Articles | Volume 9, issue 2
https://doi.org/10.5194/cp-9-657-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-9-657-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
HadISDH: an updateable land surface specific humidity product for climate monitoring
K. M. Willett
Met Office Hadley Centre, FitzRoy Road, Exeter, UK
C. N. Williams Jr.
NOAA's National Climatic Data Center, Asheville, NC, USA
R. J. H. Dunn
Met Office Hadley Centre, FitzRoy Road, Exeter, UK
P. W. Thorne
Cooperative Institute for Climate and Satellites North Carolina, NCSU and NOAA's National Climatic Data Center, Asheville, NC, USA
S. Bell
National Physical Laboratory, Teddington, UK
M. de Podesta
National Physical Laboratory, Teddington, UK
P. D. Jones
Climatic Research Unit, University of East Anglia, Norwich, UK
Center of Excellence for Climate Change Research/Dept of Meteorology, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80234, Jeddah 21589, Saudi Arabia
D. E. Parker
Met Office Hadley Centre, FitzRoy Road, Exeter, UK
Related authors
Kate M. Willett, Robert J. H. Dunn, John J. Kennedy, and David I. Berry
Earth Syst. Sci. Data, 12, 2853–2880, https://doi.org/10.5194/essd-12-2853-2020, https://doi.org/10.5194/essd-12-2853-2020, 2020
Short summary
Short summary
We describe the development and validation of a new near-global gridded marine humidity monitoring product, HadISDH.marine, from air temperature and dew point temperature reported by ships. Erroneous data, biases, and inhomogeneities have been removed where possible through checks for outliers, supersaturated values, repeated values, and adjustments for known biases in non-aspirated instruments and ship heights. We have also estimated uncertainty in the data at the grid box and regional level.
Robert J. H. Dunn, Kate M. Willett, and David E. Parker
Earth Syst. Dynam., 10, 765–788, https://doi.org/10.5194/esd-10-765-2019, https://doi.org/10.5194/esd-10-765-2019, 2019
Short summary
Short summary
Using a sub-daily dataset of in situ observations, we have performed a study to see how the distributions of temperatures and wind speeds have changed over the last 45 years. Changes in the location or shape of these distributions show how extreme temperatures or wind speeds have changed. Our results show that cool extremes are warming more rapidly than warm ones in high latitudes but that in other parts of the world the opposite is true.
Robert J. H. Dunn, Kate M. Willett, Andrew Ciavarella, and Peter A. Stott
Earth Syst. Dynam., 8, 719–747, https://doi.org/10.5194/esd-8-719-2017, https://doi.org/10.5194/esd-8-719-2017, 2017
Short summary
Short summary
We compare the latest observations of relative and specific humidity with those from climate models. The climate models do not accurately reproduce the observed humidity behaviour for the last 15–20 years. We use the temporal, spatial and trend information to contrast the patterns exhibited by the observations and models. The temporal behaviour of the observations has previously been documented and is consistent with faster warming rates over land compared to oceans.
Robert J. H. Dunn, Kate M. Willett, David E. Parker, and Lorna Mitchell
Geosci. Instrum. Method. Data Syst., 5, 473–491, https://doi.org/10.5194/gi-5-473-2016, https://doi.org/10.5194/gi-5-473-2016, 2016
Short summary
Short summary
We have extended the sub-daily, integrated HadISD back to 1931 to double the time coverage of the dataset. We have updated and improved the station selection and merging procedure, which will be rerun on an annual basis to prevent it becoming out of date. The quality-control code has been rewritten from IDL to Python2.7 to make it clearer and more accessible. We have also calculated humidity and heat-stress variables in HadISD.2.0.0. This increases the value and applicability of this dataset.
R. J. H. Dunn, K. M. Willett, D. E. Parker, and L. Mitchell
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-4569-2015, https://doi.org/10.5194/cpd-11-4569-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
We present an updated to a quality-controlled hourly dataset (HadISD) of a range of weather observations, including temperature, pressure and wind measured at over 8000 stations across the world. In this update we have extended the time coverage back to 1931 and increased the number of stations included in HadISD. We will release annual updates of HadISD version 2, keeping the dataset up to date, and allowing the study of more recent climate events in high detail.
K. M. Willett, R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, D. E. Parker, P. D. Jones, and C. N. Williams Jr.
Clim. Past, 10, 1983–2006, https://doi.org/10.5194/cp-10-1983-2014, https://doi.org/10.5194/cp-10-1983-2014, 2014
Short summary
Short summary
We have developed HadISDH, a new gridded global land monthly mean climate montitoring product for humidity and temperature from 1973 to then end of 2013 (updated annually) based entirely on in situ observations. Uncertainty estimates are provided. Over the period of record significant warming and increases in water vapour have taken place. The specific humidity trends have slowed since a peak in 1998 concurrent with decreasing relative humidity from 2000 onwards.
K. Willett, C. Williams, I. T. Jolliffe, R. Lund, L. V. Alexander, S. Brönnimann, L. A. Vincent, S. Easterbrook, V. K. C. Venema, D. Berry, R. E. Warren, G. Lopardo, R. Auchmann, E. Aguilar, M. J. Menne, C. Gallagher, Z. Hausfather, T. Thorarinsdottir, and P. W. Thorne
Geosci. Instrum. Method. Data Syst., 3, 187–200, https://doi.org/10.5194/gi-3-187-2014, https://doi.org/10.5194/gi-3-187-2014, 2014
R. J. H. Dunn, K. M. Willett, C. P. Morice, and D. E. Parker
Clim. Past, 10, 1501–1522, https://doi.org/10.5194/cp-10-1501-2014, https://doi.org/10.5194/cp-10-1501-2014, 2014
Gilles Delaygue, Stefan Brönnimann, and Philip D. Jones
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-33, https://doi.org/10.5194/wcd-2022-33, 2022
Revised manuscript not accepted
Short summary
Short summary
We test whether any association between solar activity and meteorological conditions in the north Atlantic – European sector could be detected. We find associations consistent with those found by previous studies, with a slightly better statistical significance, and with less methodological biases which have impaired previous studies. Our study should help strengthen the recognition of meteorological impacts of solar activity.
