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Abstract. HadISDH is a near-global land surface specific hu-
midity monitoring product providing monthly means from
1973 onwards over large-scale grids. Presented herein to
2012, annual updates are anticipated. HadISDH is an up-
date to the land component of HadCRUH, utilising the global
high-resolution land surface station product HadISD as a ba-
sis. HadISD, in turn, uses an updated version of NOAA’s In-
tegrated Surface Database. Intensive automated quality con-
trol has been undertaken at the individual observation level,
as part of HadISD processing. The data have been sub-
sequently run through the pairwise homogenisation algo-
rithm developed for NCDC’s US Historical Climatology Net-
work monthly temperature product. For the first time, uncer-
tainty estimates are provided at the grid-box spatial scale and
monthly timescale.

HadISDH is in good agreement with existing land sur-
face humidity products in periods of overlap, and with both
land air and sea surface temperature estimates. Widespread
moistening is shown over the 1973–2012 period. The largest
moistening signals are over the tropics with drying over
the subtropics, supporting other evidence of an intensi-
fied hydrological cycle over recent years. Moistening is de-
tectable with high (95 %) confidence over large-scale aver-
ages for the globe, Northern Hemisphere and tropics, with
trends of 0.089 (0.080 to 0.098) g kg−1 per decade, 0.086

(0.075 to 0.097) g kg−1 per decade and 0.133 (0.119 to
0.148) g kg−1 per decade, respectively. These changes are
outside the uncertainty range for the large-scale average
which is dominated by the spatial coverage component; sta-
tion and grid-box sampling uncertainty is essentially negligi-
ble on large scales. A very small moistening (0.013 (−0.005
to 0.031) g kg−1 per decade) is found in the Southern Hemi-
sphere, but it is not significantly different from zero and
uncertainty is large. When globally averaged, 1998 is the
moistest year since monitoring began in 1973, closely fol-
lowed by 2010, two strong El Niño years. The period in be-
tween is relatively flat, concurring with previous findings of
decreasing relative humidity over land.

1 Introduction

Specific humidity at the surface is, on a physical basis, ex-
pected to increase commensurate with rising surface tem-
peratures, where the presence of liquid water is not a lim-
iting factor (Held and Soden, 2000). This has been observed
over recent decades (Dai, 2006; Willett et al., 2008; Berry
and Kent, 2011) with specific humidity increases in excess
of 7 % per kelvin (as expected from the Clausius–Clapeyron
relation) for some regions over 1973–1999 (Willett et al.,
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2010). Surface water vapour drives a positive feedback ef-
fect, supplying the upper atmosphere with additional water
vapour through vertical mixing processes. Here, it acts as
a greenhouse gas, modifying the radiation budget and aug-
menting climate change. Water vapour is also an important
component of the Earth’s atmosphere for a number of ad-
ditional reasons beyond determining climate sensitivity. The
amount of water vapour in the atmosphere, quantified here as
specific humidity, is a crucial element within the hydrologi-
cal cycle: it governs heavy rainfall amounts where a large
fraction of the water is often rained out (Trenberth, 1999).
A number of variables are now showing what appears to be
an intensified hydrological cycle (e.g. precipitation – Zhou et
al., 2011; ocean salinity – Durack et al., 2012; evaporation –
Brutsaert and Parlange, 1998), which is consistent with large-
scale increasing water vapour concentration. Through latent
heat, water vapour stores and releases energy, which can then
be transported around the globe. Increasing water vapour also
has implications for regulation of thermal comfort, increas-
ing the risk of heat stress or heat related health problems in
humans (Taylor, 2006) and impacting milk yields in cattle
(e.g. Segnalini et al., 2011; Vujanac et al., 2012), amongst
other physiological impacts on ecosystems more generally.

Since early in the 21st century however, humidity in-
creases over land have abated somewhat as global land tem-
peratures have continued to rise. This has been observed as a
decrease in the relative humidity and a plateauing in the spe-
cific humidity (Simmons et al., 2010; Willett et al., 2012).
Simmons et al. suggest a link to the observed greater warm-
ing over the land than over the oceans in recent years. Po-
tential mechanisms for such warming asymmetry have been
discussed in the literature (e.g. Brutsaert and Parlange, 1998;
Joshi et al., 2008; Rowell and Jones, 2006). Much of the
moisture over the land comes from evaporation over the
oceans, so if the air over the ocean surface warms more
slowly than that of the land, then the saturated vapour pres-
sure (water-holding capacity) will also increase more slowly
over the ocean. Therefore, evaporation over the oceans is un-
likely to increase at a rate high enough to sustain constant rel-
ative humidity (and hence proportionally increasing specific
humidity) over the warmer land mass. Large-scale changes
in the atmospheric circulation may also play a part, and re-
duced moisture availability over land may lead to increased
partitioning of incoming energy into sensible heating as op-
posed to evaporation (latent heating). This further escalates
the warming over land and may diminish specific humidity
increases. Whatever the drivers or processes, the crucial is-
sue is how well we can characterise the true changes in sur-
face humidity. Without a robust estimate of the observed be-
haviour, the potential for false conclusions or inferences is
substantial.

Previously, HadCRUH, a quality-controlled and ho-
mogenised global surface humidity product, has been widely
used to look at these changes. However, it was last updated
in 2007 and an improved version, extending spatial coverage

and with capacity for operational annual updates, is required
for near-real-time monitoring activities. Here we describe the
creation of the land surface specific humidity component of
an envisaged next generation HadCRUH product: HadISDH
(Met Office Hadley Centre (in collaboration with the Na-
tional Oceanic and Atmospheric Administration’s (NOAA)
National Climate Data Center (NCDC), the National Phys-
ical Laboratory and the Climatic Research Unit) Integrated
Surface Database (ISD) humidity product). This builds upon
the new hourly land surface dataset HadISD (Dunn et al.,
2012), which is a quality-controlled database of global syn-
optic data since 1973. HadISDH will be the first operational
in situ land surface specific humidity product, and also the
first to provide an estimate of uncertainties in the data. This
product is designed for assessing year-to-year changes over
large scales. While the data are intended primarily for scien-
tific research, they are freely available to all.

Section two describes the source data and processing. Sec-
tion three describes the building process including the per-
tinent aspects of the HadISD quality control suite and the
applied homogenisation procedure. Section 4 describes the
development of the uncertainty model for both the station
data and the gridded product. Methods for exploring these
uncertainties in following analyses are also documented. An
analysis of recent changes is given in Sect. 5 followed by
the logistics for using the product in Sect. 6. Conclusions are
drawn in Sect. 7.

HadCRUH also included relative humidity. We intend to
include relative humidity and other related variables into
HadISDH at a later date. This will involve the development
of measurement uncertainty estimates specific to each vari-
able and ensuring consistency across all variables after ap-
plication of homogenisation procedures. Given that both of
these are novel ventures, it was felt that they could be dealt
with more thoroughly in a separate paper.

2 Data source and processing

HadISDH uses the global high-resolution, quality-controlled
land surface database HadISD as its source. HadISD was
designed for studying extreme events and provides hourly
to six-hourly temperature (T ), dew point temperature (Td),
sea level pressure (SLP) and wind speed for 6103 stations.
To date, HadISD has not been homogenised. Therefore, care
must be taken when looking at any long-term changes. It is
described fully in Dunn et al. (2012). Elements of this pro-
cessing relevant to the creation of a specific humidity dataset
will be discussed here in Sect. 3.1. We apply additional pro-
cessing to make HadISDH suitable for assessing long-term
trends over large scales (Sect. 3.2).

