Articles | Volume 12, issue 5
https://doi.org/10.5194/cp-12-1263-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-12-1263-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Inferring late-Holocene climate in the Ecuadorian Andes using a chironomid-based temperature inference model
Frazer Matthews-Bird
CORRESPONDING AUTHOR
Department of Earth, Environment & Ecosystems, The Open University,
Walton Hall, Milton Keynes, MK7 6AA, UK
Biological Sciences, Florida Institute of Technology, 150 West
University Boulevard, Melbourne, FL 32901, USA
Stephen J. Brooks
Department of Life Sciences, Natural History Museum, Cromwell Road,
London, SW7 5BD, UK
Philip B. Holden
Department of Earth, Environment & Ecosystems, The Open University,
Walton Hall, Milton Keynes, MK7 6AA, UK
Encarni Montoya
Department of Earth, Environment & Ecosystems, The Open University,
Walton Hall, Milton Keynes, MK7 6AA, UK
Institute of Earth Sciences Jaume Almera (ICTJA-CSIC), C.Lluis Sole-Sabaris s/n 08028 Barcelona, Spain
William D. Gosling
Department of Earth, Environment & Ecosystems, The Open University,
Walton Hall, Milton Keynes, MK7 6AA, UK
Palaeoecology & Landscape Ecology, Institute for Biodiversity &
Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE
Amsterdam, the Netherlands
Related authors
Philip B. Holden, H. John B. Birks, Stephen J. Brooks, Mark B. Bush, Grace M. Hwang, Frazer Matthews-Bird, Bryan G. Valencia, and Robert van Woesik
Geosci. Model Dev., 10, 483–498, https://doi.org/10.5194/gmd-10-483-2017, https://doi.org/10.5194/gmd-10-483-2017, 2017
Short summary
Short summary
We describe BUMPER, a Bayesian transfer function for inferring past climate from micro-fossil assemblages. BUMPER is fully self-calibrating, straightforward to apply, and computationally fast. We apply BUMPER to a range of proxies, including both real and artificial data, demonstrating ease of use and applicability to multi-proxy reconstructions.
Peng Sun, Philip B. Holden, and H. John B. Birks
Clim. Past, 20, 2373–2398, https://doi.org/10.5194/cp-20-2373-2024, https://doi.org/10.5194/cp-20-2373-2024, 2024
Short summary
Short summary
We develop the Multi Ensemble Machine Learning Model (MEMLM) for reconstructing palaeoenvironments from microfossil assemblages. The machine-learning approaches, which include random tree and natural language processing techniques, substantially outperform classical approaches under cross-validation, but they can fail when applied to reconstruct past environments. Statistical significance testing is found sufficient to identify these unreliable reconstructions.
Alice Paine, Joost Frieling, Timothy Shanahan, Tamsin Mather, Nicholas McKay, Stuart Robinson, David Pyle, Isabel Fendley, Ruth Kiely, and William Gosling
EGUsphere, https://doi.org/10.5194/egusphere-2024-2123, https://doi.org/10.5194/egusphere-2024-2123, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Few tropical Hg records extend beyond ~12 ka, meaning our current understanding of Hg behaviour may not fully account for the impact of long-term hydroclimate changes on the Hg cycle in these environments. Here, we present a ~96,000-year Hg record from Lake Bosumtwi, Ghana. A coupled response is observed between Hg flux and shifts in sediment composition reflective of changes in lake level, and suggesting that hydroclimate may be a key driver of tropical Hg cycling over millennial-timescales.
Rémy Asselot, Philip B. Holden, Frank Lunkeit, and Inga Hense
Earth Syst. Dynam., 15, 875–891, https://doi.org/10.5194/esd-15-875-2024, https://doi.org/10.5194/esd-15-875-2024, 2024
Short summary
Short summary
Phytoplankton are tiny oceanic algae able to absorb the light penetrating the ocean. The light absorbed by these organisms is re-emitted as heat in the surrounding environment, a process commonly called phytoplankton light absorption (PLA). As a consequence, PLA increases the oceanic temperature. We studied this mechanism with a climate model under different climate scenarios. We show that phytoplankton light absorption is reduced under strong warming scenarios, limiting oceanic warming.
Negar Vakilifard, Richard G. Williams, Philip B. Holden, Katherine Turner, Neil R. Edwards, and David J. Beerling
Biogeosciences, 19, 4249–4265, https://doi.org/10.5194/bg-19-4249-2022, https://doi.org/10.5194/bg-19-4249-2022, 2022
Short summary
Short summary
To remain within the Paris climate agreement, there is an increasing need to develop and implement carbon capture and sequestration techniques. The global climate benefits of implementing negative emission technologies over the next century are assessed using an Earth system model covering a wide range of plausible climate states. In some model realisations, there is continued warming after emissions cease. This continued warming is avoided if negative emissions are incorporated.
Rémy Asselot, Frank Lunkeit, Philip B. Holden, and Inga Hense
Biogeosciences, 19, 223–239, https://doi.org/10.5194/bg-19-223-2022, https://doi.org/10.5194/bg-19-223-2022, 2022
Short summary
Short summary
Previous studies show that phytoplankton light absorption can warm the atmosphere, but how this warming occurs is still unknown. We compare the importance of air–sea heat versus CO2 flux in the phytoplankton-induced atmospheric warming and determine the main driver. To shed light on this research question, we conduct simulations with a climate model of intermediate complexity. We show that phytoplankton mainly warms the atmosphere by increasing the air–sea CO2 flux.
Rémy Asselot, Frank Lunkeit, Philip Holden, and Inga Hense
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-91, https://doi.org/10.5194/esd-2021-91, 2021
Revised manuscript not accepted
Short summary
Short summary
Phytoplankton absorbing light can influence the climate system but its future effect on the climate is still unclear. We use a climate model to investigate the role of phytoplankton light absorption under global warming. We find out that the effect of phytoplankton light absorption is smaller under a high greenhouse gas emissions compared to reduced and intermediate greenhouse gas emissions. Additionally, we show that phytoplankton light absorption is an important mechanism for the carbon cycle.
Milan L. Teunissen van Manen, Boris Jansen, Francisco Cuesta, Susana León-Yánez, and William D. Gosling
Biogeosciences, 17, 5465–5487, https://doi.org/10.5194/bg-17-5465-2020, https://doi.org/10.5194/bg-17-5465-2020, 2020
Short summary
Short summary
We measured plant wax in leaves and soils along an environmental gradient in the Ecuadorian Andes. These data show how the wax composition changes as the plant material degrades in different environments. Local temperature is reflected in the wax despite the level degradation. The study results warrant further research into a possible causal relationship that may lead to the development of n-alkane patterns as a novel palaeoecological proxy.
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Short summary
The Zero Emissions Commitment (ZEC) is the change in global temperature expected to occur following the complete cessation of CO2 emissions. Here we use 18 climate models to assess the value of ZEC. For our experiment we find that ZEC 50 years after emissions cease is between −0.36 to +0.29 °C. The most likely value of ZEC is assessed to be close to zero. However, substantial continued warming for decades or centuries following cessation of CO2 emission cannot be ruled out.
Andreas Wernecke, Tamsin L. Edwards, Isabel J. Nias, Philip B. Holden, and Neil R. Edwards
The Cryosphere, 14, 1459–1474, https://doi.org/10.5194/tc-14-1459-2020, https://doi.org/10.5194/tc-14-1459-2020, 2020
Short summary
Short summary
We investigate how the two-dimensional characteristics of ice thickness change from satellite measurements can be used to judge and refine a high-resolution ice sheet model of Antarctica. The uncertainty in 50-year model simulations for the currently most drastically changing part of Antarctica can be reduced by nearly 40 % compared to a simpler, non-spatial approach and nearly 90 % compared to the original spread in simulations.
Philip B. Holden, Neil R. Edwards, Thiago F. Rangel, Elisa B. Pereira, Giang T. Tran, and Richard D. Wilkinson
Geosci. Model Dev., 12, 5137–5155, https://doi.org/10.5194/gmd-12-5137-2019, https://doi.org/10.5194/gmd-12-5137-2019, 2019
Short summary
Short summary
We describe the development of the Paleoclimate PLASIM-GENIE emulator and its application to derive a high-resolution spatio-temporal description of the climate of the last 5 x 106 years. Spatial fields of bioclimatic variables are emulated at 1000-year intervals, driven by time series of scalar boundary-condition forcing (CO2, orbit, and ice volume). Emulated anomalies are interpolated into modern climatology to produce a high-resolution climate reconstruction of the Pliocene–Pleistocene.
Jamie D. Wilson, Stephen Barker, Neil R. Edwards, Philip B. Holden, and Andy Ridgwell
Biogeosciences, 16, 2923–2936, https://doi.org/10.5194/bg-16-2923-2019, https://doi.org/10.5194/bg-16-2923-2019, 2019
Short summary
Short summary
The remains of plankton rain down from the surface ocean to the deep ocean, acting to store CO2 in the deep ocean. We used a model of biology and ocean circulation to explore the importance of this process in different regions of the ocean. The amount of CO2 stored in the deep ocean is most sensitive to changes in the Southern Ocean. As plankton in the Southern Ocean are likely those most impacted by future climate change, the amount of CO2 they store in the deep ocean could also be affected.
