10.1016/j.epsl.2010.09.027, 2010.
Schilt, A., Brook, E. J., Bauska, T. K., Baggenstos, D., Fischer, H., Joos, F., Petrenko, V. V., Schaefer, H., Schmitt, J., Severinghaus, J. P., Spahni, R., and Stocker, T. F.: Isotopic constraints on marine and terrestrial N2O emissions during the last deglaciation, Nature, 516, 234–237, https://doi.org/10.1038/nature13971, 2014.
Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B., and Bender, M. L.: Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice, Nature, 391, 141–146, https://doi.org/10.1038/34346, 1998.
Severinghaus, J. P., Beaudette, R., Headly, M. A., Taylor, K., and Brook, E. J.: Oxygen-18 of O2 Records the Impact of Abrupt Climate Change on the Terrestrial Biosphere, Science, 324, 1431–1434, https://doi.org/10.1126/science.1169473, 2009.
Severinghaus, J. P., Albert, M. R., Courville, Z. R., Fahnestock, M. A., Kawamura, K., Montzka, S. A., Mühle, J., Scambos, T. A., Shields, E., Shuman, C. A., Suwa, M., Tans, P., and Weiss, R. F.: Deep air convection in the firn at a zero-accumulation site, central Antarctica, Earth Planet. Sc. Lett., 293, 359–367, https://doi.org/10.1016/j.epsl.2010.03.003, 2010.
Sigl, M., Fudge, T. J., Winstrup, M., Cole-Dai, J., Ferris, D., McConnell, J. R., Taylor, K. C., Welten, K. C., Woodruff, T. E., Adolphi, F., Bisiaux, M., Brook, E. J., Buizert, C., Caffee, M. W., Dunbar, N. W., Edwards, R., Geng, L., Iverson, N., Koffman, B., Layman, L., Maselli, O. J., McGwire, K., Muscheler, R., Nishiizumi, K., Pasteris, D. R., Rhodes, R. H., and Sowers, T. A.: The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP), Climate of the Past, 12, 769–786, https://doi.org/10.5194/cp-12-769-2016, 2016.
Sinisalo, A. and Moore, J. C.: Antarctic blue ice areas – towards extracting palaeoclimate information, Antarct. Sci., 22, 99–115, https://doi.org/10.1017/S0954102009990691, 2010.
Sinisalo, A., Grinsted, A., Moore, J. C., Meijer, H. A. J., Martma, T., and Van De Wal, R. S. W.: Inferences from stable water isotopes on the Holocene evolution of Scharffenbergbotnen blue-ice area, East Antarctica, J. Glaciol., 53, 427–434, https://doi.org/10.3189/002214307783258495, 2007.
Souney, J., Twickler, M., Hargreaves, G., Bencivengo, B., Kippenhan, M., Johnson, J., Cravens, E., Neff, P., Nunn, R., Orsi, A., Popp, T., Rhoades, J., Vaughn, B., Voigt, D., Wong, G., and Taylor, K.: Core handling and processing for the WAIS Divide ice-core project, Ann. Glaciol., 55, 15–26, https://doi.org/10.3189/2014AoG68A008, 2014.
Sowers, T. and Bender, M.: Climate Records Covering The Last Deglaciation, Science, 269, 210–214, https://doi.org/10.1126/science.269.5221.210, 1995.
Sowers, T., Bender, M., and Raynaud, D.: Elemental and isotopic composition of occluded O2 and N2 in polar ice, J. Geophys. Res.-Atmos., 94, 5137–5150, https://doi.org/10.1029/JD094iD04p05137, 1989.
Spaulding, N. E., Higgins, J. A., Kurbatov, A. V., Bender, M. L., Arcone, S. A., Campbell, S., Dunbar, N. W., Chimiak, L. M., Introne, D. S., and Mayewski, P. A.: Climate archives from 90 to 250 ka in horizontal and vertical ice cores from the Allan Hills Blue Ice Area, Antarctica, Quaternary Res., 80, 562–574, https://doi.org/10.1016/j.yqres.2013.07.004, 2013.
Steig, E. J., Brook, E. J., White, J. W. C., Sucher, C. M., Bender, M. L., Lehman, S. J., Morse, D. L., Waddington, E. D., and Clow, G. D.: Synchronous climate changes in Antarctica and the North Atlantic, Science, 282, 92–95, https://doi.org/10.1126/science.282.5386.92, 1998.
Steig, E. J., Morse, D. L., Waddington, E. D., Stuiver, M., Grootes, P. M., Mayewski, P. A., Twickler, M. S., and Whitlow, S. I.: Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica, Geogr. Ann. A, 82, 213–235, https://doi.org/10.1111/j.0435-3676.2000.00122.x, 2000.
Stibal, M., Sabacka, M., and Zarsky, J.: Biological processes on glacier and ice sheet surfaces, Nat. Geosci., 5, 771–774, https://doi.org/10.1038/ngeo1611, 2012.
Sucher, C. M.: Atmospheric gases in the Taylor Dome ice core: Implications for East Antarctic climate change, Master's thesis, University of Rhode Island, Narraganset, 1997.
Turney, C., Fogwill, C., Van Ommen, T. D., Moy, A. D., David, E., Rubino, M., J., C. M. A., and Rivera, A.: Late Pleistocene and early Holocene change in the Weddell Sea: a new climate record from the Patriot Hills, Ellsworth Mountains, West Antarctica, J. Quaternary Sci., 28, 697–704, https://doi.org/10.1002/jqs.2668, 2013.
WAIS Divide Project Members: Onset of deglacial warming in West Antarctica driven by local orbital forcing, Nature, 500, 440–444, https://doi.org/10.1038/nature12376, 2013.
WAIS Divide Project Members: Precise interpolar phasing of abrupt climate change during the last ice age, Nature, 520, 661–665, https://doi.org/10.1038/nature14401, 2015.
Whillans, I. and Cassidy, W.: Catch a falling star: meteorites and old ice, Science, 222, 55–57, https://doi.org/10.1126/science.222.4619.55, 1983.
Yau, A. M., Bender, M. L., Marchant, D. R., and Mackay, S. L.: Geochemical analyses of air from an ancient debris-covered glacier, Antarctica, Quat. Geochronol., 28, 29–39, https://doi.org/10.1016/j.quageo.2015.03.008, 2015.
Yau, A. M., Bender, M. L., Blunier, T., and Jouzel, J.: Setting a chronology for the basal ice at Dye-3 and GRIP: Implications for the long-term stability of the Greenland Ice Sheet, Earth Planet. Sc. Lett., 451, 1–9, https://doi.org/10.1016/j.epsl.2016.06.053, 2016.
Short summary
We present measurements of the gas composition in trapped air bubbles in ice samples taken from Taylor Glacier, Antarctica. We can show that ice from the entire last glacial cycle (125 000 years ago to the present) is exposed at the surface of this glacier and that the atmospheric record contained in the air bubbles is well preserved. Taylor Glacier therefore provides an easily accessible archive of ancient ice that allows for studies of trace components that require large ice volumes.
We present measurements of the gas composition in trapped air bubbles in ice samples taken from...