The station data for HadISDH are essentially the same
as for HadCRUH: the NOAA National Climate Data Cen-
ter’s Integrated Surface Database (ISD) (Smith et al., 2011).
This is available online fromhttp://www.ncdc.noaa.gov/
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oa/climate/isd/index.php. For HadISDH, 3456 stations are
found that have sufficient length of data after passing through
the quality control and homogenisation procedures (there are
51 additional stations that are sufficiently long but not in-
cluded due to homogenisation issues – Sect. 3.2). In order to
be able to calculate a reliable climatology, each station must
have at least 15 yr of data within the 1976–2005 climatology
period for each month of the year, where each month must
contain at least 15 days. To prevent biasing towards night
or day, or biases arising from systemically changing obser-
vation times aliasing into the record, there must be at least
four observations per day, with at least one in each eight
hour tercile (00:00–08:00, 08:00–16:00, 16:00–24:00 UTC)
of the day. HadISDH includes 1091 stations that were not
in the specific humidity land component of HadCRUH. Fur-
thermore, a total of 449 stations are the result of compositing
multiple stations where they appeared to be the same station.
For example, certain countries changed their WMO iden-
tifier code leading to changes in station reporting ID over
the Global Telecommunication System (GTS), which is the
basis for ISD. Without such compositing many Canadian,
Scandinavian and Eastern European stations would be trun-
cated or treated as two stations artificially. Unfortunately, the
compositing does not manage to resolve the WMO identifier
change over eastern Germany. Compositing was done dur-
ing the HadISD processing and is fully documented therein
(Dunn et al., 2012).

HadISDH improves coverage over North America, where,
for HadCRUH, many records were short and fragmented al-
though they actually referred to the same station. ISD has
been improved in this regard since the creation of HadCRUH,
and the compositing process has helped further. Central Eu-
rope and islands in the Pacific are also areas of better cover-
age than HadCRUH. However, 878 stations from HadCRUH
are no longer in HadISDH. In particular there are now very
few data for Madagascar, the Arabian Peninsula, Western
Australia and Indonesia. This is mostly because of the lack
of up-to-date data from those stations reaching the ISD data-
bank through the GTS. This results in station records be-
ing too short to meet the criteria set out above. Hopefully
this situation will be improved in future annual updates of
HadISDH. In some cases, these stations will have failed to
pass the new quality control and homogenisation routines
with sufficient data. In a few cases, the compositing pro-
cess may have resulted in a HadCRUH station having a dif-
ferent identifying number (WMO identifier) in HadISDH.
Station coverage, including composites, is shown in Fig. 1a
and b, and a full list is available alongside the data product
atwww.metoffice.gov.uk/hadobs/hadisdh. Coverage remains
relatively constant over time over both hemispheres and the
tropics (Fig. 1c). There is a slight tail-off from 2006 onwards
for the Northern Hemisphere stations. In part this is due to
ongoing updates for known issues with these data, so it is ex-
pected that 2006+ coverage will improve in the near future
(Neal Lott, personal communication, February 2013). Users

Fig. 1. Station coverage comparison between HadCRUH and
HadISDH.(a) Station coverage in HadISDH. Stations in red/pink
were also in HadCRUH. Stations in blue/turquoise are new. Pink
and turquoise stations are stations that are composites of more
than one original source station.(b) Stations from HadCRUH
that are no longer in HadISDH (dark green), and HadISDH sta-
tions with subzero specific humidity issues after homogenisa-
tion that are not included in any further analyses (light green).
(c) Station coverage by month for HadISDH, coloured by re-
gion (Northern Hemisphere = 20◦ N–90◦ N, tropics = 20◦ S–20◦ N,
Southern Hemisphere = 20◦ S–90◦ S). The tail-off from 2006 on-
wards is likely due to ongoing improvements to the ISD historical
archive. Station coverage should improve over this period with fu-
ture updates of HadISDH.

should note that retrospective changes are made to ISD pe-
riodically with the addition of new data or removal of old
data to and from existing stations. Furthermore, new stations
will be added to HadISD, and therefore HadISDH, as they
become available. This will be clearly documented.

The quality controlled (see Sect. 3.1) HadISDTd are con-
verted to specific humidity (q) using the same equations as
for HadCRUH (Table 1: Eqs. 1 to 5). First,Td are converted
to vapour pressure (e) using Eq. (1). The wet bulb tempera-
tures (Tw) are then calculated using Eq. (5). WhereTw val-
ues are below zero, values ofe are recalculated with respect
to ice (Eq. 2). This assumes that the wet bulb was indeed
an ice bulb at that time and that the measurement was taken
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Table 1.Equations (1) to (5) used to derive humidity variables from dry bulb temperature and dew point temperature.

Variable Equation Source Notes

Vapour pressure e = 61121· fw · EXP(((18.729− (Td/227.3)) · Td)/ Buck (1981) (1), substituteT
calculated with (257.87+ Td)) for Td to give
respect to water (e) saturated vapour
(whenTw > 0◦C) fw = 1+ 7× 10−4

+ (3.46× 10−6
· P ) pressure (es)

Vapour pressure e = 61115· fi · EXP(((23.036− (Td/333.7)) · Td)/ Buck (1981) (2), as above
calculated with (279.82+ Td)) for es
respect to ice (eice)

(whenTw < 0◦C) fw = 1+ 3× 10−4
+ (4.18× 10−6

· P)

Specific q = 1000((0.622· e)/(P − ((1− 0.622) · e))) Peixoto and Oort (1996) (3)
humidity (q)

Relative RH =(e/es) · 100 – (4)
humidity (RH)

Wet bulb Tw = ((a · T ) + (bTd))/(a + b) Jensen et al. (1990) (5)
temperature (Tw)

a = 6.6× 10−5
· P

b = (409.8 · e)/(Td + 237.3)2

with a wet bulb thermometer as opposed to a resistance or ca-
pacitance sensor. This assumption will be incorrect in some
cases, especially in the later record where more automated
sensors are in use. This potentially introduces a dry bias in
q where resistance or capacitance sensors are used when the
ambient temperature is near or below 0◦C becausee calcu-
lated with respect to ice is lower than that with respect to
water at the same temperature (NPL/IMC, 1996). Given the
increasing propensity in the record for such measurements,
unless the effects are detected and accounted for in the ho-
mogenisation, this would tend to yield a spurious drying sig-
nal in locations and seasons where sub-freezing temperatures
are frequent. However, absolute values of specific humidity
are small under such conditions, so absolute errors will be
small even if they are large in percentage terms. They will
not affect records in seasons with temperatures above freez-
ing. Without metadata for all 3456 stations, it is impossible to
correct for this and so it remains an uncertainty in the data,
but it should bear little influence on the large-scale assess-
ments for which this product is intended. Frome, Eq. (3) is
used to calculateq.