Krista M. S. Kemppinen, Philip B. Holden, Neil R. Edwards, Andy Ridgwell, and Andrew D. Friend
Clim. Past, 15, 1039–1062, https://doi.org/10.5194/cp-15-1039-2019, https://doi.org/10.5194/cp-15-1039-2019, 2019
Short summary
Short summary
We simulate the Last Glacial Maximum atmospheric CO2 decrease with a large ensemble of parameter sets to investigate the range of possible physical and biogeochemical Earth system changes accompanying the CO2 decrease. Amongst the dominant ensemble changes is an increase in terrestrial carbon, which we attribute to a slower soil respiration rate, and the preservation of carbon by the LGM ice sheets. Further investigation into the role of terrestrial carbon is warranted.
Phillip E. Jardine, William D. Gosling, Barry H. Lomax, Adele C. M. Julier, and Wesley T. Fraser
J. Micropalaeontol., 38, 83–95, https://doi.org/10.5194/jm-38-83-2019, https://doi.org/10.5194/jm-38-83-2019, 2019
Short summary
Short summary
Many major food crops, including rice, wheat, maize, rye, barley, oats and millet, are domesticated species of grass. However, because grass pollen all looks highly similar, it has been challenging to track grass domestication using pollen in archaeological samples. Here, we show that we can use the chemical signature of pollen grains to classify different grass species. This approach has the potential to help unravel the spread of domestication and agriculture over the last 10 000 years.
John S. Keery, Philip B. Holden, and Neil R. Edwards
Clim. Past, 14, 215–238, https://doi.org/10.5194/cp-14-215-2018, https://doi.org/10.5194/cp-14-215-2018, 2018
Short summary
Short summary
In the Eocene (~ 55 million years ago), the Earth had high levels of atmospheric CO2, so studies of the Eocene can provide insights into the likely effects of present-day fossil fuel burning. We ran a low-resolution but very fast climate model with 50 combinations of CO2 and orbital parameters, and an Eocene layout of the oceans and continents. Climatic effects of CO2 are dominant but precession and obliquity strongly influence monsoon rainfall and ocean–land temperature contrasts, respectively.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Philip B. Holden, H. John B. Birks, Stephen J. Brooks, Mark B. Bush, Grace M. Hwang, Frazer Matthews-Bird, Bryan G. Valencia, and Robert van Woesik
Geosci. Model Dev., 10, 483–498, https://doi.org/10.5194/gmd-10-483-2017, https://doi.org/10.5194/gmd-10-483-2017, 2017
Short summary
Short summary
We describe BUMPER, a Bayesian transfer function for inferring past climate from micro-fossil assemblages. BUMPER is fully self-calibrating, straightforward to apply, and computationally fast. We apply BUMPER to a range of proxies, including both real and artificial data, demonstrating ease of use and applicability to multi-proxy reconstructions.
Philip B. Holden, Neil R. Edwards, Klaus Fraedrich, Edilbert Kirk, Frank Lunkeit, and Xiuhua Zhu
Geosci. Model Dev., 9, 3347–3361, https://doi.org/10.5194/gmd-9-3347-2016, https://doi.org/10.5194/gmd-9-3347-2016, 2016
Short summary
Short summary
We describe the development, tuning and climate of PLASIM–GENIE, a new intermediate complexity Atmosphere–Ocean General Circulation Model (AOGCM), built by coupling the Planet Simulator to the GENIE Earth system model.
Giang T. Tran, Kevin I. C. Oliver, András Sóbester, David J. J. Toal, Philip B. Holden, Robert Marsh, Peter Challenor, and Neil R. Edwards
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 17–37, https://doi.org/10.5194/ascmo-2-17-2016, https://doi.org/10.5194/ascmo-2-17-2016, 2016
Short summary
Short summary
In this work, we combine the information from a complex and a simple atmospheric model to efficiently build a statistical representation (an emulator) of the complex model and to study the relationship between them. Thanks to the improved efficiency, this process is now feasible for complex models, which are slow and costly to run. The constructed emulator provide approximations of the model output, allowing various analyses to be made without the need to run the complex model again.
S. G. A. Flantua, H. Hooghiemstra, M. Vuille, H. Behling, J. F. Carson, W. D. Gosling, I. Hoyos, M. P. Ledru, E. Montoya, F. Mayle, A. Maldonado, V. Rull, M. S. Tonello, B. S. Whitney, and C. González-Arango
Clim. Past, 12, 483–523, https://doi.org/10.5194/cp-12-483-2016, https://doi.org/10.5194/cp-12-483-2016, 2016
Short summary
Short summary
This paper serves as a guide to high-quality pollen records in South America that capture environmental variability during the last 2 millennia. We identify the pollen records suitable for climate modelling and discuss their sensitivity to the spatial signature of climate modes. Furthermore, evidence for human land use in pollen records is useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change.
A. M. Foley, P. B. Holden, N. R. Edwards, J.-F. Mercure, P. Salas, H. Pollitt, and U. Chewpreecha
Earth Syst. Dynam., 7, 119–132, https://doi.org/10.5194/esd-7-119-2016, https://doi.org/10.5194/esd-7-119-2016, 2016
Short summary
Short summary
We introduce GENIEem-PLASIM-ENTSem (GPem), a climate-carbon cycle emulator, showing how model emulation can be used in integrated assessment modelling to resolve regional climate impacts and systematically capture uncertainty. In a case study, we couple GPem to FTT:Power-E3MG, a non-equilibrium economic model with technology diffusion. We find that when the electricity sector is decarbonised by 90 %, further emissions reductions must be achieved in other sectors to avoid dangerous climate change.
B. A. A. Hoogakker, R. S. Smith, J. S. Singarayer, R. Marchant, I. C. Prentice, J. R. M. Allen, R. S. Anderson, S. A. Bhagwat, H. Behling, O. Borisova, M. Bush, A. Correa-Metrio, A. de Vernal, J. M. Finch, B. Fréchette, S. Lozano-Garcia, W. D. Gosling, W. Granoszewski, E. C. Grimm, E. Grüger, J. Hanselman, S. P. Harrison, T. R. Hill, B. Huntley, G. Jiménez-Moreno, P. Kershaw, M.-P. Ledru, D. Magri, M. McKenzie, U. Müller, T. Nakagawa, E. Novenko, D. Penny, L. Sadori, L. Scott, J. Stevenson, P. J. Valdes, M. Vandergoes, A. Velichko, C. Whitlock, and C. Tzedakis
Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, https://doi.org/10.5194/cp-12-51-2016, 2016
Short summary
Short summary
In this paper we use two climate models to test how Earth’s vegetation responded to changes in climate over the last 120 000 years, looking at warm interglacial climates like today, cold ice-age glacial climates, and intermediate climates. The models agree well with observations from pollen, showing smaller forested areas and larger desert areas during cold periods. Forests store most terrestrial carbon; the terrestrial carbon lost during cold climates was most likely relocated to the oceans.
H. S. Sundqvist, D. S. Kaufman, N. P. McKay, N. L. Balascio, J. P. Briner, L. C. Cwynar, H. P. Sejrup, H. Seppä, D. A. Subetto, J. T. Andrews, Y. Axford, J. Bakke, H. J. B. Birks, S. J. Brooks, A. de Vernal, A. E. Jennings, F. C. Ljungqvist, K. M. Rühland, C. Saenger, J. P. Smol, and A. E. Viau
Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, https://doi.org/10.5194/cp-10-1605-2014, 2014
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
P. B. Holden, N. R. Edwards, S. A. Müller, K. I. C. Oliver, R. M. Death, and A. Ridgwell
Biogeosciences, 10, 1815–1833, https://doi.org/10.5194/bg-10-1815-2013, https://doi.org/10.5194/bg-10-1815-2013, 2013
F. Joos, R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting, W. von Bloh, V. Brovkin, E. J. Burke, M. Eby, N. R. Edwards, T. Friedrich, T. L. Frölicher, P. R. Halloran, P. B. Holden, C. Jones, T. Kleinen, F. T. Mackenzie, K. Matsumoto, M. Meinshausen, G.-K. Plattner, A. Reisinger, J. Segschneider, G. Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A. Timmermann, and A. J. Weaver
Atmos. Chem. Phys., 13, 2793–2825, https://doi.org/10.5194/acp-13-2793-2013, https://doi.org/10.5194/acp-13-2793-2013, 2013
P. B. Holden, N. R. Edwards, D. Gerten, and S. Schaphoff
Biogeosciences, 10, 339–355, https://doi.org/10.5194/bg-10-339-2013, https://doi.org/10.5194/bg-10-339-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Holocene
A continental reconstruction of hydroclimatic variability in South America during the past 2000 years
A Holocene history of climate, fire, landscape evolution, and human activity in northeastern Iceland
A global compilation of diatom silica oxygen isotope records from lake sediment – trends and implications for climate reconstruction
BrGDGT-based seasonal paleotemperature reconstruction for the last 15 000 years from a shallow lake on the eastern Tibetan Plateau
Reconstructing 15 000 years of southern France temperatures from coupled pollen and molecular (branched glycerol dialkyl glycerol tetraether) markers (Canroute, Massif Central)
Pollen-based reconstructions of Holocene climate trends in the eastern Mediterranean region
Spatiotemporal Intertropical Convergence Zone dynamics during the last 3 millennia in northeastern Brazil and related impacts in modern human history
Holocene climates of the Iberian Peninsula: pollen-based reconstructions of changes in the west–east gradient of temperature and moisture
Holocene climate and oceanography of the coastal Western United States and California Current System
Reconstructing Holocene temperatures in time and space using paleoclimate data assimilation
Long-term trends in diatom diversity and palaeoproductivity: a 16 000-year multidecadal record from Lake Baikal, southern Siberia
A 406-year non-growing-season precipitation reconstruction in the southeastern Tibetan Plateau
Climatic variations during the Holocene inferred from radiocarbon and stable carbon isotopes in speleothems from a high-alpine cave
Winter–spring warming in the North Atlantic during the last 2000 years: evidence from southwest Iceland
Climate reconstructions based on GDGT and pollen surface datasets from Mongolia and Baikal area: calibrations and applicability to extremely cold–dry environments over the Late Holocene