Wenbin Sun, Yang Yang, Liya Chao, Wenjie Dong, Boyin Huang, Phil Jones, and Qingxiang Li
Earth Syst. Sci. Data, 14, 1677–1693, https://doi.org/10.5194/essd-14-1677-2022, https://doi.org/10.5194/essd-14-1677-2022, 2022
Short summary
Short summary
The new China global Merged Surface Temperature CMST 2.0 is the updated version of CMST-Interim used in the IPCC's AR6. The updated dataset is described in this study, containing three versions: CMST2.0 – Nrec, CMST2.0 – Imax, and CMST2.0 – Imin. The reconstructed datasets significantly improve data coverage, especially in the high latitudes in the Northern Hemisphere, thus increasing the long-term trends at global, hemispheric, and regional scales since 1850.
Peng Si, Qingxiang Li, and Phil Jones
Earth Syst. Sci. Data, 13, 2211–2226, https://doi.org/10.5194/essd-13-2211-2021, https://doi.org/10.5194/essd-13-2211-2021, 2021
Short summary
Short summary
This paper documents the various procedures necessary to construct a homogenized daily maximum and minimum temperature series starting in 1887 for Tianjin. The newly constructed temperature series provides a set of new baseline data for the field of extreme climate change at the century-long scale and a reference for construction of other long-term reliable daily time series in the region.
Kate M. Willett, Robert J. H. Dunn, John J. Kennedy, and David I. Berry
Earth Syst. Sci. Data, 12, 2853–2880, https://doi.org/10.5194/essd-12-2853-2020, https://doi.org/10.5194/essd-12-2853-2020, 2020
Short summary
Short summary
We describe the development and validation of a new near-global gridded marine humidity monitoring product, HadISDH.marine, from air temperature and dew point temperature reported by ships. Erroneous data, biases, and inhomogeneities have been removed where possible through checks for outliers, supersaturated values, repeated values, and adjustments for known biases in non-aspirated instruments and ship heights. We have also estimated uncertainty in the data at the grid box and regional level.
Robert J. H. Dunn, Kate M. Willett, and David E. Parker
Earth Syst. Dynam., 10, 765–788, https://doi.org/10.5194/esd-10-765-2019, https://doi.org/10.5194/esd-10-765-2019, 2019
Short summary
Short summary
Using a sub-daily dataset of in situ observations, we have performed a study to see how the distributions of temperatures and wind speeds have changed over the last 45 years. Changes in the location or shape of these distributions show how extreme temperatures or wind speeds have changed. Our results show that cool extremes are warming more rapidly than warm ones in high latitudes but that in other parts of the world the opposite is true.
Zoë A. Thomas, Richard T. Jones, Chris J. Fogwill, Jackie Hatton, Alan N. Williams, Alan Hogg, Scott Mooney, Philip Jones, David Lister, Paul Mayewski, and Chris S. M. Turney
Clim. Past, 14, 1727–1738, https://doi.org/10.5194/cp-14-1727-2018, https://doi.org/10.5194/cp-14-1727-2018, 2018
Short summary
Short summary
We report a high-resolution study of a 5000-year-long peat record from the Falkland Islands. This area sensitive to the dynamics of the Amundsen Sea Low, which plays a major role in modulating the Southern Ocean climate. We find wetter, colder conditions between 5.0 and 2.5 ka due to enhanced southerly airflow, with the establishment of drier and warmer conditions from 2.5 ka to present. This implies more westerly airflow and the increased projection of the ASL onto the South Atlantic.
Linden Ashcroft, Joan Ramon Coll, Alba Gilabert, Peter Domonkos, Manola Brunet, Enric Aguilar, Mercè Castella, Javier Sigro, Ian Harris, Per Unden, and Phil Jones
Earth Syst. Sci. Data, 10, 1613–1635, https://doi.org/10.5194/essd-10-1613-2018, https://doi.org/10.5194/essd-10-1613-2018, 2018
Short summary
Short summary
We present a dataset of 8.8 million sub-daily weather observations for Europe and the southern Mediterranean, compiled and digitised from historical and modern sources. We describe the methods used to digitise and quality control the data, and show that 3.5 % of the observations required correction or removal, similar to other data rescue projects. These newly recovered records will help to improve weather simulations over Europe.
Alberto Troccoli, Clare Goodess, Phil Jones, Lesley Penny, Steve Dorling, Colin Harpham, Laurent Dubus, Sylvie Parey, Sandra Claudel, Duc-Huy Khong, Philip E. Bett, Hazel Thornton, Thierry Ranchin, Lucien Wald, Yves-Marie Saint-Drenan, Matteo De Felice, David Brayshaw, Emma Suckling, Barbara Percy, and Jon Blower
Adv. Sci. Res., 15, 191–205, https://doi.org/10.5194/asr-15-191-2018, https://doi.org/10.5194/asr-15-191-2018, 2018
Short summary
Short summary
The European Climatic Energy Mixes, an EU Copernicus Climate Change Service project, has produced, in close collaboration with prospective users, a proof-of-concept climate service, or Demonstrator, designed to enable the energy industry assess how well different energy supply mixes in Europe will meet demand, over different time horizons (from seasonal to long-term decadal planning), focusing on the role climate has on the mixes. Its concept, methodology and some results are presented here.
Stephen Blenkinsop, Hayley J. Fowler, Renaud Barbero, Steven C. Chan, Selma B. Guerreiro, Elizabeth Kendon, Geert Lenderink, Elizabeth Lewis, Xiao-Feng Li, Seth Westra, Lisa Alexander, Richard P. Allan, Peter Berg, Robert J. H. Dunn, Marie Ekström, Jason P. Evans, Greg Holland, Richard Jones, Erik Kjellström, Albert Klein-Tank, Dennis Lettenmaier, Vimal Mishra, Andreas F. Prein, Justin Sheffield, and Mari R. Tye
Adv. Sci. Res., 15, 117–126, https://doi.org/10.5194/asr-15-117-2018, https://doi.org/10.5194/asr-15-117-2018, 2018
Short summary
Short summary
Measurements of sub-daily (e.g. hourly) rainfall totals are essential if we are to understand short, intense bursts of rainfall that cause flash floods. We might expect the intensity of such events to increase in a warming climate but these are poorly realised in projections of future climate change. The INTENSE project is collating a global dataset of hourly rainfall measurements and linking with new developments in climate models to understand the characteristics and causes of these events.