A climatological monthly mean station pressure compo-
nent is used for calculatingq. The ideal would be to use
the simultaneous station pressure from HadISD. However,
this is not always available, or of suitable quality, and so we
give preference to maximising station coverage with a trade
off of very small potential errors. Climatological monthly
mean sea level pressure (Pmsl) is obtained from the 20th Cen-
tury Reanalysis V2 (20CR, Compo et al., 2011; data pro-
vided by the NOAA/OAR/ESRL PSD, Boulder, Colorado,
USA,http://www.esrl.noaa.gov/psd/). This is available for 2◦

by 2◦ grids and has been averaged over the 1976 to 2005
climatological period to match that used for the humidity

data. For each station the closest grid box is converted to
climatological monthly mean station level pressure (Pmst),
using station elevation (Z in metres) and station climatolog-
ical monthly mean temperatureT (in kelvin), by an equa-
tion based on the Smithsonian Meteorological Tables (List,
1963):

Pmst = Pmsl

(
T

T + 0.0065Z

)5.625

. (6)

Using a non-varying station pressure introduces small er-
rors at the hourly level. These will be largest for high ele-
vation stations. For stations at 2000 m and temperature dif-
ferences (from climatology) of±20◦C, an error inq of up
to 2.3 % could be introduced. However, the majority of sta-
tions are below 1000 m, where potential error for±20◦C re-
duces to∼ 1 % and then 0.5 % for 500 m. We assume that
during a month the station pressure will vary above and be-
low the estimatedPmst and so essentially cancel out. Using a
non-varying station pressure (year-to-year) ensures that any
trends inq originate entirely from the humidity component
as opposed to changes inT introduced into station pressure
indirectly through conversion from mean sea level pressure.
Hence, for studying long-term trends inq anomalies, this
method is sufficient. However, users of actual monthly mean
q should be aware of the small potential errors here.

3 Building the data product

3.1 Quality control

Synoptic data contain random and systematic errors which
must be removed as far as is possible to ensure robust climate

Clim. Past, 9, 657–677, 2013 www.clim-past.net/9/657/2013/

http://www.esrl.noaa.gov/psd/


K. M. Willett et al.: An updateable land surface specific humidity product for climate monitoring 661

analyses. The random errors can be caused by instrument
error, observer error or transmission error. As part of the
HadISD processing, a suite of quality control tests were de-
signed for use with hourly synoptic data. These tests have
been optimised with the aim of removing random errors
while retaining the “true” extremes. The quality control suite
included tests particular to humidity and also neighbour in-
tercomparisons. It is an automated procedure, necessitated
by the large number of stations and observations. It is fully
documented in Dunn et al. (2012), and the HadISDH input
stations are freely available for research purposes as part of
the HadISD dataset atwww.metoffice.gov.uk/hadobs/hadisd.

The HadISD quality control (QC) comprises 14 tests
which looked at 6103 stations selected from the ISD database
after compositing. These tests are more sophisticated than
those conducted for HadCRUH as they have been designed
iteratively by validation with stations where specific prob-
lems were known or record values documented, and then fur-
ther tuned to optimise test performance. Like HadCRUH, a
set of three logical checks are included to test for humid-
ity measurement failures. The first tests for supersaturation:
whereTd exceedsT , the Td observations are removed. If
this occurs for more than 20 % of the observations within a
month, the whole month is removed. The second is for occur-
rences of the wet bulb wick drying out, either through reser-
voir drying or freezing, which again assumes the majority
of humidity measurements were taken using psychrometers.
This test uses dew point depression: if there are≥ 4 consecu-
tive observations spanning 24 h or more where the dew point
depression is< 0.25◦C, Td is flagged, unless simultaneous
observations of precipitation or fog are present, which may
indicate a true high-humidity event. The leeway of 0.25◦C is
added to account for instrumental error in either theT or Td
measurement. Finally, a dew point cut-off check is done, fol-
lowing the discovery in Willett et al. (2008) thatTd observa-
tions can be systematically absent whenT exceeds apparent
threshold values in hot and cold extremes. Similar behaviour
has been documented for radiosondes (e.g. McCarthy et al.,
2008). Most quality control tests are variable specific such
that a flagged value does not lead to removal of observations
for other parameters at the same time step. However, there
are a number where flags forT and Td are linked. When
checking for overly frequent values,Td observations coinci-
dent with flaggedT observations are also flagged, and where
T observations exceed WMO record values for that region,
the Td values are also removed. There is also a neighbour
comparison where suspect values can be removed, but also
flagged values can be recovered should they agree with un-
flagged neighbouring values. No such comparison was made
in HadCRUH.

For HadISDH stations data removal is highest in the re-
gions of greatest data density (North America and north-
western Europe), as shown in Fig. 2. This is similar for both
T andTd but with a higher percentage ofTd data removed, es-
pecially around the tropics. This is likely an artefact of higher
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Fig. 2. Percentage of hourly observations removed for each
HadISDH station during the HadISD quality control procedure for
(top) temperature and (bottom) dew point temperature.

observation density (fewer missing data and higher temporal
frequency and reporting resolution) within a station, giving
the internal station QC tests greater power, and higher station
density, giving the neighbour QC test greater power. Greater
data density will increase the sensitivity to outliers, thus im-
proving the signal-to-noise ratio. Unfortunately, this means
that there is a greater chance of poor data remaining in re-
gions where station and data density are low. This underlines
the importance of improving both current station coverage
and historical data rescue and thus support for these efforts
through initiatives (e.g. ACREhttp://www.met-acre.org/, Al-
lan et al., 2011). ForTd, in total 78.1 % of stations have≤ 1 %
of hourly data removed and 98.0 % of stations have≤ 5 % of
hourly data removed. ForT , 89.9 % of stations have≤ 1 %
of hourly data removed and 99.2 % of stations have≤ 5 % of
hourly data removed.

3.2 Homogenisation

The monthly mean values are likely to contain systematic er-
rors due to changes in instruments, station moves, incorrect
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station merges, changes in observing practices or changes to
local land usage. For this reason, the monthly meanq data are
reprocessed to detect and adjust for undocumented change
points. There are now a number of available homogenisation
algorithms that have been developed and benchmarked for
temperature and precipitation as part of the COST HOME
project (Venema et al., 2012;www.homogenisation.org).
However, very few are suitable to be run on large global
networks, which require an automated process. The pair-
wise homogenisation algorithm designed for NCDC’s US
Historical Climatology Network monthly surface tempera-
ture record (Menne and Williams, 2009; Menne et al., 2009),
and later applied to their Global Historical Climatology Net-
work (GHCN) monthly temperature dataset (Lawrimore et
al., 2011), has been chosen here. This has been shown to
be one of the more conservative algorithms, giving a very
low rate of change point detection where none are actually
present (false alarm rate) (Venema et al., 2012). Also, the
pairwise method enables attribution of a change point to
a station or stations in a more robust manner than a sim-
ple candidate versus composite reference series approach.
In the candidate–composite reference series approach, net-
work wide changes may be missed or wrongly attributed to
a single station. Furthermore, the pairwise homogenisation
algorithm has been through a substantive benchmarking as-
sessment for the US temperature network (Williams et al.,
2012). This showed that in all benchmark cases, the pairwise
algorithm reduced the errors in the data. Importantly, it did
not over-adjust or make the data any worse. This is the first
time that the pairwise algorithm has been used on surface
humidity data or indeed any data outside of station tempera-
ture records. This is also the first time that a fully automated
(and reproducible) homogenisation process has been applied
to global land surface humidity.

The pairwise algorithm (Menne and Williams, 2009;
Williams et al., 2012) undertakes a number of sequential
steps to find and adjust for suspected change points in the
series:

1. For a candidate station a set of neighbours are selected
based upon geographic proximity and monthly mean
time series correlation, the latter being the dominant
factor.