Sampling density and date along with species selection influence spatial representation of tree-ring reconstructions
Changes in high-intensity precipitation on the northern Apennines (Italy) as revealed by multidisciplinary data over the last 9000 years
Neoglacial trends in diatom dynamics from a small alpine lake in the Qinling mountains of central China
Centennial- to millennial-scale monsoon changes since the last deglaciation linked to solar activities and North Atlantic cooling
Algal lipids reveal unprecedented warming rates in alpine areas of SW Europe during the industrial period
Reconstructing seasonality through stable-isotope and trace-element analyses of the Proserpine stalagmite, Han-sur-Lesse cave, Belgium: indications for climate-driven changes during the last 400 years
Two millennia of Main region (southern Germany) hydroclimate variability
Combining a pollen and macrofossil synthesis with climate simulations for spatial reconstructions of European climate using Bayesian filtering
Lignin oxidation products as a potential proxy for vegetation and environmental changes in speleothems and cave drip water – a first record from the Herbstlabyrinth, central Germany
How dry was the Younger Dryas? Evidence from a coupled δ2H–δ18O biomarker paleohygrometer applied to the Gemündener Maar sediments, Western Eifel, Germany
Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions
The 4.2 ka BP Event in the Mediterranean region: an overview
Technical note: Optimizing the utility of combined GPR, OSL, and Lidar (GOaL) to extract paleoenvironmental records and decipher shoreline evolution
The onset of neoglaciation in Iceland and the 4.2 ka event
Hydroclimatic variations in southeastern China during the 4.2 ka event reflected by stalagmite records
Fire, vegetation, and Holocene climate in a southeastern Tibetan lake: a multi-biomarker reconstruction from Paru Co
Climate impact on the development of Pre-Classic Maya civilisation
Synchronizing 10Be in two varved lake sediment records to IntCal13 14C during three grand solar minima
Technical note: Open-paleo-data implementation pilot – the PAGES 2k special issue
A chironomid-based record of temperature variability during the past 4000 years in northern China and its possible societal implications
Insights into Atlantic multidecadal variability using the Last Millennium Reanalysis framework
Three distinct Holocene intervals of stalagmite deposition and nondeposition revealed in NW Madagascar, and their paleoclimate implications
Examining bias in pollen-based quantitative climate reconstructions induced by human impact on vegetation in China
A dual-biomarker approach for quantification of changes in relative humidity from sedimentary lipid D∕H ratios
Pseudo-proxy tests of the analogue method to reconstruct spatially resolved global temperature during the Common Era
Development and evaluation of a system of proxy data assimilation for paleoclimate reconstruction
A chironomid-based mean July temperature inference model from the south-east margin of the Tibetan Plateau, China
Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world
Quantitative reconstruction of summer precipitation using a mid-Holocene δ13C common millet record from Guanzhong Basin, northern China
North Atlantic Oscillation controls on oxygen and hydrogen isotope gradients in winter precipitation across Europe; implications for palaeoclimate studies
A 368-year maximum temperature reconstruction based on tree-ring data in the northwestern Sichuan Plateau (NWSP), China
A high-altitude peatland record of environmental changes in the NW Argentine Andes (24 ° S) over the last 2100 years
Technical note: The Linked Paleo Data framework – a common tongue for paleoclimatology
A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change
Inferring climate variability from nonlinear proxies: application to palaeo-ENSO studies
Mathurin A. Choblet, Janica C. Bühler, Valdir F. Novello, Nathan J. Steiger, and Kira Rehfeld
Clim. Past, 20, 2117–2141, https://doi.org/10.5194/cp-20-2117-2024, https://doi.org/10.5194/cp-20-2117-2024, 2024
Short summary
Short summary
Past climate reconstructions are essential for understanding climate mechanisms and drivers. Our focus is on the South American continent over the past 2000 years. We offer a new reconstruction that particularly utilizes data from speleothems, previously absent from continent-wide reconstructions. We use paleoclimate data assimilation, a reconstruction method that combines information from climate archives and climate simulations.
Nicolò Ardenghi, David J. Harning, Jonathan H. Raberg, Brooke R. Holman, Thorvaldur Thordarson, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Clim. Past, 20, 1087–1123, https://doi.org/10.5194/cp-20-1087-2024, https://doi.org/10.5194/cp-20-1087-2024, 2024
Short summary
Short summary
Analysing a sediment record from Stóra Viðarvatn (NE Iceland), we reveal how natural factors and human activities influenced environmental changes (erosion, wildfires) over the last 11 000 years. We found increased fire activity around 3000 and 1500 years ago, predating human settlement, likely driven by natural factors like precipitation shifts. Declining summer temperatures increased erosion vulnerability, exacerbated by farming and animal husbandry, which in turn may have reduced wildfires.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Xiaohuan Hou, Nannan Wang, Zhe Sun, Kan Yuan, Xianyong Cao, and Juzhi Hou
Clim. Past, 20, 335–348, https://doi.org/10.5194/cp-20-335-2024, https://doi.org/10.5194/cp-20-335-2024, 2024
Short summary
Short summary
We present an ice-free season temperature based on brGDGTs over last 15 kyr on the eastern Tibetan Plateau (TP). The result shows that Holocene Thermal Maximum occurred during 8–3.5 ka, which lags behind pollen-based temperature recorded in same core, indicating a significant seasonal bias between different proxies. We also investigated previously published brGDGT-based temperatures on the TP to determine the pattern of Holocene temperature changes and possible reasons for the diverse records.
Léa d'Oliveira, Lucas Dugerdil, Guillemette Ménot, Allowen Evin, Serge D. Muller, Salomé Ansanay-Alex, Julien Azuara, Colline Bonnet, Laurent Bremond, Mehmet Shah, and Odile Peyron
Clim. Past, 19, 2127–2156, https://doi.org/10.5194/cp-19-2127-2023, https://doi.org/10.5194/cp-19-2127-2023, 2023
Short summary
Short summary
In southern Europe, Holocene climate variability is characterized by a strong heterogeneity whose patterns are still poorly understood. Here, a multi-proxy approach (pollen and biomarkers) is applied to the Canroute sequence to reconstruct the climatic variation over the last 15 000 years in southern Massif Central, France. Results reveal that reconstructions of regional climate trends notably differ depending on proxies and sites, notably concerning the presence of a Holocene thermal maximum.
Esmeralda Cruz-Silva, Sandy P. Harrison, I. Colin Prentice, Elena Marinova, Patrick J. Bartlein, Hans Renssen, and Yurui Zhang
Clim. Past, 19, 2093–2108, https://doi.org/10.5194/cp-19-2093-2023, https://doi.org/10.5194/cp-19-2093-2023, 2023
Short summary
Short summary
We examined 71 pollen records (12.3 ka to present) in the eastern Mediterranean, reconstructing climate changes. Over 9000 years, winters gradually warmed due to orbital factors. Summer temperatures peaked at 4.5–5 ka, likely declining because of ice sheets. Moisture increased post-11 kyr, remaining high from 10–6 kyr before a slow decrease. Climate models face challenges in replicating moisture transport.
Giselle Utida, Francisco W. Cruz, Mathias Vuille, Angela Ampuero, Valdir F. Novello, Jelena Maksic, Gilvan Sampaio, Hai Cheng, Haiwei Zhang, Fabio Ramos Dias de Andrade, and R. Lawrence Edwards
Clim. Past, 19, 1975–1992, https://doi.org/10.5194/cp-19-1975-2023, https://doi.org/10.5194/cp-19-1975-2023, 2023
Short summary
Short summary
We reconstruct the Intertropical Convergence Zone (ITCZ) behavior during the past 3000 years over northeastern Brazil based on oxygen stable isotopes of stalagmites. Paleoclimate changes were mainly forced by the tropical South Atlantic and tropical Pacific sea surface temperature variability. We describe an ITCZ zonal behavior active around 1100 CE and the period from 1500 to 1750 CE. The dataset also records historical droughts that affected modern human population in this area of Brazil.
Mengmeng Liu, Yicheng Shen, Penelope González-Sampériz, Graciela Gil-Romera, Cajo J. F. ter Braak, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past, 19, 803–834, https://doi.org/10.5194/cp-19-803-2023, https://doi.org/10.5194/cp-19-803-2023, 2023
Short summary
Short summary
We reconstructed the Holocene climates in the Iberian Peninsula using a large pollen data set and found that the west–east moisture gradient was much flatter than today. We also found that the winter was much colder, which can be expected from the low winter insolation during the Holocene. However, summer temperature did not follow the trend of summer insolation, instead, it was strongly correlated with moisture.
Hannah M. Palmer, Veronica Padilla Vriesman, Caitlin M. Livsey, Carina R. Fish, and Tessa M. Hill
Clim. Past, 19, 199–232, https://doi.org/10.5194/cp-19-199-2023, https://doi.org/10.5194/cp-19-199-2023, 2023
Short summary
Short summary
To better understand and contextualize modern climate change, this systematic review synthesizes climate and oceanographic patterns in the Western United States and California Current System through the most recent 11.75 kyr. Through a literature review and coded analysis of past studies, we identify distinct environmental phases through time and linkages between marine and terrestrial systems. We explore climate change impacts on ecosystems and human–environment interactions.