Robert J. H. Dunn, Kate M. Willett, Andrew Ciavarella, and Peter A. Stott
Earth Syst. Dynam., 8, 719–747, https://doi.org/10.5194/esd-8-719-2017, https://doi.org/10.5194/esd-8-719-2017, 2017
Short summary
Short summary
We compare the latest observations of relative and specific humidity with those from climate models. The climate models do not accurately reproduce the observed humidity behaviour for the last 15–20 years. We use the temporal, spatial and trend information to contrast the patterns exhibited by the observations and models. The temporal behaviour of the observations has previously been documented and is consistent with faster warming rates over land compared to oceans.
Philip D. Jones, Colin Harpham, Alberto Troccoli, Benoit Gschwind, Thierry Ranchin, Lucien Wald, Clare M. Goodess, and Stephen Dorling
Earth Syst. Sci. Data, 9, 471–495, https://doi.org/10.5194/essd-9-471-2017, https://doi.org/10.5194/essd-9-471-2017, 2017
Short summary
Short summary
The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim reanalysis is presented. The variables are air temperature, dewpoint temperature, precipitation (daily only), solar radiation, wind speed, and relative humidity.The resulting bias-adjusted dataset is available through the Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S), and can be accessed at present from ftp://ecem.climate.copernicus.eu.
Robert J. H. Dunn, Kate M. Willett, David E. Parker, and Lorna Mitchell
Geosci. Instrum. Method. Data Syst., 5, 473–491, https://doi.org/10.5194/gi-5-473-2016, https://doi.org/10.5194/gi-5-473-2016, 2016
Short summary
Short summary
We have extended the sub-daily, integrated HadISD back to 1931 to double the time coverage of the dataset. We have updated and improved the station selection and merging procedure, which will be rerun on an annual basis to prevent it becoming out of date. The quality-control code has been rewritten from IDL to Python2.7 to make it clearer and more accessible. We have also calculated humidity and heat-stress variables in HadISD.2.0.0. This increases the value and applicability of this dataset.
R. J. H. Dunn, K. M. Willett, D. E. Parker, and L. Mitchell
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-4569-2015, https://doi.org/10.5194/cpd-11-4569-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
We present an updated to a quality-controlled hourly dataset (HadISD) of a range of weather observations, including temperature, pressure and wind measured at over 8000 stations across the world. In this update we have extended the time coverage back to 1931 and increased the number of stations included in HadISD. We will release annual updates of HadISD version 2, keeping the dataset up to date, and allowing the study of more recent climate events in high detail.
R. J. H. Dunn, M. G. Donat, and L. V. Alexander
Clim. Past, 10, 2171–2199, https://doi.org/10.5194/cp-10-2171-2014, https://doi.org/10.5194/cp-10-2171-2014, 2014
Short summary
Short summary
Observational data sets contain uncertainties, e.g. from the instrument accuracy, as well as from the fact that usually only a single method is used in processing. We have performed an assessment of the size of the uncertainties associated with choices in the method used. The largest effects come from changes which affect the station network or the gridding method used. However, for the temperature indices in places with many stations, these changes have little effect on the long-term behaviour.
K. M. Willett, R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, D. E. Parker, P. D. Jones, and C. N. Williams Jr.
Clim. Past, 10, 1983–2006, https://doi.org/10.5194/cp-10-1983-2014, https://doi.org/10.5194/cp-10-1983-2014, 2014
Short summary
Short summary
We have developed HadISDH, a new gridded global land monthly mean climate montitoring product for humidity and temperature from 1973 to then end of 2013 (updated annually) based entirely on in situ observations. Uncertainty estimates are provided. Over the period of record significant warming and increases in water vapour have taken place. The specific humidity trends have slowed since a peak in 1998 concurrent with decreasing relative humidity from 2000 onwards.