2. The difference series between each station and ev-
ery neighbour are assessed iteratively using the stan-
dard normal homogenisation test (SNHT; Alexanders-
son, 1986) to locate undocumented change points. At
this point both the candidate and master are tagged as
potential breaks.

3. The large array of potential change point locations is
resolved iteratively as shown by the following overly
simple illustration. A station might have 20 potential
change points assigned in close proximity and its 20
neighbours only one each. In this case it is clear that this

station contains the true change point. All of the change
points are assessed together to determine the date of the
change point. The break count for all the remaining sta-
tions is reduced by one so all then would be treated as
homogeneous.

4. The change point is then assessed to define whether it
is indeed a step change or actually part of a local trend.
Where the magnitude of a change point can be reliably
estimated, and reasonable confidence can be assigned
that it is non-zero based upon the spread of pairwise
adjustment estimates arising from apparently homoge-
neous neighbour segments resulting from step #3, a flat
adjustment is made to the mean of the homogeneous
subperiod, using the most recent period as a reference.
Where the magnitude of the change point cannot be re-
liably estimated, that period of data is removed. The
spread of estimated change point magnitudes across the
network also provides a 2σ estimate of uncertainty for
the applied adjustment. This is fed through to the station
uncertainty (Sect. 3.3).

Overall, the pairwise homogenisation results in an adjust-
ment rate of approximately two per station. The adjustments
applied to HadISDH are reasonably symmetrical about zero
with a median of−0.07 g kg−1 and 90 % of the adjustments
lying between−0.86 and 0.81 g kg−1 (Fig. 3a). The histori-
cal spread is also relatively even (Fig. 3b). The first two years
and last two years are artificially free from change points
because it is more difficult to detect change points close to
the ends of the record. As all adjustments made are sea-
sonally invariant and additive rather than proportional, it is
highly likely that adjustments may be biased low in some
seasons and biased high in others. This is a particular prob-
lem for very dry months where adjustments to already very
low specific humidity results in unphysical negative values.
This occurs in 51 stations (identified in Fig. 1b), although
only 13 of these have more than 2 % of their data affected.
For this version of HadISDH, these stations will not be in-
cluded in any further analyses. There may also be issues at
the saturation end where positive adjustments bring the spe-
cific humidity above the saturation level imposed by the orig-
inal unhomogenised temperature data. However, it is likely
in many cases that any inhomogeneities appearing in spe-
cific humidity co-occur in the dry bulb temperature, which
would change the saturation level. This suggests that season-
ally varying and proportional adjustments may be a better
approach for specific humidity, such that the humidity can
never go below 0 g kg−1. Homogenisation of specific humid-
ity is still a relatively new endeavour. Exactly how the dif-
ferent types of inhomogeneity affect the specific humidity
across the seasonal cycle, or even in wet versus dry years,
is not well understood. On further investigation (Fig. 4a and
b), there is no obvious relationship between adjustment mag-
nitude and climatological mean specific humidity, as shown
by looking at adjustment magnitude by latitude. Adjustment
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Fig. 3. Summary of adjustments applied to HadISDH during the
pairwise homogenisation process.(a) Shows the actual adjustments
in black (stepped). The best-fit Gaussian is shown in grey. The
merged Gaussian plus larger actual distribution points “best fit” is
shown in dashed red. The difference between the merged “best fit”
and the actual adjustments is shown in dotted blue with the mean
and standard deviation of the difference.

direction is relatively evenly spread across 0 g kg−1 at all lat-
itudes. Should the relationship between adjustment magni-
tude and specific humidity be strong, we would expect to see
the largest adjustments made in the more humid tropics. In
fact, the largest adjustments occur in the extratropics. Sta-
tion coverage is poorer in the tropics (Fig. 1a and b) and so
the ability to detect inhomogeneities in the first place is de-
creased, like the effectiveness of quality control (Sect. 3.1
and Fig. 2). Indeed, Fig. 4a also shows that it is easier to de-
tect smaller change points in well-sampled regions, as shown
in Menne et al. (2009) for the USA. There is little geographi-
cal coherence in adjustment magnitude or direction, as shown
by Fig. 4b.

Given the complexity of seasonal adjustment magnitude,
we have chosen to start with the simple approach of season-
ally invariant flat adjustments, where the transforms to the
data are easily traceable, rather than making more compli-
cated assumptions. In terms of detecting long-term trends
in the anomalies over large spatial scales, this approach

should differ very little from a seasonally varying and pro-
portional adjustment approach over each homogeneous sub-
period. The absolute values, however, especially on grid-box
spatial scales and sub-annual temporal scales, should be used
with caution.

Figure 5a to c show trends in the data before and af-
ter homogenisation. There is generally good agreement with
87.2 % of grid boxes being of the same sign (drying or moist-
ening) in both the raw and homogenised data (Fig. 5a and
b). However, it is clear that the raw data show trends of
a slightly greater magnitude (both wetter and dryer) than
the homogenised data (Fig. 5c). In terms of the large-scale
average, homogenisation appears to have very little effect
(Fig. 5d–g). The trend for the Northern Hemisphere is very
slightly smaller after homogenisation, and the trend in the
Southern Hemisphere is slightly larger. The largest differ-
ences in the time series occur for the tropics and South-
ern Hemisphere. This is likely an artefact of the low spatial
coverage here compared to the extratropical and midlatitude
Northern Hemisphere, where averaging over many stations
can moderate the effect of changes to a few stations. Fur-
thermore, the tropics include some of the largest magnitude
adjustments. The fact that changes are very small on these
large scales suggests that seasonal analyses on large scales
(not presented here) may be reasonable despite the lack of
seasonally varying homogenisation. However, we urge care
when analysing over smaller regions, individual grid boxes
and stations, where any remaining inhomogeneity or unde-
sirable effect of applying flat adjustments may be larger. A
set of individual stations representing some of the largest
changes in trends before and after homogenisation are dis-
played with respect to the surrounding station network in
Fig. 6a to c.

There will always be change points (both step changes and
local trends) which remain undetected because they are either
too small to detect or too close to other change points. It is
very difficult to estimate the uncertainty remaining in the data
due to missed detections and adjustments without a rigorous
benchmarking exercise as has been undertaken for tempera-
ture over the USA (Williams et al., 2012). Benchmarking is
a relatively new concept and so has not yet been attempted
for humidity, and as such, is beyond the scope of this paper.

4 Estimating an uncertainty model for specific humidity

4.1 Station uncertainty

Our estimate of the monthly mean anomalyqanom is given,
following Brohan et al. (2006), by

qanom= qob− qclim + qadj , (7)

whereqob is the observed monthly mean;qclim is the cli-
matological monthly mean over the 1976 to 2005 reference
period; andqadj is the adjustment applied to improve the
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Fig. 4. Distribution of adjustments made and their magnitude during the pairwise homogenisation process:(a) adjustments by latitude;
(b) largest adjustments for each station. Note non-linear colour bars.

long-term homogeneity. In fact, there is an error term,ε, in-
herent in each of these terms such that the true monthly mean
anomaly can be described as

qanom= qob− qclim + qadj+ εob+ εclim + εadj . (8)

Unfortunately, these errors cannot be quantified explicitly,
and so the uncertainty,u, in each monthly mean anomaly
value needs to be estimated. To determine the significance
of qanom, we estimate the uncertaintyuanom that captures the
likely error from each of the error terms in Eq. (8):

uanom=

√
u2

clim + u2
adj+ u2

ob, (9)

whereuclim is the uncertainty in the calculation of the clima-
tological monthly mean due to missing data (temporal sam-
pling uncertainty);uadj is the uncertainty in the adjustments
applied for homogeneity; anduob is the measurement un-
certainty of meteorological measurements. We now consider
each of these in turn.

