Articles | Volume 13, issue 12
https://doi.org/10.5194/cp-13-1695-2017
https://doi.org/10.5194/cp-13-1695-2017
Research article
 | Highlight paper
 | 
29 Nov 2017
Research article | Highlight paper |  | 29 Nov 2017

Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity

Andrey Ganopolski and Victor Brovkin

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by Editor) (11 Aug 2017) by André Paul
AR by Andrey Ganopolski on behalf of the Authors (15 Sep 2017)  Author's response   Manuscript 
ED: Publish subject to technical corrections (09 Oct 2017) by André Paul
AR by Andrey Ganopolski on behalf of the Authors (17 Oct 2017)  Manuscript 
Download
Short summary
Ice cores reveal that atmospheric CO2 concentration varied synchronously with the global ice volume. Explaining the mechanism of glacial–interglacial variations of atmospheric CO2 concentrations and the link between CO2 and ice sheets evolution still remains a challenge. Here using the Earth system model of intermediate complexity we performed for the first time simulations of co-evolution of climate, ice sheets and carbon cycle using the astronomical forcing as the only external forcing.