K. Willett, C. Williams, I. T. Jolliffe, R. Lund, L. V. Alexander, S. Brönnimann, L. A. Vincent, S. Easterbrook, V. K. C. Venema, D. Berry, R. E. Warren, G. Lopardo, R. Auchmann, E. Aguilar, M. J. Menne, C. Gallagher, Z. Hausfather, T. Thorarinsdottir, and P. W. Thorne
Geosci. Instrum. Method. Data Syst., 3, 187–200, https://doi.org/10.5194/gi-3-187-2014, https://doi.org/10.5194/gi-3-187-2014, 2014
R. J. H. Dunn, K. M. Willett, C. P. Morice, and D. E. Parker
Clim. Past, 10, 1501–1522, https://doi.org/10.5194/cp-10-1501-2014, https://doi.org/10.5194/cp-10-1501-2014, 2014
T. J. Osborn and P. D. Jones
Earth Syst. Sci. Data, 6, 61–68, https://doi.org/10.5194/essd-6-61-2014, https://doi.org/10.5194/essd-6-61-2014, 2014
C. J. Merchant, S. Matthiesen, N. A. Rayner, J. J. Remedios, P. D. Jones, F. Olesen, B. Trewin, P. W. Thorne, R. Auchmann, G. K. Corlett, P. C. Guillevic, and G. C. Hulley
Geosci. Instrum. Method. Data Syst., 2, 305–321, https://doi.org/10.5194/gi-2-305-2013, https://doi.org/10.5194/gi-2-305-2013, 2013
V. O. John, D. E. Parker, S. A. Buehler, J. Price, and R. W. Saunders
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-10547-2013, https://doi.org/10.5194/acpd-13-10547-2013, 2013
Revised manuscript has not been submitted
Related subject area
Subject: Atmospheric Dynamics | Archive: Historical Records | Timescale: Instrumental Period
Air temperature changes in SW Greenland in the second half of the 18th century
Early 20th century Southern Hemisphere cooling
Precipitation reconstructions for Paris based on the observations by Louis Morin, 1665–1713 CE
Earliest meteorological readings in San Fernando (Cádiz, Spain, 1799–1813)
The weather diaries of the Kirch family: Leipzig, Guben, and Berlin (1677–1774)
Quantifying the contribution of forcing and three prominent modes of variability to historical climate
A 258-year-long data set of temperature and precipitation fields for Switzerland since 1763
Statistical reconstruction of daily temperature and sea level pressure in Europe for the severe winter 1788/89
Insights from 20 years of temperature parallel measurements in Mauritius around the turn of the 20th century
Unlocking weather observations from the Societas Meteorologica Palatina (1781–1792)
The 1921 European drought: impacts, reconstruction and drivers
The importance of input data quality and quantity in climate field reconstructions – results from the assimilation of various tree-ring collections
Reconstruction of the track and a simulation of the storm surge associated with the calamitous typhoon affecting the Pearl River Estuary in September 1874
Early instrumental meteorological measurements in Switzerland
The "dirty weather" diaries of Reverend Richard Davis: insights about early colonial-era meteorology and climate variability for northern New Zealand, 1839–1851
A collection of sub-daily pressure and temperature observations for the early instrumental period with a focus on the "year without a summer" 1816
East Asian Monsoon controls on the inter-annual variability in precipitation isotope ratio in Japan
Investigating uncertainties in global gridded datasets of climate extremes
HadISDH land surface multi-variable humidity and temperature record for climate monitoring
Pairwise homogeneity assessment of HadISD
Ensemble meteorological reconstruction using circulation analogues of 1781–1785
Reconstruction of high resolution atmospheric fields for Northern Europe using analog-upscaling
Early Portuguese meteorological measurements (18th century)
Extreme climate, not extreme weather: the summer of 1816 in Geneva, Switzerland
Inferences on weather extremes and weather-related disasters: a review of statistical methods
Benchmarking homogenization algorithms for monthly data
The construction of a Central Netherlands temperature
Early ship-based upper-air data and comparison with the Twentieth Century Reanalysis
The influence of the circulation on surface temperature and precipitation patterns over Europe
Rajmund Przybylak, Garima Singh, Przemysław Wyszyński, Andrzej Araźny, and Konrad Chmist
Clim. Past, 20, 1451–1470, https://doi.org/10.5194/cp-20-1451-2024, https://doi.org/10.5194/cp-20-1451-2024, 2024
Short summary
Short summary
The purpose of this study is to recognise the nature of the climate in historical times (second half of 18th century) in Greenland. Such knowledge is important for validating Greenland temperature reconstructions based on both modelling works and various proxies. The two unique series of old meteorological observations from Greenland we used indicated that temperature in the study period was comparable to that of the early 20th-century Arctic warming but lower than that of the present day.
Stefan Brönnimann, Yuri Brugnara, and Clive Wilkinson
Clim. Past, 20, 757–767, https://doi.org/10.5194/cp-20-757-2024, https://doi.org/10.5194/cp-20-757-2024, 2024
Short summary
Short summary
The early 20th century warming – the first phase of global warming in the 20th century – started from a peculiar cold state around 1910. We digitised additional ship logbooks for these years to study this specific climate state and found that it is real and likely an overlap of several climatic anomalies, including oceanic variability (La Niña) and volcanic eruptions.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 19, 2237–2256, https://doi.org/10.5194/cp-19-2237-2023, https://doi.org/10.5194/cp-19-2237-2023, 2023
Short summary
Short summary
Louis Morin consistently recorded precipitation intensity and duration between 1665 and 1713. We use these records to reconstruct precipitation totals. This reconstruction is validated by several methods and then presented using precipitation indexes. What is exceptional about this dataset is the availability of a sub-daily resolution and the low number of missing data points over the entire observation period.
Nieves Bravo-Paredes, María Cruz Gallego, Ricardo M. Trigo, and José Manuel Vaquero
Clim. Past, 19, 1397–1408, https://doi.org/10.5194/cp-19-1397-2023, https://doi.org/10.5194/cp-19-1397-2023, 2023
Short summary
Short summary
We present the earliest records made in San Fernando, very close to Cádiz (SW Spain). Several previous works have already recovered a significant number of meteorological records of interest in these localities. However, more than 40 000 daily meteorological observations recorded at the Royal Observatory of the Spanish Navy (located in San Fernando) were previously unnoticed and remained neither digitized nor studied. We analyze in detail these newly recovered meteorological readings.
Stefan Brönnimann and Yuri Brugnara
Clim. Past, 19, 1435–1445, https://doi.org/10.5194/cp-19-1435-2023, https://doi.org/10.5194/cp-19-1435-2023, 2023
Short summary
Short summary
We present the weather diaries of the Kirch family from 1677–1774 containing weather observations made in Leipzig and Guben and, from 1701 onward, instrumental observations made in Berlin. We publish the imaged diaries (10 445 images) and the digitized measurements (from 1720 onward). This is one of the oldest and longest meteorological records from Germany. The digitized pressure data show good agreement with neighbouring stations, highlighting their potential for weather reconstruction.
Andrew P. Schurer, Gabriele C. Hegerl, Hugues Goosse, Massimo A. Bollasina, Matthew H. England, Michael J. Mineter, Doug M. Smith, and Simon F. B. Tett
Clim. Past, 19, 943–957, https://doi.org/10.5194/cp-19-943-2023, https://doi.org/10.5194/cp-19-943-2023, 2023
Short summary
Short summary
We adopt an existing data assimilation technique to constrain a model simulation to follow three important modes of variability, the North Atlantic Oscillation, El Niño–Southern Oscillation and the Southern Annular Mode. How it compares to the observed climate is evaluated, with improvements over simulations without data assimilation found over many regions, particularly the tropics, the North Atlantic and Europe, and discrepancies with global cooling following volcanic eruptions are reconciled.