The standard uncertainty in the climatological monthly
mean due to missing data is given by

uclim =
σclim
√

NM

, (10)

whereσclim is the standard deviation of theNM months mak-
ing up the climatological mean of the 30-yr period from 1976
to 2005.

The standard uncertainty in the applied homogeneity ad-
justments,uadj, is estimated as the quadrature sum of two
terms:

uadj =

√
u2

applied+ u2
missed. (11)

The first termuappliedarises from the adjustments whichhave
been applied to the data, and the second termumissedarises
from the adjustments whichhave notbeen applied to the
data, but which should have been.

We estimateuappliedfrom the 5th to 95th percentile spread
of all possible adjustment magnitudes given by the network
of pairwise evaluations, as described in Sect. 3.1, adjusting
by a factor 1.65 to obtain a standard uncertainty (1σ , cover-
age factor ofk = 1).

We estimateumissed, the uncertainty arising from missed
change points, using methods described in Brohan et
al. (2006). We assume that large change points, shown in
the tails of the distribution in Fig. 3a (black line), are well
captured because they are easy to detect given the high
signal-to-noise ratio. However, the small adjustments, close
to 0 g kg−1, are not well captured, as shown by the “missing
middle” of the distribution. The central part of the distribu-
tion can be approximated by a Gaussian distribution. A best-
fit curve is then derived by merging a fitted Gaussian curve
(near the centre) with those points of the actual adjustment
distribution that are larger (in the wings). The standard devi-
ation of the difference between this “best fit” and the actual
distribution (blue dotted line) is 0.135 g kg−1 and provides
an estimate ofumissed.

The uncertaintyuob relates to the uncertainty of mea-
surement of the instrument at the point of observation. The
BIPM Guide to the Expression of Uncertainty in Measure-
ment(BIPM, 2008) describes uncertainties as belonging to
one of two categories. Type A uncertainties are those which
can be estimated from analysis of repeated observations.
Type B uncertainties are those which cannot be estimated by
repeated observations, and so must be estimated from a priori
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is shown.(c) Distribution of grid-box trends for the homogenised and raw data.(d–g) Large-scale area average annual anomaly time series
and trends for homogenised HadISDH and the raw data relative to the 1976–2005 climatology period.

knowledge of the measurement apparatus and the measuring
conditions. Type B uncertainties may have randomly vary-
ing components,urand, and components which cause “sys-
tematic” errors,usys.

In a meteorological context it is not possible to derive
Type A estimates of uncertainty because the measurand –
the weather – is intrinsically variable, and so the variability
due to the instruments themselves cannot be isolated. Since
Type A uncertainties are likely to be random and uncorre-
lated, they should reduce with temporal and spatial averag-
ing to a large extent, and so be attenuated by averaging both
over a month and over a grid box. Since the station meta-
data do not reliably record the instrumentation used, we have
derived estimates of the Type B uncertainty of an individual
measurementui based on knowledge of hygrometers in use
in the field. Until the 1980s, psychrometers were probably
the most common type of hygrometer, but since then there
has been a move towards electronic devices (typically capac-
itance sensors) and dewcels which can be more readily auto-
mated. Typically, electronic devices have a lower uncertainty
than psychrometers, and so we can conservatively estimate
ui (Table 2) assuming that all humidity measurements were
taken using aspirated psychrometers.

Psychrometer errors arise either from the use of an incor-
rect psychrometer coefficient, or from temperature errors in
measurements of either the wet bulb or dry bulb (MOHMI,
1981). In general, these errors are not random or symmetri-
cally distributed, and they may be correlated with other me-
teorological variables, such as wind speed. However, we ex-
pect that within any one month, the uncertainty of measure-
ment for psychrometers will contain some random compo-
nent,urand, whose effect can be reduced by averaging, and a
systematic component,usys, whose effect will be unaffected
by averaging.

We estimateui with a standard uncertainty of 0.15◦C
in the wet bulb depression above 0◦C. The resulting stan-
dard uncertainty in RH varies from 1 %rh to 3 %rh, decreas-
ing with increasingT and increasing with decreasing RH
(NPL/IMC, 1996). Although not ideal, this is done at the
monthly mean resolution because the homogeneity adjust-
ments have already been applied at the monthly mean level,
and so it is not possible to go back to the hourly values at this
stage. The concomitant uncertainty inq is estimated from the
uncertainty in RH by calculating the change in vapour pres-
sure,e (Eq. 3), caused by changes of±1 standard uncertainty
in %rh. Combining this with an estimate of the saturation
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Fig. 6.Results for three stations as examples of some of the largest changes of the pairwise homogenisation algorithm. Red lines represent the
original station time series. Blue lines represent the adjusted time series. Black lines show the original time series for all stations within the
designated network.(a) Sur, Oman, WMO ID: 412680, 22.533◦ N, 59.467◦ E, 14.0 m.(b) Atar, Mauritania, WMO ID: 614210, 20.5170◦ N,
13.0670◦ W, 224.0 m.(c) Sao Luiz, Brazil, WMO ID: 822810, 2.6000◦ S, 44.2330◦ W, 53.0 m.

Table 2.Estimates of standard uncertainty in humidity measurements calculated in terms of equivalent psychrometer uncertainty to represent
a “worst case scenario”. At lower temperatures the measurement uncertainty becomes large, but the low absolute specific humidity values
make only a small contribution to global estimates of specific humidity. Calculations of specific humidity used Eqs. (1) to (5).

Uncertainty in %rh
Dry bulb given by a 0.15◦C Specific humidity

temperature uncertainty in (g kg−1) at
(◦C) wet bulb depression saturationui (g kg−1) urand (g kg−1)

−50 and 15 0.02 0.003 0.001
below
−40 15 0.08 0.012 0.002
−30 15 0.23 0.035 0.005
−20 10 0.64 0.064 0.008
−10 5 1.60 0.080 0.010

0 2.75 3.78 0.104 0.013
10 1.8 7.60 0.137 0.018
20 1.35 14.54 0.196 0.025
30 1.1 26.60 0.293 0.038
40 0.95 46.82 0.445 0.057

50+ 0.8 79.85 0.639 0.082

vapour pressure calculated from simultaneous monthly mean
T (Eqs. 1 and 2), under the necessary (and in many cases in-
correct) assumption that theT data are homogeneous, the re-
sulting change inq can be estimated. The reading uncertain-
ties of the wet bulb and dry bulb temperatures are unlikely to
be biased, and so we assume that the resulting uncertainty is
randomly distributed. We thus estimate the random compo-
nent of the uncertainty in the monthly mean as

urand=
ui

√
NO

. (12)

In order to pass ISD quality control, there must be at least 15
days of data for a monthly mean and at least four observa-
tions per day, implyingNO ≥ 60. Hence, we conservatively
useNO = 60 in our calculation ofurand.