Michael P. Erb, Nicholas P. McKay, Nathan Steiger, Sylvia Dee, Chris Hancock, Ruza F. Ivanovic, Lauren J. Gregoire, and Paul Valdes
Clim. Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, https://doi.org/10.5194/cp-18-2599-2022, 2022
Short summary
Short summary
To look at climate over the past 12 000 years, we reconstruct spatial temperature using natural climate archives and information from model simulations. Our results show mild global mean warmth around 6000 years ago, which differs somewhat from past reconstructions. Undiagnosed seasonal biases in the data could explain some of the observed temperature change, but this still would not explain the large difference between many reconstructions and climate models over this period.
Anson W. Mackay, Vivian A. Felde, David W. Morley, Natalia Piotrowska, Patrick Rioual, Alistair W. R. Seddon, and George E. A. Swann
Clim. Past, 18, 363–380, https://doi.org/10.5194/cp-18-363-2022, https://doi.org/10.5194/cp-18-363-2022, 2022
Short summary
Short summary
We investigated the diversity of algae called diatoms in Lake Baikal, the oldest and deepest lake in the world, because algae sit at the base of aquatic foodwebs and provide energy (in the form of primary production) for other organisms to use. Diatom diversity and primary production have been influenced by both long-term and abrupt climate change over the past 16 000 years. The shape of these responses appears to be time-period specific.
Maierdang Keyimu, Zongshan Li, Bojie Fu, Guohua Liu, Fanjiang Zeng, Weiliang Chen, Zexin Fan, Keyan Fang, Xiuchen Wu, and Xiaochun Wang
Clim. Past, 17, 2381–2392, https://doi.org/10.5194/cp-17-2381-2021, https://doi.org/10.5194/cp-17-2381-2021, 2021
Short summary
Short summary
We created a residual tree-ring width chronology and reconstructed non-growth-season precipitation (NGSP) over the period spanning 1600–2005 in the southeastern Tibetan Plateau (SETP), China. Reconstruction model verification as well as similar variations of NGSP reconstruction and Palmer Drought Severity Index reconstructions from the surrounding region indicate the reliability of the present reconstruction. Our reconstruction is representative of NGSP variability of a large region in the SETP.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Nora Richter, James M. Russell, Johanna Garfinkel, and Yongsong Huang
Clim. Past, 17, 1363–1383, https://doi.org/10.5194/cp-17-1363-2021, https://doi.org/10.5194/cp-17-1363-2021, 2021
Short summary
Short summary
We present a reconstruction of winter–spring temperatures developed using organic proxies preserved in well-dated lake sediments from southwest Iceland to assess seasonal temperature changes in the North Atlantic region over the last 2000 years. The gradual warming trend observed in our record is likely influenced by sea surface temperatures, which are sensitive to changes in ocean circulation and seasonal insolation, during the winter and spring season.
Lucas Dugerdil, Sébastien Joannin, Odile Peyron, Isabelle Jouffroy-Bapicot, Boris Vannière, Bazartseren Boldgiv, Julia Unkelbach, Hermann Behling, and Guillemette Ménot
Clim. Past, 17, 1199–1226, https://doi.org/10.5194/cp-17-1199-2021, https://doi.org/10.5194/cp-17-1199-2021, 2021
Short summary
Short summary
Since the understanding of Holocene climate change appears to be a relevant issue for future climate change, the paleoclimate calibrations have to be improved. Here, surface samples from Mongolia and Siberia were analyzed to provide new calibrations for pollen and biomarker climate models. These calibrations appear to be more powerful than global calibrations, especially in an arid central Asian context. These calibrations will improve the understanding of monsoon Holocene oscillations.
Justin T. Maxwell, Grant L. Harley, Trevis J. Matheus, Brandon M. Strange, Kayla Van Aken, Tsun Fung Au, and Joshua C. Bregy
Clim. Past, 16, 1901–1916, https://doi.org/10.5194/cp-16-1901-2020, https://doi.org/10.5194/cp-16-1901-2020, 2020
Short summary
Short summary
We found that increasing the density of chronologies in the tree-ring network resulted in estimated soil moisture conditions that better matched the spatial variability of the values that were instrumentally recorded for droughts and, to a lesser extent, pluvials. By sampling trees in 2010 compared to 1980, the sensitivity of tree rings to soil moisture decreased in the southern portion of our region, where severe drought conditions have been absent over recent decades.
Stefano Segadelli, Federico Grazzini, Veronica Rossi, Margherita Aguzzi, Silvia Marvelli, Marco Marchesini, Alessandro Chelli, Roberto Francese, Maria Teresa De Nardo, and Sandro Nanni
Clim. Past, 16, 1547–1564, https://doi.org/10.5194/cp-16-1547-2020, https://doi.org/10.5194/cp-16-1547-2020, 2020
Short summary
Short summary
In an attempt to consolidate trends in the hydrological cycle induced by recent warming, we conducted a multidisciplinary study combining meteorological data, climate proxies from the literature, and original coring and pollen data acquired in an area that has been hit by record-breaking precipitation events. A detailed study of recent flash-flood deposits compared with fossil peat bog and lake sediments supports the expected increase in precipitation intensity during warm climatic phases.
Bo Cheng, Jennifer Adams, Jianhui Chen, Aifeng Zhou, Qing Zhang, and Anson W. Mackay
Clim. Past, 16, 543–554, https://doi.org/10.5194/cp-16-543-2020, https://doi.org/10.5194/cp-16-543-2020, 2020
Short summary
Short summary
The Qinling mountains in China are biodiversity rich. We studied one of the high-latitude lakes on Mount Taibai with a view to looking at how aquatic diversity responded to long-term changes in climate over the past 3500 years. We specifically looked at a group of single-celled algae called diatoms, as they are very sensitive to the environment. We found that these algae changed gradually over time, but they showed abrupt change during the period known as the Little Ice Age, about 400 years ago.
Xingxing Liu, Youbin Sun, Jef Vandenberghe, Peng Cheng, Xu Zhang, Evan J. Gowan, Gerrit Lohmann, and Zhisheng An
Clim. Past, 16, 315–324, https://doi.org/10.5194/cp-16-315-2020, https://doi.org/10.5194/cp-16-315-2020, 2020
Short summary
Short summary
The East Asian summer monsoon and winter monsoon are anticorrelated on a centennial timescale during 16–1 ka. The centennial monsoon variability is connected to changes of both solar activity and North Atlantic cooling events during the Early Holocene. Then, North Atlantic cooling became the major forcing of events during the Late Holocene. This work presents the great challenge and potential to understand the response of the monsoon system to global climate changes in the past and the future.
Antonio García-Alix, Jaime L. Toney, Gonzalo Jiménez-Moreno, Carmen Pérez-Martínez, Laura Jiménez, Marta Rodrigo-Gámiz, R. Scott Anderson, Jon Camuera, Francisco J. Jiménez-Espejo, Dhais Peña-Angulo, and María J. Ramos-Román
Clim. Past, 16, 245–263, https://doi.org/10.5194/cp-16-245-2020, https://doi.org/10.5194/cp-16-245-2020, 2020
Short summary
Short summary
In this paper we identify warming thresholds, rates, and forcing mechanisms from a novel alpine temperature record of the southern Iberian Peninsula during the Common Era in order to contextualize the modern warming and its potential impact on these vulnerable alpine ecosystems. To do so, we have developed and applied the first lacustrine temperature calibration in alpine lakes for algal compounds, called long-chain alkyl diols, which is a significant advance in biomarker paleothermometry.
Stef Vansteenberge, Niels J. de Winter, Matthias Sinnesael, Sophie Verheyden, Steven Goderis, Stijn J. M. Van Malderen, Frank Vanhaecke, and Philippe Claeys
Clim. Past, 16, 141–160, https://doi.org/10.5194/cp-16-141-2020, https://doi.org/10.5194/cp-16-141-2020, 2020
Short summary
Short summary
We measured the chemical composition (trace-element concentrations and stable-isotope ratios) of a Belgian speleothem that deposited annual layers. Our sub-annual resolution dataset allows us to investigate how the chemistry of this speleothem recorded changes in the environment and climate in northwestern Europe. We then use this information to reconstruct climate change during the 16th and 17th century on the seasonal scale and demonstrate that environmental change drives speleothem chemistry.
Alexander Land, Sabine Remmele, Jutta Hofmann, Daniel Reichle, Margaret Eppli, Christian Zang, Allan Buras, Sebastian Hein, and Reiner Zimmermann
Clim. Past, 15, 1677–1690, https://doi.org/10.5194/cp-15-1677-2019, https://doi.org/10.5194/cp-15-1677-2019, 2019
Short summary
Short summary
With the use of precipitation sensitive oak ring-width series from the Main River region (southern Germany) a 2000-year long hydroclimate reconstruction has been developed. The ring series are sensitive to the sum of rainfall from 26 February to 6 July. This region suffered from severe, long-lasting droughts in the past two millennia (e.g., AD 500/510s, 940s, 1170s, 1390s and 1160s). In the AD 550s, 1050s, 1310s and 1480s, multi-year periods with high rainfall hit the region.
Nils Weitzel, Andreas Hense, and Christian Ohlwein
Clim. Past, 15, 1275–1301, https://doi.org/10.5194/cp-15-1275-2019, https://doi.org/10.5194/cp-15-1275-2019, 2019
Short summary
Short summary
A new method for probabilistic spatial reconstructions of past climate states is presented, which combines pollen data with a multi-model ensemble of climate simulations in a Bayesian framework. The approach is applied to reconstruct summer and winter temperature in Europe during the mid-Holocene. Our reconstructions account for multiple sources of uncertainty and are well suited for quantitative statistical analyses of the climate under different forcing conditions.