Noemi Imfeld, Lucas Pfister, Yuri Brugnara, and Stefan Brönnimann
Clim. Past, 19, 703–729, https://doi.org/10.5194/cp-19-703-2023, https://doi.org/10.5194/cp-19-703-2023, 2023
Short summary
Short summary
Climate reconstructions give insights into monthly and seasonal climate variability of the past few hundred years. However, to understand past extreme weather events and to relate them to impacts, for example to periods of extreme floods, reconstructions on a daily timescale are needed. Here, we present a reconstruction of 258 years of high-resolution daily temperature and precipitation fields for Switzerland covering the period 1763 to 2020, which is based on instrumental measurements.
Duncan Pappert, Mariano Barriendos, Yuri Brugnara, Noemi Imfeld, Sylvie Jourdain, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 18, 2545–2565, https://doi.org/10.5194/cp-18-2545-2022, https://doi.org/10.5194/cp-18-2545-2022, 2022
Short summary
Short summary
We present daily temperature and sea level pressure fields for Europe for the severe winter 1788/1789 based on historical meteorological measurements and an analogue reconstruction approach. The resulting reconstruction skilfully reproduces temperature and pressure variations over central and western Europe. We find intense blocking systems over northern Europe and several abrupt, strong cold air outbreaks, demonstrating that quantitative weather reconstruction of past extremes is possible.
Samuel O. Awe, Martin Mahony, Edley Michaud, Conor Murphy, Simon J. Noone, Victor K. C. Venema, Thomas G. Thorne, and Peter W. Thorne
Clim. Past, 18, 793–820, https://doi.org/10.5194/cp-18-793-2022, https://doi.org/10.5194/cp-18-793-2022, 2022
Short summary
Short summary
We unearth and analyse 2 decades of highly valuable measurements made on Mauritius at the Royal Alfred Observatory, where several distinct thermometer combinations were in use and compared, at the turn of the 20th century. This series provides unique insights into biases in early instrumental temperature records. Differences are substantial and for some instruments exhibit strong seasonality. This reinforces the critical importance of understanding early instrumental series biases.
Duncan Pappert, Yuri Brugnara, Sylvie Jourdain, Aleksandra Pospieszyńska, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 17, 2361–2379, https://doi.org/10.5194/cp-17-2361-2021, https://doi.org/10.5194/cp-17-2361-2021, 2021
Short summary
Short summary
This paper presents temperature and pressure measurements from the 37 stations of the late 18th century network of the Societas Meteorologica Palatina, in addition to providing an inventory of the available observations, most of which have been digitised. The quality of the recovered series is relatively good, as demonstrated by two case studies. Early instrumental data such as these will help to explore past climate and weather extremes in Europe in greater detail.
Gerard van der Schrier, Richard P. Allan, Albert Ossó, Pedro M. Sousa, Hans Van de Vyver, Bert Van Schaeybroeck, Roberto Coscarelli, Angela A. Pasqua, Olga Petrucci, Mary Curley, Mirosław Mietus, Janusz Filipiak, Petr Štěpánek, Pavel Zahradníček, Rudolf Brázdil, Ladislava Řezníčková, Else J. M. van den Besselaar, Ricardo Trigo, and Enric Aguilar
Clim. Past, 17, 2201–2221, https://doi.org/10.5194/cp-17-2201-2021, https://doi.org/10.5194/cp-17-2201-2021, 2021
Short summary
Short summary
The 1921 drought was the most severe drought to hit Europe since the start of the 20th century. Here the climatological description of the drought is coupled to an overview of its impacts, sourced from newspapers, and an analysis of its drivers. The area from Ireland to the Ukraine was affected but hardest hit was the triangle between Brussels, Paris and Lyon. The drought impacts lingered on until well into autumn and winter, affecting water supply and agriculture and livestock farming.
Jörg Franke, Veronika Valler, Stefan Brönnimann, Raphael Neukom, and Fernando Jaume-Santero
Clim. Past, 16, 1061–1074, https://doi.org/10.5194/cp-16-1061-2020, https://doi.org/10.5194/cp-16-1061-2020, 2020
Short summary
Short summary
This study explores the influence of the input data choice on spatial climate reconstructions. We compare three tree-ring-based data sets which range from small sample size, small spatial coverage and strict screening for temperature sensitivity to the opposite. We achieve the best spatial reconstruction quality by combining all available input data but rejecting records with little and uncertain climatic information and considering moisture availability as an additional growth limitation.
Hing Yim Mok, Wing Hong Lui, Dick Shum Lau, and Wang Chun Woo
Clim. Past, 16, 51–64, https://doi.org/10.5194/cp-16-51-2020, https://doi.org/10.5194/cp-16-51-2020, 2020
Short summary
Short summary
Using available information from historical documents, the maximum storm surge and storm tide at Hong Kong during the passage of a typhoon in 1874 were determined by reconstructing the possible typhoon track and found to be higher than all existing records since the 1883 establishment of the Hong Kong Observatory. This reveals that a more detailed frequency analysis of extreme sea levels taking the 1874 typhoon into account is essential for realistic storm surge risk assessments in Hong Kong.
Lucas Pfister, Franziska Hupfer, Yuri Brugnara, Lukas Munz, Leonie Villiger, Lukas Meyer, Mikhaël Schwander, Francesco Alessandro Isotta, Christian Rohr, and Stefan Brönnimann
Clim. Past, 15, 1345–1361, https://doi.org/10.5194/cp-15-1345-2019, https://doi.org/10.5194/cp-15-1345-2019, 2019
Short summary
Short summary
The 18th and early 19th centuries saw pronounced climatic variations with impacts on the environment and society. Although instrumental meteorological data for that period exist, only a small fraction has been the subject of research. This study provides an overview of early instrumental meteorological records in Switzerland resulting from an archive survey and demonstrates the great potential of such data. It is accompanied by the online publication of the imaged data series and metadata.