There are a number of weaknesses in this approach.
Firstly, these non-linear conversions (Eqs. 1 to 5) are im-
perfect for monthly mean data. Secondly, when the monthly

value is already close to 100 %rh, the addition of uncertainty
in RH can then result in estimates> 100 %rh. Although it
is physically possible for RH to exceed 100 %rh, it is not
common, nor reliably measured in operational circumstances
(Makkonen and Laakso, 2005). Thirdly, errors will also be
introduced because the simultaneous monthly meanT data
have not been homogenised. This is due to the issue of main-
taining physical continuity when homogenising across si-
multaneously observed variables which will be addressed
in future work. False wet bulb depressions may occur at
100 %rh, but the low-resolution conversion between humid-
ity variables makes accurate detection of such cases impos-
sible. However, limiting the new RH (%rh + derived uncer-
tainty in %rh) to 100 %rh can imply an unrealistically small
variability. To counter this, we have set a minimum thresh-
old for urand of two standard deviations below the mean by
examining theurand estimates for each month for the station.
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All values below this threshold are assumed to be unrealisti-
cally low and are substituted with the mean value ofurand for
that station.

Despite the difficulties in estimatingurand, one clear fea-
ture emerges (Table 2). Although the fractional uncertainties
are largest at low temperatures, the absolute values of specific
humidity are low in this range – saturation vapour pressure
varies by a factor 20 from 0◦C to 50◦C – and so contribu-
tions to the uncertainty in the specific humidity of a station
will be dominated by the uncertainty during periods of high
temperature and high relative humidity.

In addition to randomly varying components,ui , the uncer-
tainty of measurement of each station, will also have contri-
butions which do not reduce on averaging,usys. Such uncer-
tainties arise from the limitations of the calibration, and the
shortcomings of psychrometers. We have not included an ex-
plicit assessment ofusysbecause we consider that their effect
on our estimate ofqanom is likely to be small. The origin of
this insensitivity can be seen by considering the case in which
a change point is identified as occurring in the record from a
particular station, and also the case in which no change points
are identified. For example, where instruments or observing
practices change or stations move,usys will change, and so
we expect that some fraction ofusys should be found dur-
ing homogenisation and so should be partially accounted for
in terms ofuadj. Additionally, when a change point is found
by comparison with neighbouring stations, the algorithm ad-
justs the target station’s older data to match its newer data on
the assumption that more modern measurements are likely
to have lower uncertainty. Where instruments or observing
practices donot change, then we can assume thatusys will
be substantially unchanged. So we expect that a substantial
fraction of usys will be common toqanom and qclim. Thus,
when calculatingqanomwe can expect this fraction of the un-
certainty to cancel (Eq. 8). However, we note that care must
be taken if the final gridded data are used to estimateabso-
lutevalues of specific humidity. For such cases, the full value
of usys should be evaluated to fully capture the uncertainty.
The uncertainty estimates provided alongside HadISDH will
therefore be underestimates with respect to theabsoluteval-
ues.

The uncertainties are calculated as standard uncertainties
(1σ), and then a coverage factork = 2 is applied such that
there is∼ 95 % confidence (2σ) that these uncertainties cap-
ture the true error. As an example, the individual uncertainty
components and the combined station uncertainty are shown
in Fig. 7 for station 486650 (Malacca, Malaysia, 2.267◦ N,
102.250◦ E, 9.0 m). Climatological uncertainty is constant
year to year, but has an annual cycle and is greatest during the
season of greatest natural variability inq. Measurement un-
certainty (not includingusys) is usually the smallest compo-
nent. It changes throughout but has a clear annual cycle due
to the temperature dependence. The adjustment uncertainty
is usually the largest component, reducing towards 0 g kg−1

because the most recent period is treated as the reference
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Fig. 7. The components of station uncertainty estimates for station
486650 (Malacca, Malaysia, 2.267◦ N, 102.250◦ E, 9.0 m). All un-
certainties represent 2σ (approximately 95 % confidence intervals).

period. This is the first attempt at quantifying uncertainty in
specific humidity and is a basis which will benefit from fu-
ture improvements in the model design and application as a
greater understanding of this issue accrues.

4.2 Gridding methodology and sampling uncertainty

HadISDH is intended for the purpose of studying change on
large temporal and spatial scales, so gridding is essential. It
reduces the effect of individual outliers and remaining ran-
dom errors in the data. Given that station density is rather
sparse over large parts of the globe, there is little value in
gridding at finer than 5◦ by 5◦ resolution. For the station-
rich regions, specific high-resolution grids could be produced
but will not be presented here. Using 5◦ by 5◦ grids also al-
lows comparison with other products such as HadCRUH and
CRUTEM4.

Grid-box estimates (for all quantities) use only stations
within the grid box, all weighted equally: there is no in-
terpolation of information from surrounding grid boxes or
accounting for any elevation sampling bias (Brohan et al.,
2006; Jones et al., 2012). Both the absolute values and the
anomalies relative to the 1976–2005 reference period are
gridded in addition to the monthly climatologies calculated
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over the reference period. The standard deviation of all con-
tributing stations is also given for each grid-box month, pro-
viding an estimate of grid-box variability. Where only one
station contributes, an arbitrarily large standard deviation of
100 is given so that these can be easily identified. Station
numbers for each grid-box month are also recorded.

Station uncertainty estimates, as defined in Section 3.3, are
also brought through to the grid-box level by assuming in-
dependence of, and combining in quadrature, all constituent
station uncertainties and then multiplying by 1/

√
(NS),

whereNS is the number of stations in the grid box at that
time. Figure 8a shows an example field of gridded station
uncertainty for June 1980 in g kg−1. Station uncertainty is
largest around the tropics, whereas for the CRUTEM3 tem-
perature product in Brohan et al. (2006) it is largest at the
poles. The largest component is by far the adjustment un-
certainty, until the most recent years of the record where it
tends towards zero as a result of choosing the most recent
period as the reference period. The measurement uncertainty
is comparable to the climatological uncertainty when aver-
aged over the grid-box scale. All are generally largest in the
tropics, where station density is generally least. These uncer-
tainties are also gridded individually.

Given that there are relatively small numbers of stations
within each grid box, the grid-box value is unlikely to be the
true grid-box average. Some estimate of the sampling uncer-
tainty is necessary. Following Brohan et al. (2006), the sam-
pling uncertainty is estimated using the method laid out in
Jones et al. (1997). For grid boxes with data we first estimate
the mean variance of individual stations in the grid box,s2

i ,
using

s2
i =

Ŝ2NSC

(1+ (NSC− 1)r)
, (13)

where Ŝ2 is the variance of the grid-box anomalies calcu-
lated over the 1976–2005 climatology period andNSC is the
mean number of stations contributing to the grid-box mean.
The last term,r, is the average inter-site correlation and is
estimated using

r =
x0

X

(
1− exp

(
−

x0

X

))
, (14)

whereX is the diagonal distance across the grid box andx0
is the correlation decay length between grid-box averages.
Grid-box sampling uncertainty, SE2, is then estimated by

SE2
=

(s2
i r(1− r))

(1+ (NS− 1)r)
. (15)

However, hereNS is the actual number of stations contribut-
ing to the grid box in each month, giving a time varying SE2.
The number of stations contributing to the grid-box mean
makes a large difference to SE2, with a 10-fold increase in
stations making SE2 an order of magnitude smaller. Sam-
pling uncertainties, in g kg−1, are shown in Fig. 8b as 2σ
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Fig. 8. Examples of gridded 2σ uncertainty fields for HadISDH in
June 1980 for(a) station uncertainty,(b) sampling uncertainty and
(c) combined uncertainty as a percentage of the grid-box climato-
logical (1976–2005) value for June. Note non-linear colour bars.

uncertainties. The main driver of the sampling uncertainty is
the standard deviation of grid-box monthly specific humidity
anomalies.