Inken Heidke, Denis Scholz, and Thorsten Hoffmann
Clim. Past, 15, 1025–1037, https://doi.org/10.5194/cp-15-1025-2019, https://doi.org/10.5194/cp-15-1025-2019, 2019
Short summary
Short summary
This is the first quantitative study of lignin biomarkers in stalagmites and cave drip water. Lignin is only produced by higher plants; therefore, its analysis can be used to reconstruct the vegetation of the past. We compared our lignin results with stable isotope and trace element records from the same samples and found correlations or similarities with P, Ba, U and Mg concentrations as well as δ13C values. These results can help to better interpret other vegetation proxies.
Johannes Hepp, Lorenz Wüthrich, Tobias Bromm, Marcel Bliedtner, Imke Kathrin Schäfer, Bruno Glaser, Kazimierz Rozanski, Frank Sirocko, Roland Zech, and Michael Zech
Clim. Past, 15, 713–733, https://doi.org/10.5194/cp-15-713-2019, https://doi.org/10.5194/cp-15-713-2019, 2019
Olga V. Churakova (Sidorova), Marina V. Fonti, Matthias Saurer, Sébastien Guillet, Christophe Corona, Patrick Fonti, Vladimir S. Myglan, Alexander V. Kirdyanov, Oksana V. Naumova, Dmitriy V. Ovchinnikov, Alexander V. Shashkin, Irina P. Panyushkina, Ulf Büntgen, Malcolm K. Hughes, Eugene A. Vaganov, Rolf T. W. Siegwolf, and Markus Stoffel
Clim. Past, 15, 685–700, https://doi.org/10.5194/cp-15-685-2019, https://doi.org/10.5194/cp-15-685-2019, 2019
Short summary
Short summary
We present a unique dataset of multiple tree-ring and stable isotope parameters, representing temperature-sensitive Siberian ecotones, to assess climatic impacts after six large stratospheric volcanic eruptions at 535, 540, 1257, 1640, 1815, and 1991 CE. Besides the well-documented effects of temperature derived from tree-ring width and latewood density, stable carbon and oxygen isotopes in tree-ring cellulose provide information about moisture and sunshine duration changes after the events.
Monica Bini, Giovanni Zanchetta, Aurel Perşoiu, Rosine Cartier, Albert Català, Isabel Cacho, Jonathan R. Dean, Federico Di Rita, Russell N. Drysdale, Martin Finnè, Ilaria Isola, Bassem Jalali, Fabrizio Lirer, Donatella Magri, Alessia Masi, Leszek Marks, Anna Maria Mercuri, Odile Peyron, Laura Sadori, Marie-Alexandrine Sicre, Fabian Welc, Christoph Zielhofer, and Elodie Brisset
Clim. Past, 15, 555–577, https://doi.org/10.5194/cp-15-555-2019, https://doi.org/10.5194/cp-15-555-2019, 2019
Short summary
Short summary
The Mediterranean region has returned some of the clearest evidence of a climatically dry period occurring approximately 4200 years ago. We reviewed selected proxies to infer regional climate patterns between 4.3 and 3.8 ka. Temperature data suggest a cooling anomaly, even if this is not uniform, whereas winter was drier, along with dry summers. However, some exceptions to this prevail, where wetter condition seems to have persisted, suggesting regional heterogeneity.
Amy J. Dougherty, Jeong-Heon Choi, Chris S. M. Turney, and Anthony Dosseto
Clim. Past, 15, 389–404, https://doi.org/10.5194/cp-15-389-2019, https://doi.org/10.5194/cp-15-389-2019, 2019
Áslaug Geirsdóttir, Gifford H. Miller, John T. Andrews, David J. Harning, Leif S. Anderson, Christopher Florian, Darren J. Larsen, and Thor Thordarson
Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, https://doi.org/10.5194/cp-15-25-2019, 2019
Short summary
Short summary
Compositing climate proxies in sediment from seven Iceland lakes documents abrupt summer cooling between 4.5 and 4.0 ka, statistically indistinguishable from 4.2 ka. Although the decline in summer insolation was an important factor, a combination of superposed changes in ocean circulation and explosive Icelandic volcanism were likely responsible for the abrupt perturbation recorded by our proxies. Lake and catchment proxies recovered to a colder equilibrium state following the perturbation.
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Gayatri Kathayat, Ashish Sinha, R. Lawrence Edwards, and Liangcheng Tan
Clim. Past, 14, 1805–1817, https://doi.org/10.5194/cp-14-1805-2018, https://doi.org/10.5194/cp-14-1805-2018, 2018
Short summary
Short summary
The collapses of several Neolithic cultures in China are considered to have been associated with abrupt climate change during the 4.2 ka BP event; however, the hydroclimate of this event in China is still poorly known. Based on stalagmite records from monsoonal China, we found that north China was dry but south China was wet during this event. We propose that the rain belt remained longer at its southern position, giving rise to a pronounced humidity gradient between north and south China.
Alice Callegaro, Dario Battistel, Natalie M. Kehrwald, Felipe Matsubara Pereira, Torben Kirchgeorg, Maria del Carmen Villoslada Hidalgo, Broxton W. Bird, and Carlo Barbante
Clim. Past, 14, 1543–1563, https://doi.org/10.5194/cp-14-1543-2018, https://doi.org/10.5194/cp-14-1543-2018, 2018
Short summary
Short summary
Holocene fires and vegetation are reconstructed using different molecular markers with a single analytical method, applied for the first time to lake sediments from Tibet. The early Holocene shows oscillations between grasses and conifers, with smouldering fires represented by levoglucosan peaks, and high-temperature fires represented by PAHs. The lack of human FeSts excludes local human influence on fire and vegetation changes. Late Holocene displays an increase in local to regional combustion.
Kees Nooren, Wim Z. Hoek, Brian J. Dermody, Didier Galop, Sarah Metcalfe, Gerald Islebe, and Hans Middelkoop
Clim. Past, 14, 1253–1273, https://doi.org/10.5194/cp-14-1253-2018, https://doi.org/10.5194/cp-14-1253-2018, 2018
Short summary
Short summary
We present two new palaeoclimatic records for the central Maya lowlands, adding valuable new insights to the impact of climate change on the development of Maya civilisation. Lake Tuspan's diatom record is indicative of precipitation changes at a local scale, while a beach ridge elevation record from the world's largest late Holocene beach ridge plain provides a regional picture.
Markus Czymzik, Raimund Muscheler, Florian Adolphi, Florian Mekhaldi, Nadine Dräger, Florian Ott, Michał Słowinski, Mirosław Błaszkiewicz, Ala Aldahan, Göran Possnert, and Achim Brauer
Clim. Past, 14, 687–696, https://doi.org/10.5194/cp-14-687-2018, https://doi.org/10.5194/cp-14-687-2018, 2018
Short summary
Short summary
Our results provide a proof of concept for facilitating 10Be in varved lake sediments as a novel synchronization tool required for investigating leads and lags of proxy responses to climate variability. They also point to some limitations of 10Be in these archives mainly connected to in-lake sediment resuspension processes.
Darrell S. Kaufman and PAGES 2k special-issue editorial team
Clim. Past, 14, 593–600, https://doi.org/10.5194/cp-14-593-2018, https://doi.org/10.5194/cp-14-593-2018, 2018
Short summary
Short summary
We explain the procedure used to attain a high and consistent level of data stewardship across a special issue of the journal Climate of the Past. We discuss the challenges related to (1) determining which data are essential for public archival, (2) using data generated by others, and (3) understanding data citations. We anticipate that open-data sharing in paleo sciences will accelerate as the advantages become more evident and as practices that reduce data loss become the accepted convention.
Haipeng Wang, Jianhui Chen, Shengda Zhang, David D. Zhang, Zongli Wang, Qinghai Xu, Shengqian Chen, Shijin Wang, Shichang Kang, and Fahu Chen
Clim. Past, 14, 383–396, https://doi.org/10.5194/cp-14-383-2018, https://doi.org/10.5194/cp-14-383-2018, 2018
Short summary
Short summary
The chironomid-inferred temperature record from Gonghai Lake exhibits a stepwise decreasing trend since 4 ka. A cold event in the Era of Disunity, the Sui-Tang Warm Period, the Medieval Warm Period and the Little Ice Age can all be recognized in our record, as well as in many other temperature reconstructions in China. Local wars in Shanxi Province, documented in the historical literature during the past 2700 years, are statistically significantly correlated with changes in temperature.
Hansi K. A. Singh, Gregory J. Hakim, Robert Tardif, Julien Emile-Geay, and David C. Noone
Clim. Past, 14, 157–174, https://doi.org/10.5194/cp-14-157-2018, https://doi.org/10.5194/cp-14-157-2018, 2018
Short summary
Short summary
The Atlantic Multidecadal Oscillation (AMO) is prominent in the climate system. We study the AMO over the last 2000 years using a novel proxy framework, the Last Millennium Reanalysis. We find that the AMO is linked to continental warming, Arctic sea ice retreat, and an Atlantic precipitation shift. Low clouds decrease globally. We find no distinct multidecadal spectral peak in the AMO over the last 2 millennia, suggesting that human activities may have enhanced the AMO in the modern era.