Andrew M. Lorrey and Petra R. Chappell
Clim. Past, 12, 553–573, https://doi.org/10.5194/cp-12-553-2016, https://doi.org/10.5194/cp-12-553-2016, 2016
Short summary
Short summary
The meteorological diary of Reverend Richard Davis (1839–1844; 1848–1851) is the earliest continuous daily instrumental weather observation record for New Zealand. It pre-dates James Hector's meteorological network by more than 20 years, and it contains evidence that temperatures for May–August were on average colder than present day in Northland. Some weather extremes Davis also witnessed may have been more frequent in the mid-1800s relative to the modern era, including frost, ice and snow.
Y. Brugnara, R. Auchmann, S. Brönnimann, R. J. Allan, I. Auer, M. Barriendos, H. Bergström, J. Bhend, R. Brázdil, G. P. Compo, R. C. Cornes, F. Dominguez-Castro, A. F. V. van Engelen, J. Filipiak, J. Holopainen, S. Jourdain, M. Kunz, J. Luterbacher, M. Maugeri, L. Mercalli, A. Moberg, C. J. Mock, G. Pichard, L. Řezníčková, G. van der Schrier, V. Slonosky, Z. Ustrnul, M. A. Valente, A. Wypych, and X. Yin
Clim. Past, 11, 1027–1047, https://doi.org/10.5194/cp-11-1027-2015, https://doi.org/10.5194/cp-11-1027-2015, 2015
Short summary
Short summary
A data set of instrumental pressure and temperature observations for the early instrumental period (before ca. 1850) is described. This is the result of a digitisation effort involving the period immediately after the eruption of Mount Tambora in 1815, combined with the collection of already available sub-daily time series. The highest data availability is therefore for the years 1815 to 1817. An analysis of pressure variability and of case studies in Europe is performed for that period.
N. Kurita, Y. Fujiyoshi, T. Nakayama, Y. Matsumi, and H. Kitagawa
Clim. Past, 11, 339–353, https://doi.org/10.5194/cp-11-339-2015, https://doi.org/10.5194/cp-11-339-2015, 2015
Short summary
Short summary
This study demonstrates that the intensity of the East Asian summer and winter monsoon is the primary driver of variations of summer and winter precipitation isotopes in central Japan. Japan lies in the northeast limits of the East Asian monsoon region. Understanding the past monsoon changes in Japan is important for determining whether the isotopic variability recorded in Chinese stalagmite reflects the East Asian summer monsoon intensity or rainfall variability in the Indian summer monsoon.
R. J. H. Dunn, M. G. Donat, and L. V. Alexander
Clim. Past, 10, 2171–2199, https://doi.org/10.5194/cp-10-2171-2014, https://doi.org/10.5194/cp-10-2171-2014, 2014
Short summary
Short summary
Observational data sets contain uncertainties, e.g. from the instrument accuracy, as well as from the fact that usually only a single method is used in processing. We have performed an assessment of the size of the uncertainties associated with choices in the method used. The largest effects come from changes which affect the station network or the gridding method used. However, for the temperature indices in places with many stations, these changes have little effect on the long-term behaviour.
K. M. Willett, R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, D. E. Parker, P. D. Jones, and C. N. Williams Jr.
Clim. Past, 10, 1983–2006, https://doi.org/10.5194/cp-10-1983-2014, https://doi.org/10.5194/cp-10-1983-2014, 2014
Short summary
Short summary
We have developed HadISDH, a new gridded global land monthly mean climate montitoring product for humidity and temperature from 1973 to then end of 2013 (updated annually) based entirely on in situ observations. Uncertainty estimates are provided. Over the period of record significant warming and increases in water vapour have taken place. The specific humidity trends have slowed since a peak in 1998 concurrent with decreasing relative humidity from 2000 onwards.
R. J. H. Dunn, K. M. Willett, C. P. Morice, and D. E. Parker
Clim. Past, 10, 1501–1522, https://doi.org/10.5194/cp-10-1501-2014, https://doi.org/10.5194/cp-10-1501-2014, 2014
P. Yiou, M. Boichu, R. Vautard, M. Vrac, S. Jourdain, E. Garnier, F. Fluteau, and L. Menut
Clim. Past, 10, 797–809, https://doi.org/10.5194/cp-10-797-2014, https://doi.org/10.5194/cp-10-797-2014, 2014
F. Schenk and E. Zorita
Clim. Past, 8, 1681–1703, https://doi.org/10.5194/cp-8-1681-2012, https://doi.org/10.5194/cp-8-1681-2012, 2012
M. J. Alcoforado, J. M. Vaquero, R. M. Trigo, and J. P. Taborda
Clim. Past, 8, 353–371, https://doi.org/10.5194/cp-8-353-2012, https://doi.org/10.5194/cp-8-353-2012, 2012
R. Auchmann, S. Brönnimann, L. Breda, M. Bühler, R. Spadin, and A. Stickler
Clim. Past, 8, 325–335, https://doi.org/10.5194/cp-8-325-2012, https://doi.org/10.5194/cp-8-325-2012, 2012
H. Visser and A. C. Petersen
Clim. Past, 8, 265–286, https://doi.org/10.5194/cp-8-265-2012, https://doi.org/10.5194/cp-8-265-2012, 2012
V. K. C. Venema, O. Mestre, E. Aguilar, I. Auer, J. A. Guijarro, P. Domonkos, G. Vertacnik, T. Szentimrey, P. Stepanek, P. Zahradnicek, J. Viarre, G. Müller-Westermeier, M. Lakatos, C. N. Williams, M. J. Menne, R. Lindau, D. Rasol, E. Rustemeier, K. Kolokythas, T. Marinova, L. Andresen, F. Acquaotta, S. Fratianni, S. Cheval, M. Klancar, M. Brunetti, C. Gruber, M. Prohom Duran, T. Likso, P. Esteban, and T. Brandsma
Clim. Past, 8, 89–115, https://doi.org/10.5194/cp-8-89-2012, https://doi.org/10.5194/cp-8-89-2012, 2012
G. van der Schrier, A. van Ulden, and G. J. van Oldenborgh
Clim. Past, 7, 527–542, https://doi.org/10.5194/cp-7-527-2011, https://doi.org/10.5194/cp-7-527-2011, 2011
S. Brönnimann, G. P. Compo, R. Spadin, R. Allan, and W. Adam
Clim. Past, 7, 265–276, https://doi.org/10.5194/cp-7-265-2011, https://doi.org/10.5194/cp-7-265-2011, 2011
P. D. Jones and D. H. Lister
Clim. Past, 5, 259–267, https://doi.org/10.5194/cp-5-259-2009, https://doi.org/10.5194/cp-5-259-2009, 2009
Cited articles
Allan, R. J., Brohan, P., Compo, G. P., Stone, R., Luterbacher J., and Brönnimann, S.: The International Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative, B. Am. Meteorol. Soc., 92, 1421–1425, https://doi.org/10.1175/2011BAMS3218.1, 2011.