The sampling uncertainty and station uncertainty esti-
mates are assumed to be independent and are combined
in quadrature to provide a combined uncertainty statistic,
shown for June 1980 in Fig. 8c as a percentage of June clima-
tology. Station uncertainty is the largest component and dom-
inates the combined uncertainty fields where there are data.
The magnitude of the combined uncertainty relative to clima-
tology is generally less than 5 % (for 69.3 % of grid boxes)
but exceeds 10 % of June climatology in 8.0 % of grid boxes,
which are mostly located in parts of the subtropics. This re-
flects the large uncertainty in adjustments made to the data.
For there to be confidence in any changes apparent in the
data, these changes must be larger than the combined spread
of uncertainty.

Brohan et al. (2006) also provide a bias estimate. How-
ever, for humidity over land, no such broad-scale estimates
have been assessed to date. While there are likely biases lo-
cally for urbanisation and land-use changes such as increased
irrigation, it is assumed here that their effect at the large 5◦
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by 5◦ grid-box scale is small. A recent study by Asokan et
al. (2010) found changes in evapotranspiration flux resulting
from irrigation over the Mahanadi River Basin in India sug-
gesting that local water use could be important in regional
climate change. Further work is needed to quantify this im-
pact for the global scale.

Another way to explore the uncertainty would be to pro-
duce plausible ensemble estimates of HadISDH, as was done
for HadCRUT4 (Morice et al., 2012) or Remote Sensing
Systems’ Microwave Sounding Units product (Mears et al.,
2011). This is the first time that a global humidity esti-
mate has been given any measure of uncertainty. Creating
a meaningful ensemble product that enables the uncertainty
model developed here and its interdependencies through the
HadISDH processing chain to be more fully explored is a
future aspiration.

4.3 Using the uncertainty model to explore uncertainty
in long-term trends

To explore the uncertainty in individual grid-box trends
(Sect. 5.2), a simple 100 member ensemble of HadISDH is
created, randomly sampling across the spread of the 2σ un-
certainty for each individual uncertainty component (clima-
tology, measurement, adjustment and sampling uncertainty).
This is distinct from that described at the end of Sect. 4.2,
which would be a far more rigorous exploration of the un-
certainty fields. The ensemble members created here while
available to users, are purely for exploring the spread of un-
certainty and not to be used singularly as a plausible estimate
of land surface humidity.

For each station, ten versions of anomaly time series are
created by adding the actual anomaly values to random val-
ues of climatology, measurement and adjustment errors as
follows:

– Climatology error time series: ten values are randomly
selected from a Gaussian distribution (µ = 0, 2σ = 1)
for each station. The Gaussian distribution is forced
to have 2σ = 1 because this then provides a∼ 95 %
chance that the randomly selected values lie between
−1 and 1. These values are then used as a scaling factor
on the 2σ climatology uncertainty which has an annual
cycle but is constant year to year.

– Measurement error time series:ten time series are cre-
ated by randomly selecting values from the Gaussian
distribution for each station and each month. These are
then used as scaling factors on the 2σ measurement un-
certainty, such that the error randomly varies over time.

– Adjustment error time series:ten time series are created
by randomly selecting values from the Gaussian distri-
bution for each station and each homogeneous subpe-
riod (the period between two adjustments). These are
then used as scaling factors on the adjustment uncer-
tainty for each homogeneous subperiod.

For each station, the actual anomalies are then added to
the first climatology error time series, the first measurement
error time series and the first adjustment error time series to
give the first station realisation. The second to tenth station
realisations are created similarly. These ten realisations of
each station are then gridded in the same manner as the ac-
tual HadISDH to give ten gridded realisations. For sampling
error, ten values are randomly selected from a Gaussian dis-
tribution and used as scaling factors on the sampling uncer-
tainty. The scaling factor is consistent across all grid boxes
and months within each of the ten sampling error realisations.
These are then combined with each of the ten gridded station
realisations to give the 100 member ensemble of the gridded
HadISDH.

To explore the uncertainty over large-area averages
(Sects. 5.3 and 5.4), the spatial coverage uncertainty is es-
timated and combined with the station and sampling uncer-
tainties, after Brohan et al. (2006), for the globe, Northern
Hemisphere, tropics and Southern Hemisphere. As the spa-
tial coverage of the gridded data is not globally complete
and varies from month to month, this uncertainty needs to
be accounted for when creating a regional average time se-
ries. To estimate the uncertainties of these large-area aver-
ages, which are based on incomplete coverage, we use the
ERA-Interim reanalysis product due to its good agreement
with the in situ surface humidity (Simmons et al., 2010). For
each month in the HadISDHq anomalies, the ERA-Interim
q anomalies from all matching calendar months are selected
(i.e. for a January in HadISDH, all Januaries in ERA-Interim
are selected). The ERA-Interim fields are then masked by the
spatial coverage in HadISDH for that particular month and
a cosine-weighted regional average is calculated. The resid-
uals between these masked averages and the full regional
average are then calculated. From the distribution of these
residuals, the standard deviation is extracted and used as the
spatial coverage uncertainty for that HadISDH month in the
regional time series. The sampling and station uncertainties
are estimated from the individual sampling and station uncer-
tainties for each grid box, and then combined with the overall
coverage uncertainty for the region in question. On a month-
by-month basis, the sampling and station uncertainties from
each grid box are treated as independent errors, and so the re-
gional sampling and station uncertainty is the square root of
the sum of the normalised cosine-weighted squares of the in-
dividual grid-box uncertainties. Individual components (sta-
tion, grid-box sampling and spatial coverage) are also treated
as independent, and so root-sum-squared as appropriate to
obtain the final 2σ uncertainty on the area-average time se-
ries.

To obtain the annual uncertainties, the autocorrelation of
the different uncertainty components needs to be accounted
for as well as possible. The sampling uncertainty is treated
as uncorrelated between months in Brohan et al. (2006), and
so each of the uncertainties is independent, and the annual
sampling uncertainty is the root-sum-square of the monthly
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uncertainties, normalised by 12 to account for the number
of months. The station uncertainty, however is treated as
completely autocorrelated, and so the annual station uncer-
tainty is the mean of all 12 monthly uncertainties. For the
annual coverage uncertainty, the comparison between ERA-
Interim and HadISDHq fields is repeated for annual aver-
ages (as for monthly). The three individual components are
then combined as described above. We note that the treat-
ment of the station uncertainty as completely autocorrelated,
and the sampling uncertainty as completely uncorrelated, is
an approximation, as these uncertainty components are them-
selves combinations of separate estimates of the uncertainty
from different sources. The climatology component (Eqs. 7
to 10) for example, although uncorrelated between months,
is correlated across years (i.e. January to February is uncorre-
lated, but January in year 1 to January in year 2 is correlated).

5 Recent trends in land surface specific humidity

5.1 Validation against other land surface
humidity products

It is first necessary to assess the likely quality of HadISDH
before we can use it with any confidence. This has been done
by comparing grid-box decadal trends with the older Had-
CRUH product (Fig. 9) and large-scale area average time se-
ries with all other existing products: HadCRUH (Willett et
al., 2008); HadCRUHext (Simmons et al., 2010); Dai (Dai,
2006); and the reanalysis product ERA-Interim (from 1979
onwards) regridded to 5◦ by 5◦ and weighted by percentage
of land within each grid box (Dee et al., 2011; Willett et al.,
2011, 2012) (Fig. 10a to d). The ERA-Interim time series are
shown both spatially matched to HadISDH and with com-
plete land coverage.