Ny Riavo Gilbertinie Voarintsoa, Loren Bruce Railsback, George Albert Brook, Lixin Wang, Gayatri Kathayat, Hai Cheng, Xianglei Li, Richard Lawrence Edwards, Amos Fety Michel Rakotondrazafy, and Marie Olga Madison Razanatseheno
Clim. Past, 13, 1771–1790, https://doi.org/10.5194/cp-13-1771-2017, https://doi.org/10.5194/cp-13-1771-2017, 2017
Short summary
Short summary
This research has been an investigation of two stalagmites from two caves in NW Madagascar to reconstruct the region's paleoenvironmental changes, and to understand the linkage of such changes to the dynamics of the ITCZ. Stable isotopes, mineralogy, and petrography suggest wetter climate conditions than today during the early and late Holocene, when the mean ITCZ was south, and drier during the mid-Holocene when the ITCZ was north.
Wei Ding, Qinghai Xu, and Pavel E. Tarasov
Clim. Past, 13, 1285–1300, https://doi.org/10.5194/cp-13-1285-2017, https://doi.org/10.5194/cp-13-1285-2017, 2017
Short summary
Short summary
Pollen-based past climate reconstruction for regions with long-term human occupation is always controversial. We examined the bias induced by the human impact on vegetation in a climate reconstruction for temperate eastern China by comparing the deviations in the reconstructed results for a fossil record based on two pollen–climate calibration sets. Climatic signals in pollen assemblages are indeed obscured by human impact; however, the extent of the bias could be assessed.
Oliver Rach, Ansgar Kahmen, Achim Brauer, and Dirk Sachse
Clim. Past, 13, 741–757, https://doi.org/10.5194/cp-13-741-2017, https://doi.org/10.5194/cp-13-741-2017, 2017
Short summary
Short summary
Currently, reconstructions of past changes in the hydrological cycle are usually qualitative, which is a major drawback for testing the accuracy of models in predicting future responses. Here we present a proof of concept of a novel approach to deriving quantitative paleohydrological data, i.e. changes in relative humidity, from lacustrine sediment archives, employing a combination of organic geochemical methods and plant physiological modeling.
Juan José Gómez-Navarro, Eduardo Zorita, Christoph C. Raible, and Raphael Neukom
Clim. Past, 13, 629–648, https://doi.org/10.5194/cp-13-629-2017, https://doi.org/10.5194/cp-13-629-2017, 2017
Short summary
Short summary
This contribution aims at assessing to what extent the analogue method, a classic technique used in other branches of meteorology and climatology, can be used to perform gridded reconstructions of annual temperature based on the limited information from available but un-calibrated proxies spread across different locations of the world. We conclude that it is indeed possible, albeit with certain limitations that render the method comparable to more classic techniques.
Atsushi Okazaki and Kei Yoshimura
Clim. Past, 13, 379–393, https://doi.org/10.5194/cp-13-379-2017, https://doi.org/10.5194/cp-13-379-2017, 2017
Short summary
Short summary
Data assimilation has been successfully applied in the field of paleoclimatology to reconstruct past climate. However, data reconstructed from proxies have been assimilated, as opposed to the actual proxy values, which prevented full utilization of the information recorded in the proxies. This study propose a new data assimilation system in which actual proxy data are directly assimilated.
Enlou Zhang, Jie Chang, Yanmin Cao, Hongqu Tang, Pete Langdon, James Shulmeister, Rong Wang, Xiangdong Yang, and Ji Shen
Clim. Past, 13, 185–199, https://doi.org/10.5194/cp-13-185-2017, https://doi.org/10.5194/cp-13-185-2017, 2017
Short summary
Short summary
This paper reports the first development of sub-fossil chironomid-based mean July temperature transfer functions from China. The transfer functions yield reliable reconstructions that are comparable to the instrumental record. The application of this new tool will provide long-term quantitative palaeoclimate estimates from south-western China which is a critical region for understanding the dynamic and evolution of the Indian Ocean south-west Monsoon system.
Kira Rehfeld, Mathias Trachsel, Richard J. Telford, and Thomas Laepple
Clim. Past, 12, 2255–2270, https://doi.org/10.5194/cp-12-2255-2016, https://doi.org/10.5194/cp-12-2255-2016, 2016
Short summary
Short summary
Indirect evidence on past climate comes from the former composition of ecological communities such as plants, preserved as pollen grains in sediments of lakes. Transfer functions convert relative counts of species to a climatologically meaningful scale (e.g. annual mean temperature in degrees C). We show that the fundamental assumptions in the algorithms impact the reconstruction results in he idealized model world, in particular if the reconstructed variables were not ecologically relevant.
Qing Yang, Xiaoqiang Li, Xinying Zhou, Keliang Zhao, and Nan Sun
Clim. Past, 12, 2229–2240, https://doi.org/10.5194/cp-12-2229-2016, https://doi.org/10.5194/cp-12-2229-2016, 2016
Short summary
Short summary
The fossilized seeds of common millet are suited to the production of quantitative Holocene precipitation reconstructions. Our reconstructed results showed that summer precipitation from 7.7–3.4 ka BP was ~ 50 mm, or 17 % higher than present levels. Maximal mean summer precipitation peaked at 414 mm during 6.1–5.5 ka BP, ~ 109 mm, or 36 % higher than today, indicating the EASM peaked at this time. This work can provide a new proxy for further research into continuous paleoprecipitation sequences.
Michael Deininger, Martin Werner, and Frank McDermott
Clim. Past, 12, 2127–2143, https://doi.org/10.5194/cp-12-2127-2016, https://doi.org/10.5194/cp-12-2127-2016, 2016
Short summary
Short summary
This study investigates the NAO (Northern Atlantic Oscillation)-related mechanisms that control winter precipitation stable oxygen and hydrogen isotope gradients across Europe. The results show that past longitudinal stable oxygen and hydrogen isotope gradients in European rainfall stored in palaeoclimate archives (e.g. speleothems) can be used to infer the past winter NAO modes from its variations.
Liangjun Zhu, Yuandong Zhang, Zongshan Li, Binde Guo, and Xiaochun Wang
Clim. Past, 12, 1485–1498, https://doi.org/10.5194/cp-12-1485-2016, https://doi.org/10.5194/cp-12-1485-2016, 2016
Short summary
Short summary
We present a 368-year late summer maximum temperature reconstruction based on spruce tree rings. It touches on the critical topic of climate reconstruction in the eastern edge of Tibetan Plateau and represents an extension and enhancement of climate records for this area. The Little Ice Age was well represented and 20th century warming was not obvious in this reconstruction. This temperature variation may be affected by global land–sea atmospheric circulation as well as solar and volcanic forcing.
Karsten Schittek, Sebastian T. Kock, Andreas Lücke, Jonathan Hense, Christian Ohlendorf, Julio J. Kulemeyer, Liliana C. Lupo, and Frank Schäbitz
Clim. Past, 12, 1165–1180, https://doi.org/10.5194/cp-12-1165-2016, https://doi.org/10.5194/cp-12-1165-2016, 2016
Short summary
Short summary
Cushion peatlands are versatile climate archives for the study of past environmental changes. We present the environmental history for the last 2100 years of Cerro Tuzgle peatland, which is located in the NW Argentine Puna. The results reflect prominent late Holocene climate anomalies and provide evidence that Northern Hemisphere climate oscillations were extensive. Volcanic forcing at the beginning of the 19th century seems to have had an impact on climatic settings in the Central Andes
Nicholas P. McKay and Julien Emile-Geay
Clim. Past, 12, 1093–1100, https://doi.org/10.5194/cp-12-1093-2016, https://doi.org/10.5194/cp-12-1093-2016, 2016
Short summary
Short summary
The lack of accepted data formats and data standards in paleoclimatology is a growing problem that slows progress in the field. Here, we propose a preliminary data standard for paleoclimate data, general enough to accommodate all the proxy and measurement types encountered in a large international collaboration (PAGES 2k). We also introduce a data format for such structured data (Linked Paleo Data, or LiPD), leveraging recent advances in knowledge representation (Linked Open Data).
Niamh Cahill, Andrew C. Kemp, Benjamin P. Horton, and Andrew C. Parnell
Clim. Past, 12, 525–542, https://doi.org/10.5194/cp-12-525-2016, https://doi.org/10.5194/cp-12-525-2016, 2016
Short summary
Short summary
We propose a Bayesian model for the reconstruction and analysis of former sea levels. The model provides a single, unifying framework for reconstructing and analyzing sea level through time with fully quantified uncertainty. We illustrate our approach using a case study of Common Era (last 2000 years) sea levels from New Jersey.
J. Emile-Geay and M. Tingley
Clim. Past, 12, 31–50, https://doi.org/10.5194/cp-12-31-2016, https://doi.org/10.5194/cp-12-31-2016, 2016
Short summary
Short summary
Ignoring nonlinearity in palaeoclimate records (e.g. continental run-off proxies) runs the risk of severely overstating changes in climate variability. Even with the correct model and parameters, some information is irretrievably lost by such proxies. However, we find that a simple empirical transform can do much to improve the situation, and makes them amenable to classical analyses. Doing so on two palaeo-ENSO records markedly changes some of the quantitative inferences made from such records.
Cited articles
Alley, R. B.: The Younger Dryas cold interval as viewed from central Greenland, Quaternary Sci. Rev., 19, 213–226, 2000.
Anderson, E. D.: Younger Dryas research and its implications for understanding abrupt climatic change, Prog. Phys. Geog., 21, 230–249, 1997.
Armitage, P. D., Cranston, P. S., and Pinder, L. C. V.: The Chironomidae: the biology and ecology of nonbiting midges, Chapman and Hall, London, 1995.