Allan, R. P., Soden, B. J., John, V. O., Ingram, W., and Good, P.: Current changes in tropical precipitation, Environ. Res. Lett., 5, 025205 https://doi.org/10.1088/1748-9326/5/2/025205, 2010.
Alexandersson, H.: A homogeneity test applied to precipitation data, J. Climatol., 6, 661–675, https://doi.org/10.1002/joc.3370060607, 1986.
Asokan, S. M., Jarsjö, J., and Destouni, G.: Vapor flux by evapotranspiration: effects of changes in climate, land use and water use, J. Geophys. Res., 115, D24102, https://doi.org/10.1029/2010JD014417, 2010.
Berry, D. I. and Kent, E. C.: Air–Sea fluxes from ICOADS: the construction of a new gridded dataset with uncertainty estimates, Int. J. Climatol., 31, 987–1001, https://doi.org/10.1002/joc.2059, 2011.
BIPM (Bureau International des Poids et Mesures): Guide to the Expression of Uncertainty in Measurements. Joint Committee for Guides in Metrology JCGM 100, available at: http://www.bipm.org/en/publications/guides/gum.html (last access: August 2012), 120 pp., 2008.
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., and Jones, P. D.: Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850, J. Geophys. Res., 111, D12106, https://doi.org/10.1029/2005JD006548, 2006.
Brutsaert, W. and Parlange, M. B.: Hydrologic cycle explains the evaporation paradox, Nature, 396, 30–30, https://doi.org/10.1038/23845, 1998.
Buck, A. L.: New equations for computing vapor pressure and enhancement factor, J. Appl. Meteorol., 20, 1527–1532, 1981.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D, Matsui, N., Allan, R. J., Yin, X., Gleason Jr., B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis Project, Q. J. Roy. Meteorol. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Dai, A.: Recent climatology, variability, and trends in global surface humidity, J. Climate., 19, 3589–3606, 2006.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L. J., Bidlot, L., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dunn, R. J. H., Willett, K. M., Thorne, P. W., Woolley, E. V., Durre, I., Dai, A., Parker, D. E., and Vose, R. S.: HadISD: a quality-controlled global synoptic report database for selected variables at long-term stations from 1973–2011, Clim. Past, 8, 1649–1679, https://doi.org/10.5194/cp-8-1649-2012, 2012.
Durack, P. J., Wijffels, S. E., and Matear, R. J.: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000, Science, 336, 455–458, https://doi.org/10.1126/science.1212222, 2012.
Held, I. M. and Soden, B. J.: Water vapour feedback and global warming, Annu. Rev. Energ. Env., 25, 441–75, 2000.
Jensen, M. E., Burman, R. D., and Allen, R. G. (Eds.): Evapotranspiration and Irrigation Water Requirements: ASCE Manuals and Reports on Engineering Practices No. 70, American Society of Civil Engineers, New York, 360 pp., 1990.
Jones, P. D., Osborn, T. J., and Briffa, K. R.: Estimating sampling errors in large-scale temperature averages, J. Climate, 10, 2548–2568, 1997.
Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M., and Morice, C. P.: Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010, J. Geophys. Res., 117, D05127, https://doi.org/10.1029/2011JD017139, 2012.
Joshi, M. M., Gregory, J. M., Webb, M. J., Sexton D. M. H., and Johns, T. C.: Mechanisms for the land/sea warming contrast exhibited by simulations of climate change, Clim. Dynam., 30, 455–465, https://doi.org/10.1007/s00382-007-0306-1, 2008.
Kennedy, J. J., Rayner, N. A., Smith, R. O., Saunby, M., and Parker, D. E.: Reassessing biases and other uncertainties in sea-surface temperature observations since 1850 part 1: measurement and sampling errors, J. Geophys. Res., 116, D14103, https://doi.org/10.1029/2010JD015218, 2011a.
Kennedy, J. J., Rayner, N. A., Smith, R. O., Saunby, M., and Parker, D. E.: Reassessing biases and other uncertainties in sea-surface temperature observations since 1850 part 2: biases and homogenisation. J. Geophys. Res., 116, D14104, https://doi.org/10.1029/2010JD015220, 2011b.
Lanzante, J. R.: Resistant, robust and non-parametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data, Int. J. Climatol., 16, 1197–1226, 1996.
Lawrimore, J. H., Menne, M. J., Gleason, B. E., Williams, C. N., Wuertz, D. B., Vose, R. S., and Rennie, J.: An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3, J. Geophys. Res., 116, D19121, https://doi.org/10.1029/2011JD016187, 2011.
List, R. J.: Smithsonian Meteorological Tables, Vol. 114, 6th Edn., Smithsonian Institution, Washington DC, 268 pp., 1963.
Makkonen, L. and Laakso, T.: Humidity Measurements in Cold and Humid Environments, Bound.-Lay. Meteorol., 116, 131–147, https://doi.org/10.1007/s10546-004-7955-y, 2005.
McCarthy, M. P., Titchner, H. A., Thorne, P. W., Tett, S. F. B., Haimberger, L., and Parker, D. E.: Assessing bias and uncertainty in the HadAT adjusted radiosonde climate record, J. Climate, 21, 817–832, https://doi.org/10.1175/2007JCLI1733.1, 2008.
