Articles | Volume 13, issue 12
https://doi.org/10.5194/cp-13-1695-2017
https://doi.org/10.5194/cp-13-1695-2017
Research article
 | Highlight paper
 | 
29 Nov 2017
Research article | Highlight paper |  | 29 Nov 2017

Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity

Andrey Ganopolski and Victor Brovkin

Related authors

Generalized stability landscape of the Atlantic meridional overturning circulation
Matteo Willeit and Andrey Ganopolski
Earth Syst. Dynam., 15, 1417–1434, https://doi.org/10.5194/esd-15-1417-2024,https://doi.org/10.5194/esd-15-1417-2024, 2024
Short summary
Assessing the lifetime of anthropogenic CO2 and its sensitivity to different carbon cycle processes
Christine Kaufhold, Matteo Willeit, Bo Liu, and Andrey Ganopolski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2976,https://doi.org/10.5194/egusphere-2024-2976, 2024
Short summary
New estimation of critical insolation–CO2 relationship for triggering glacial inception
Stefanie Talento, Matteo Willeit, and Andrey Ganopolski
Clim. Past, 20, 1349–1364, https://doi.org/10.5194/cp-20-1349-2024,https://doi.org/10.5194/cp-20-1349-2024, 2024
Short summary
Surface buoyancy control of millennial-scale variations of the Atlantic meridional ocean circulation
Matteo Willeit, Andrey Ganopolski, Neil R. Edwards, and Stefan Rahmstorf
EGUsphere, https://doi.org/10.5194/egusphere-2024-819,https://doi.org/10.5194/egusphere-2024-819, 2024
Short summary
Glacial inception through rapid ice area increase driven by albedo and vegetation feedbacks
Matteo Willeit, Reinhard Calov, Stefanie Talento, Ralf Greve, Jorjo Bernales, Volker Klemann, Meike Bagge, and Andrey Ganopolski
Clim. Past, 20, 597–623, https://doi.org/10.5194/cp-20-597-2024,https://doi.org/10.5194/cp-20-597-2024, 2024
Short summary

Related subject area

Subject: Carbon Cycle | Archive: Modelling only | Timescale: Milankovitch
Modeling the evolution of pulse-like perturbations in atmospheric carbon and carbon isotopes: the role of weathering–sedimentation imbalances
Aurich Jeltsch-Thömmes and Fortunat Joos
Clim. Past, 16, 423–451, https://doi.org/10.5194/cp-16-423-2020,https://doi.org/10.5194/cp-16-423-2020, 2020
Short summary
Low terrestrial carbon storage at the Last Glacial Maximum: constraints from multi-proxy data
Aurich Jeltsch-Thömmes, Gianna Battaglia, Olivier Cartapanis, Samuel L. Jaccard, and Fortunat Joos
Clim. Past, 15, 849–879, https://doi.org/10.5194/cp-15-849-2019,https://doi.org/10.5194/cp-15-849-2019, 2019
Short summary
Response of the carbon cycle in an intermediate complexity model to the different climate configurations of the last nine interglacials
Nathaelle Bouttes, Didier Swingedouw, Didier M. Roche, Maria F. Sanchez-Goni, and Xavier Crosta
Clim. Past, 14, 239–253, https://doi.org/10.5194/cp-14-239-2018,https://doi.org/10.5194/cp-14-239-2018, 2018
Short summary
The Plio-Pleistocene climatic evolution as a consequence of orbital forcing on the carbon cycle
Didier Paillard
Clim. Past, 13, 1259–1267, https://doi.org/10.5194/cp-13-1259-2017,https://doi.org/10.5194/cp-13-1259-2017, 2017
Short summary
Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric pCO2 and seawater composition over the last 130 000 years: a model study
K. Wallmann, B. Schneider, and M. Sarnthein
Clim. Past, 12, 339–375, https://doi.org/10.5194/cp-12-339-2016,https://doi.org/10.5194/cp-12-339-2016, 2016
Short summary

Cited articles

Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K., and Blatter, H.: Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume, Nature, 500, 190–194, https://doi.org/10.1038/nature12374, 2013.
Adkins, J. F., McIntyre, K., and Schrag, D. P.: The salinity, temperature, and δ18O of the glacial deep ocean, Science, 298, 1769–1773, https://doi.org/10.1126/science.1076252, 2002.
Archer, D.: A data-driven model of the global calcite lysocline, Global Biogeochem. Cy., 10, 511–526, https://doi.org/10.1029/96gb01521, 1996.
Archer, D., Winguth, A., Lea, D., and Mahowald, N.: What caused the glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys., 38, 159–189, https://doi.org/10.1029/1999rg000066, 2000.
Arz, H. W., Lamy, F., Ganopolski, A., Nowaczyk, N., and Patzold, J.: Dominant Northern Hemisphere climate control over millennial-scale glacial sea-level variability, Quaternary Sci. Rev., 26, 312–321, https://doi.org/10.1016/j.quascirev.2006.07.016, 2007.
Download
Short summary
Ice cores reveal that atmospheric CO2 concentration varied synchronously with the global ice volume. Explaining the mechanism of glacial–interglacial variations of atmospheric CO2 concentrations and the link between CO2 and ice sheets evolution still remains a challenge. Here using the Earth system model of intermediate complexity we performed for the first time simulations of co-evolution of climate, ice sheets and carbon cycle using the astronomical forcing as the only external forcing.