Baker, P. A. and Fritz, S. C.: Nature and causes of Quaternary climate variation of tropical South America, Quaternary Sci. Rev., 124, 31–47, https://doi.org/10.1016/j.quascirev.2015.06.011, 2015.
Baker, P. A., Seltzer, G. O., Fritz, S. C., Dunbar, R. B., Grove, M. J., Tapia, P. M., Cross, S. L., Rowe, H. D., and Broda, J. P.: The history of South American tropical precipitation for the past 25,000 years, Science, 291, 640–643, https://doi.org/10.1126/science.291.5504.640, 2001.
Birks, H. J. B.: Numerical tools in palaeolimnology–Progress, potentialities and problems, J. Paleolimnol., 20, 307–332, 1998.
Birks, H. J. B. and Birks, H. H.: Biological responses to rapid climate change at the Younger Dryas-Holocene transition at Krakenes, western Norway, The Holocene, 18, 19–30, https://doi.org/10.1177/0959683607085572, 2008.
Birks, H. J. B., Heiri, O., Seppä, H., and Bjune, A. E.: Strengths and Weaknesses of Quantitative Climate Reconstructions Based on Late-Quaternary Biological Proxies, Open Ecol. J., 3, 68–110, 2010.
Birks, H. J. B., Lotter, A. F., Juggins, S., and Smol, J. P. (Eds.): Tracking Environmental Change Using Lake Sediments; Data Handling and Numerical Techniques, Springer, the Netherlands, 2012.
Blaauw, M.: Methods and code for “classical” age-modelling of radiocarbon sequences, Quat. Geochronol., 5, 512–518, https://doi.org/10.1016/j.quageo.2010.01.002, 2010.
Brooks, S. J.: Chironomid-inferred Late-glacial air temperatures at Whitrig Bog, Southeast Scotland, J. Quaternary Sci., 15, 759–764, 2000.
Brooks, S. J.: Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region, Quaternary Sci. Rev., 25, 1894–1910, https://doi.org/10.1016/j.quascirev.2005.03.021, 2006.
Brooks, S. J. and Birks, H. J. B.: Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Kråkenes Lake, western Norway, J. Paleolimnol., 23, 77–89, 2000.
Brooks, S. J. and Birks, H. J. B.: Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems, Quaternary Sci. Rev., 20, 1723–1741, https://doi.org/10.1016/S0277-3791(01)00038-5, 2001.
Brooks, S. J. and Langdon, P. G.: Summer temperature gradients in northwest Europe during the Lateglacial to early Holocene transition (15–8 ka BP) inferred from chironomid assemblages, Quatern. Int., 341, 80–90, https://doi.org/10.1016/j.quaint.2014.01.034, 2014.
Brooks, S. J., Langdon, P. G., and Heiri, O.: The Identification and use of Palaearctic Chironomidae Larvae in Palaeoecology, QRA Technical Guide No. 10, Quaternary Research Association, London, 2007.
Brooks, S. J., Axford, Y., Heiri, O., Langdon, P. G., and Larocque-Tobler, I.: Chironomids can be reliable proxies for Holocene temperatures, A comment on Velle et al. (2010), The Holocene, 22, 1495–1500, https://doi.org/10.1177/0959683612449757, 2012.
Colinvaux, P., De Oliveira, P. E., and Patino, J. E.: Amazon Pollen Manual and Atlas, Harwood Academic Publishers, , Amsterdam, the Netherlands, 1999.
Collins, M., An, S.-I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F.-F., Jochum, M., Lengaigne, M., Power, S., Timmermann, A., Vecchi, G., and Wittenberg, A.: The impact of global warming on the tropical Pacific Ocean and El Niño, Nat. Geosci., 3, 391–397, https://doi.org/10.1038/ngeo868, 2010.
Crowley, T. J.: Causes of Climate Change Over the Past 1000 Years, Science, 289, 270–277, https://doi.org/10.1126/science.289.5477.270, 2000.
Dimitriadis, S. and Cranston, P. S.: An Australian Holocene climate reconstruction using Chironomidae from a tropical volcanic maar lake, Palaeogeogr. Palaeocl., 176, 109–131, 2001.
Eggermont, H. and Heiri, O.: The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications, Biol. Rev. Camb. Philos., 87, 430–456, https://doi.org/10.1111/j.1469-185X.2011.00206.x, 2011.
Eggermont, H., Heiri, O., Russell, J., Vuille, M., Audenaert, L., and Verschuren, D.: Paleotemperature reconstruction in tropical Africa using fossil Chironomidae (Insecta: Diptera), J. Paleolimnol., 43, 413–435, https://doi.org/10.1007/s10933-009-9339-2, 2010.
Epler, J. H.: Identification manual for the Larval Chironomidae (Diptera) of North and South Carolina Systematic Entomologist, Crawfordville, 2001.
Frey, D. G.: Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology, J. Paleolimnol., 1, 179–191, 1988.
Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J.: Present-day South American climate, Palaeogeogr. Palaeocl., 281, 180–195, https://doi.org/10.1016/j.palaeo.2007.10.032, 2009.
Hastenrath, S.: Climate dynamics of the tropics, Springer Science & Business Media, the Netherlands, 2012.
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Röhl, U.: Southward migration of the intertropical convergence zone through the Holocene, Science, 293, 1304–1308, https://doi.org/10.1126/science.1059725, 2001.
Heiri, O.: Within-lake variability of subfossil chironomid assemblages in shallow Norwegian lakes, J. Paleolimnol., 32, 67–84, https://doi.org/10.1023/B:JOPL.0000025289.30038.e9, 2004.
Heiri, O. and Lotter, A.: Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids, J. Paleolimnol., 26, 343–350, 2001.
Heiri, O., Lotter, A. F., and Lemke, G.: Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results, J. Paleolimnol., 25, 101–110, 2001.
Heiri, O., Lotter, A. F., Hausmann, S., and Kienast, F.: A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps, The Holocene, 13, 477–484, 2003.
Heiri, O., Cremer, H., Engels, S., Hoek, W. Z., Peeters, W., and Lotter, A. F.: Lateglacial summer temperatures in the Northwest European lowlands: a chironomid record from Hijkermeer, the Netherlands, Quaternary Sci. Rev., 26, 2420–2437, https://doi.org/10.1016/j.quascirev.2007.06.017, 2007.
Heiri, O., Brooks, S. J., Birks, H. J. B., and Lotter, A. F.: A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe, Quaternary Sci. Rev., 30, 3445–3456, https://doi.org/10.1016/j.quascirev.2011.09.006, 2011.
Heiri, O., Brooks, S. J., Renssen, H., Bedford, A., Hazekamp, M., Ilyashuk, B., Jeffers, E. S., Lang, B., Kirilova, E., Kuiper, S., Millet, L., Samartin, S., Toth, M., Verbruggen, F., Watson, J. E., van Asch, N., Lammertsma, E., Amon, L., Birks, H. H., Birks, H. J. B., Mortensen, M. F., Hoek, W. Z., Magyari, E., Muñoz Sobrino, C., Seppä, H., Tinner, W., Tonkov, S., Veski, S., and Lotter, A. F.: Validation of climate model-inferred regional temperature change for late-glacial Europe, Nature Communications, 5, 4914, https://doi.org/10.1038/ncomms5914, 2014.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005.
Hill, M. and Gauch, H.: Detrended correspondence analysis: an improved ordination technique, Vegetatio, 42, 47–58, 1980.
Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T. P., Heaton, T. J., Palmer, J. G., Reimer, P. J., Reimer, R. W., Turney, C. S. M., and Zimmerman, S. R. H.: SHCal13 Southern Hemisphere calibration, 0–50,000 cal yr BP, Radiocarbon, 55, 1889–1903, 2013.
Holden, P. B., Mackay, A. W., and Simpson, G. L.: A Bayesian palaeoenvironmental transfer function model for acidified lakes, J. Paleolimnol., 39, 551–566, https://doi.org/10.1007/s10933-007-9129-7, 2008.
Huntley, B.: Reconstructing palaeoclimates from biological proxies: Some often overlooked sources of uncertainty, Quaternary Sci. Rev., 31, 1–16, https://doi.org/10.1016/j.quascirev.2011.11.006, 2012.
Ivanochko, T., Ganeshram, R., Brummer, G., Ganssen, G., Jung, S., Moreton, S., and Kroon, D.: Variations in tropical convection as an amplifier of global climate change at the millennial scale, Earth Planet. Sc. Lett., 235, 302–314, https://doi.org/10.1016/j.epsl.2005.04.002, 2005.
Jansen, E., Overpeck, J., Briffa, K.., Duplessy, J.-C., Joos, F., Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W.., Rahmstorf, S., Ramesh, R., Raynaud, D., Rind, O., Solomina, O., Villalba, R., and Zhang, D.: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovvernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
Johnsen, S. J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J. P., Clausen, H. B., Miller, H., Masson-Delmotte, V., Sveinbjornsdottir, A. E., and White, J.: Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP, J. Quaternary Sci., 16, 299–307, https://doi.org/10.1002/jqs.622, 2001.
Jomelli, V., Favier, V., Rabatel, A., Brunstein, D., Hoffmann, G., and Francou, B.: Fluctuations of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: A review, Palaeogeogr. Palaeocl., 281, 269–282, https://doi.org/10.1016/j.palaeo.2008.10.033, 2009.
Juggins, S.: Quantitative reconstructions in palaeolimnology: new paradigm or sick science?, Quaternary Sci. Rev., 64, 20–32, https://doi.org/10.1016/j.quascirev.2012.12.014, 2013.