Mears, C. A., Wentz, F. J., Thorne, P., and Bernie, D.: Assessing uncertainty in estimates of atmospheric temperature changes from MSU and AMSU using a Monte-Carlo estimation technique, J. Geophys. Res.-Atmos., 116, D08112, https://doi.org/10.1029/2010JD014954, 2011.
Menne, M. J. and Williams Jr., C. N.: Homogenization of temperature series via pairwise comparisons, J. Climate, 22, 1700–1717, https://doi.org/10.1175/2008JCLI2263.1, 2009.
Menne, M. J., Williams Jr., C. N., and Vose, R. S.: The U.S. historical climatology network monthly temperature data, Version 2, B. Am. Meteorol. Soc., 90, 993–1007, https://doi.org/10.1175/2008BAMS2613.1, 2009.
MOHMI (Meteorological Office): Handbook of Meteorological Instruments – Vol. 3, Measurement of Humidity, 2nd Edn., Her Majesty's Stationery Office, London, 10–12, 1981.
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset, J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187, 2012.
NPL/IMC (National Physics Laboratory and The Institute of Measurement and Control): A Guide to the Measurement of Humidity, The Institute of Measurement and Control, London, 68 pp., 1996.
Peixoto, J. P. and Oort, A. H.: The climatology of relative humidity in the atmosphere, J. Climate, 9, 3443–3463, 1996.
Rayner, N. A., Brohan, P., Parker, D. E., Folland, C. K., Kennedy, J. J., Vanicek, M., Ansell, T., and Tett, S. F. B.: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 data set, J. Climate, 19, 446–469, https://doi.org/10.1175/JCLI3637.1, 2006.
Rowell, D. P. and Jones, R. G.: Causes and uncertainty of future summer drying over Europe, Clim. Dynam., 27, 281–299, https://doi.org/10.1007/s00382-006-0125-9, 2006.
Sanchez-Lugo, A., Kennedy, J. J., and Berrisford, P.: Surface Temperature, in "State of the Climate in 2011", edited by: Blunden, J. and Arndt, D. S., B. Am. Meteorol. Soc., 93, S14–S15, https://doi.org/10.1175/2012BAMSStateoftheClimate.1, 2012.
Segnalini, M., Nardone, A., Bernabucci, U., Vitali, A., Ronchi, B., and Lacetera, N.: Dynamics of the temperature-humidity index in the Mediterranean basin, Int. J. Biometeorol., 55, 253–263, https://doi.org/10.1007/s00484-010-0331-3, 2011.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau, J. Am. Stat. Assoc., 63, 1379–1389, 1968.
Simmons, A., Willett, K. M., Jones, P. D., Thorne P. W., and Dee, D.: Low-frequency variations in surface atmospheric humidity, temperature and precipitation: inferences from reanalyses and monthly gridded observational datasets, J. Geophys. Res., 115, D01110, https://doi.org/10.1029/2009JD012442, 2010.
Smith, A., Lott, N., and Vose, R.: The Integrated Surface Database: Recent Developments and Partnerships, B. Am. Meteorol. Soc., 92, 704–708, https://doi.org/10.1175/2011BAMS3015.1, 2011.
Taylor, N. A. S.: Challenges to Temperature Regulation When Working in Hot Environments, Industrial Health, 44, 331–344, 2006.
Trenberth, K. E.: Conceptual framework for changes of extremes of the hydrological cycle with climate change, Climatic Change, 42, 327–339, 1999.
Venema, V. K. C., Mestre, O., Aguilar, E., Auer, I., Guijarro, J. A., Domonkos, P., Vertacnik, G., Szentimrey, T., Stepanek, P., Zahradnicek, P., Viarre, J., Müller-Westermeier, G., Lakatos, M., Williams, C. N., Menne, M. J., Lindau, R., Rasol, D., Rustemeier, E., Kolokythas, K., Marinova, T., Andresen, L., Acquaotta, F., Fratianni, S., Cheval, S., Klancar, M., Brunetti, M., Gruber, C., Prohom Duran, M., Likso, T., Esteban, P., and Brandsma, T.: Benchmarking homogenization algorithms for monthly data, Clim. Past, 8, 89–115, https://doi.org/10.5194/cp-8-89-2012, 2012.
Vujanac, I., Kirovski, D., Samanc, H., Prodanovic, R., Lakic, N., Adamovic, M., and Valcic, O.: Milk production in high-yielding dairy cows under different environment temperatures, Large Anim. Rev., 18, 31–36, 2012.
Willett, K. M., Jones, P. D., Gillett, N. P., and Thorne, P. W.: Recent changes in surface humidity: Development of the HadCRUH dataset, J. Climate, 21, 5364–5383, https://doi.org/10.1175/2008JCLI2274.1, 2008.
Willett, K. M., Jones, P. D., Thorne, P. W., and Gillett, N. P.: A comparison of large scale changes in surface humidity over land in observations and CMIP3 GCMs, Environ. Res. Lett., 5, 025210, https://doi.org/10.1088/1748-9326/5/2/025210, 2010.
Willett, K. M., Dai, A., and Berry, D.: Global climate, in: State of the Climate in 2010, edited by: Blunden, J., Arndt, D. S., and Baringer, M. O., B. Am. Meteorol. Soc., 92, S40–S41, https://doi.org/10.1175/1520-0477-92.6.S1, 2011.
Willett, K. M., Berry, D., and Simmons, A.: Global climate, in: State of the Climate in 2011, edited by: Blunden, J. and Arndt, D. S., B. Am. Meteorol. Soc., 93, S23–S24, https://doi.org/10.1175/2012BAMSStateoftheClimate.1, 2012.
Williams, C. N., Menne, M. J., and Thorne P. W.: Benchmarking the performance of pairwise homogenization of surface temperatures in the United States, J. Geophys. Res., 117, D05116, https://doi.org/10.1029/2011JD016761, 2012.
Zhou, Y. P., Xu, K.-M., Sud, Y. C., and Betts, A. K.: Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data, J. Geophys. Res., 116, D09101, https://doi.org/10.1029/2010JD015197, 2011.