Juggins, S. and Birks, H. J. B.: Quantitative Environmental Reconstructions from Biological Data, in: Tracking Environmental Change Using Lake Sediments, edited by: Birks, H. J. B., Lotter, A. F., Juggins, S., and Smol, J. P., Developments in Paleoenvironmental Research, Springer, the Netherlands, Dordrecht, 5, 431–494, 2001.
Juggins, S. and Telford, R. J.: Exploratory Data Analysis and Data Display, in: Tracking Environmental Change Using Lake Sediments, edited by: Birks, H. J. B., Lotter, A. F., Juggins, S., and Smol, J. P., Developments in Paleoenvironmental Research 5, Springer, the Netherlands, Dordrecht, 123–141, https://doi.org/10.1007/978-94-007-2745-8, 2012.
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A reconstruction of regional and global temperature for the past 11,300 years, Science, 339, 1198–1201, https://doi.org/10.1126/science.1228026, 2013.
Markgraf, V.: Palaeoclimates in Central and South America since 18,000 BP based on Pollen and lake-level records, Quaternary Sci. Rev., 8, 1–24, 1989.
Massaferro, J. and Larocque, I. T.: Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina, Ecol. Indic., 24, 201–210, https://doi.org/10.1016/j.ecolind.2012.06.017, 2013.
Massaferro, J., Larocque-Tobler, I., Brooks, S. J., Vandergoes, M., Dieffenbacher-Krall, A., and Moreno, P.: Quantifying climate change in Huelmo mire (Chile, Northwestern Patagonia) during the Last Glacial Termination using a newly developed chironomid-based temperature model, Palaeogeogr. Palaeocl., 399, 214–224, https://doi.org/10.1016/j.palaeo.2014.01.013, 2014.
Matthews-Bird, F., Gosling, W. D., Coe, A. L., Bush, M., Mayle, F. E., Axford, Y., and Brooks, S. J.: Environmental controls on the distribution and diversity of lentic Chironomidae (Insecta: Diptera) across an altitudinal gradient in tropical South America, Ecol. Evol., 6, 91–112, https://doi.org/10.1002/ece3.1833, 2015.
Mayewski, P. A., Rohling, E. E., Curt Stager, J., Karlén, W., Maasch, K. A., David Meeker, L., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. R., and Steig, E. J.: Holocene climate variability, Quaternary Res., 62, 243–255, https://doi.org/10.1016/j.yqres.2004.07.001, 2004.
Meyer, I. and Wagner, S.: The Little Ice Age in southern Patagonia: Comparison between paleoecological reconstructions and downscaled model output of a GCM simulation, PAGES News, 16, 12–13, 2008.
O'Brien, S. R., Mayewski, P. A., Meeker, L. D., Meese, D. A., Twickler, M. S., and Whitlow, S. I.: Complexity of Holocene Climate as Reconstructed from a Greenland Ice Core, Science, 270, 1962–1964, 1995.
Olander, H., Korhola, A., Blom, T., and Birks, H. J. B.: An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia, The Holocene, 9, 279–294, https://doi.org/10.1191/095968399677918040, 1999.
Oldfield, F. and Steffen, W.: Anthropogenic climate change and the nature of Earth System science, Anthr. Rev., 1, 70–75, https://doi.org/10.1177/2053019613514862, 2014.
Pinder, L. C. V.: Biology of freshwater Chironomidae, Annu. Rev. Entomol., 31, 1–23, 1986.
Polissar, P. J., Abbott, M. B., Wolfe, A. P., Bezada, M., Rull, V., and Bradley, R. S.: Solar modulation of Little Ice Age climate in the tropical Andes, P. Natl. Acad. Sci. USA, 103, 8937–8942, https://doi.org/10.1073/pnas.0603118103, 2006.
Prat, N., Rieradevall, M., Acosta, R., and Villamarín, C.: Guia Para el Reconocimiento de Las Larvas de Chironomidae (Diptera) de Los rios Altoandinos de Ecuador y Peru, Clave par la determinacion de los generos, Grupo de Investigacion F.E.M, Departmento de Ecologia, Universidad de Barcelona, 2011.
Quinlan, R. and Smol, J.: Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models, J. Paleolimnol., 26, 327–342, 2001.
Rees, A. B. H., Cwynar, L. C., and Cranston, P. S.: Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia, J. Paleolimnol., 40, 1159–1178, https://doi.org/10.1007/s10933-008-9222-6, 2008.
Reuter, J., Stott, L., Khider, D., Sinha, A., Cheng, H., and Edwards, R. L.: A new perspective on the hydroclimate variability in northern South America during the Little Ice Age, Geophys. Res. Lett., 36, L21706, https://doi.org/10.1029/2009GL041051, 2009.
Rieradevall, M. and Brooks, S.: An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chrironomidae) based on cephalic setation, J. Paleolimnol., 25, 81–99, 2001.
Self, A. E., Brooks, S. J., Birks, H. J. B., Nazarova, L., Porinchu, D., Odland, A., Yang, H., and Jones, V. J.: The distribution and abundance of chironomids in high-latitude Eurasian lakes with respect to temperature and continentality: development and application of new chironomid-based climate-inference models in northern Russia, Quaternary Sci. Rev., 30, 1122–1141, https://doi.org/10.1016/j.quascirev.2011.01.022, 2011.
Telford, R. J. and Birks, H. J. B.: A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages, Quaternary Sci. Rev., 30, 1272–1278, https://doi.org/10.1016/j.quascirev.2011.03.002, 2011a.
Telford, R. J. and Birks, H. J. B.: Effect of uneven sampling along an environmental gradient on transfer-function performance, J. Paleolimnol., 46, 99–106, https://doi.org/10.1007/s10933-011-9523-z, 2011b.
ter Braak, C. J. F.: Ordination, in: Data Analysis in Community Ecology, Pudoc, edited by: Jongman, R., ter Braak, C. J., and van Tongeren, O. F. R., Wageningen, the Netherlands, 91–173, 1987.
ter Braak, C. J. F. and Juggins, S.: Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages, Hydrobiologia, 269/70, 485–502, 1993.
ter Braak, C. J. F. and Looman, C. W.: Weighted averaging, logisitc regression and the Gaussian response model, Vegetatio, 65, 3–11, 1986.
Thompson, L., Mosley-Thompson, E., Dansgaard, W., and Grootes, P.: The Little Ice Age as Recorded in the Stratigraphy of the Tropical Quelccaya Ice Cap, Science, 234, 361–364, 1986.
Thompson, L. G., Mosley-Thompson, E., and Davis, M. E.: Late glacial stage and Holocene tropical ice core records from Huascaran, Peru, Science, 269, 46–50, 1995.
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., Brecher, H. H., Zagorodnov, V. S., Mashiotta, T. A., Lin, P.-N., Mikhalenko, V. N., Hardy, D. R., and Beer, J.: Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa, Science, 298, 589–593, https://doi.org/10.1126/science.1073198, 2002.
Thompson, L. G., Mosley-Thompson, E., Brecher, H., Davis, M., León, B., Les, D., Lin, P.-N., Mashiotta, T., and Mountain, K.: Abrupt tropical climate change: past and present, P. Natl. Acad. Sci. USA, 103, 10536–10543, https://doi.org/10.1073/pnas.0603900103, 2006.
Trivinho-Strixino, S.: Larvas de Chironomidae guia de Identificacao. Universidade Federale de Sao Carlos, 2011.
Velle, G., Brooks, S. J., Birks, H. J. B., and Willassen, E.: Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia, Quaternary Sci. Rev., 24, 1429–1462, https://doi.org/10.1016/j.quascirev.2004.10.010, 2005.
Velle, G., Brodersen, K. P., Birks, H. J. B., and Willassen, E.: Midges as quantitative temperature indicator species: Lessons for palaeoecology, The Holocene, 20, 989–1002, https://doi.org/10.1177/0959683610365933, 2010.
Vuille, M., Bradley, R., and Keimig, F.: Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies, J. Climate, 13, 2520–2535, 2000.
Walker, I. R. and Cwynar, L. C.: Midges and palaeotemperature reconstruction – the North American experience, Quaternary Sci. Rev., 25, 1911–1925, https://doi.org/10.1016/j.quascirev.2006.01.014, 2006.
Walker, I. R. and Mathews, R. W.: Chironomids, lake trophic status and climate, Quaternary Res., 28, 431–437, 1987.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to Late Holocene climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828, https://doi.org/10.1016/j.quascirev.2008.06.013, 2008.
Wiederholm, T.: Chironomid of the Holarctic region, Keys and diagnosis, Part 1, Larvae, Entomologica Scandinavica Supplement 19, 1983.
Woodward, C. and Shulmeister, J.: New Zealand chironomids as proxies for human-induced and natural environmental change: transfer functions for temperature and lake production (chlorophyll a), J. Paleolimnol., 36, 407–429, 2006.
Wu, J., Porinchu, D. F., Horn, S. P., and Haberyan, K. A.: The modern distribution of chironomid sub-fossils (Insecta: Diptera) in Costa Rica and the development of a regional chironomid-based temperature inference model, Hydrobiologia, 742, 107–127, https://doi.org/10.1007/s10750-014-1970-x, 2014.
Short summary
Chironomidae are a family of two-winged aquatic fly of the order Diptera. The family is species rich (> 5000 described species) and extremely sensitive to environmental change, particualy temperature. Across the Northern Hemisphere, chironomids have been widely used as paleotemperature proxies as the chitinous remains of the insect are readily preserved in lake sediments. This is the first study using chironomids as paleotemperature proxies in tropical South America.
Chironomidae are a family of two-winged aquatic fly of the order Diptera. The family is species...