In all cases trends have been estimated using the median of
pairwise slopes (Sen, 1968; Lanzante, 1996). Confidence in
the trend is assigned using the 95 % confidence range in the
median value. Where the intervals defined by the confidence
limits are either both above zero or both below zero, there is
high confidence that the trend is significantly different from
a zero trend. The spread of these intervals gives an estimate
of confidence in the magnitude of the trends.

For the grid-box trends over the common period 1973–
2003, HadISDH shows generally good agreement with Had-
CRUH – the key feature of widespread moistening is com-
mon to both with drying apparent in parts of southern
Africa, southern South America, southern Australia and
New Zealand. HadCRUH shows more moistening in the
tropics (e.g. Brazil, western Africa and northern India).
HadISDH shows more moistening over the USA and south-
east Asia. There is very little overall difference, with 92.3 %
of HadISDH grid boxes showing moistening versus 89.5 %
in HadCRUH. It is likely that HadISDH contains fewer out-
lying/poor quality data issues due to the improved quality
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Fig. 9. Decadal trends in specific humidity for HadCRUH versus
HadISDH over the 1973–2003 period of record. Trends have been
estimated using the median of pairwise slopes (Sen, 1968; Lan-
zante, 1996) method. Where intervals defined by the 95 % confi-
dence limits on the median of the slopes are both of the same sign
as the median trend presented in the grid boxes, the trend is pre-
sumed to be significantly different from a zero trend. This is indi-
cated by a black dot within the grid box. This means that there is
higher confidence in the direction of the trend, but not necessar-
ily the magnitude. The spread of the confidence interval provides
the confidence in the magnitude; these values are available online
at www.metoffice.gov.uk/hadobs/hadisdh. Note non-linear colour
bars.

control and homogenisation methods used. There are large
differences over the USA owing to the improvements in cov-
erage and station compositing described in Sect. 2; see also
Smith et al. (2011). In HadISDH, moistening is now far more
widespread over the USA.

For the globally averaged annual time series, there is very
good agreement between all data products both in long-term
changes and inter-annual behaviour. There are sporadic de-
viations between the HadCRUH family, HadISDH and Dai
which may be due to differences in spatial sampling or the
homogenisation applied (none has been applied to Dai). The
spatially matched ERA-Interim gives closer agreement with
HadISDH, as expected, although agreement deteriorates out-
side of the well-sampled Northern Hemisphere. As noted in
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Fig. 10.Time series of large-scale average specific humidity over land for HadISDH and existing data products.(a–d) Annual time series
from all other global surface humidity products given a zero mean over the common period of 1979–2003. Dai covers 60◦ S to 70◦ N.
ERA-Interim has been weighted by % land coverage in each grid box and is shown both spatially matched to HadISDH and with complete
coverage.(e–h) Monthly time series (relative to the 1976–2005 climatology period) for HadISDH with 2σ uncertainty estimates. The black
line is the area average (using weightings from the cosine of the latitude). The red, blue and orange lines show the± combined uncertainty
estimates from the grid-box sampling uncertainty, the station uncertainty and the spatial coverage uncertainty, respectively. Decadal trends
are shown for each region for the period 1973–2012. These have been fitted to the monthly-mean anomaly time series using the median
of pairwise slopes as described in Fig. 9, with the 95 % confidence intervals shown. Where these are both of the same sign (i.e. the globe,
Northern Hemisphere and tropics) there is high confidence that trends are significantly different from zero.

Simmons et al. (2010), a change in SST source ingested into
ERA-Interim in 2001 led to a cooler period of SSTs hence-
forth, which almost certainly led to slightly lower surface
specific humidity from 2001 onwards, even over the land.
This is apparent in Fig. 10a to d. While Dai, HadISDH and all
varieties of HadCRUH use the same source data, the methods
are independent and station selection differs. ERA-Interim
does ingest surface humidity data indirectly through its use
for soil moisture adjustment, but also has strong constraints
from the 4D-Var atmospheric model and many other data
products, so it can be considered independent (Simmons et
al., 2010). However, it is not impossible that the ERA-Interim
reanalysis and the in situ products may be jointly affected by
a contiguous region of poor station quality.

Users should note that annual updates to HadISDH will
likely also involve some changes to the historical record as
the ISD source database is undergoing continual improve-
ments to its historical archives. This can result in the addi-
tion of some stations into HadISDH that will then have suffi-
ciently long data series. It may also result in the loss of some

stations where ISD updates have resulted in their removal
or merges with another record. There may be loss or addi-
tion of years of data for stations that remain in HadISDH. In
some cases this may change the underlying station trends.
While using grid-box average anomalies mitigates the ef-
fects of this instability somewhat, some notable differences
could persist through to the grid-box level. Changes are un-
likely to affect the large-scale features of the data. In updat-
ing from 2011 to 2012, the HadISDH trend for large-scale av-
erage changed minimally (±0.01 g kg−1 per decade). Com-
parisons will be made after each update and documented at
www.metoffice.gov.uk/hadobs/hadisdh/.

5.2 Spatial patterns in long-term changes in land
surface specific humidity

The spatial pattern of long-term trends over the full
1973–2012 period (Fig. 11) shows a very similar picture
(widespread moistening) to that shown for 1973–2003 in
Fig. 9. There are some notable differences, with more
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Fig. 11. Decadal trends in specific humidity for HadISDH over
1973–2012. Trends are fitted and confidence assigned as described
in Fig. 9. Note non-linear colour bars.

extensive drying in parts of South America and south-
western and south-eastern USA, and Mexico; and south-
ern Africa showing more moistening. Overall, there is
widespread moistening which is strongest across the trop-
ics. The subtropics over the USA, South America and Aus-
tralia show drying. This is consistent with the now well-
observed and documented intensification of the hydrological
cycle over recent decades (Allan et al., 2010).

The grid-box trends range from approximately
−0.1 g kg−1 to 0.3 g kg−1 per decade. This is compara-
ble to the uncertainty ranges shown in Fig. 8. To explore
the uncertainty in these trends, an ensemble of HadISDH is
created with 100 members as described in Sect. 4.3. Trends
are fitted to each ensemble member at the grid-box scale.
The 5th percentile, median and 95th percentile trends for
each grid box (assessed individually) are shown in Fig. 12
a to c, respectively. Moistening remains the main feature of
all three maps, so the conclusion of widespread moistening
appears to be robust to the quantified uncertainties, espe-
cially across the tropics, Eurasia and north-eastern North
America. Drying over the south-western USA also appears
to be significant relative to uncertainty, but the extratropical
drying regions show relatively large uncertainty.

5.3 Long-term changes in large-scale area average land
surface specific humidity

For the globe, Northern Hemisphere and tropics, the un-
certainty range is smaller than the overall long-term trend
(Fig. 10e to h). Hence, we can be confident in the long-term
moistening signal shown in the data over these regions. The
uncertainty is dominated by the spatial coverage, but the sta-
tion and sampling uncertainty will be more important for
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Fig. 12.Exploration of the uncertainty in decadal trends using 100
realisations of HadISDH spread across the 2σ uncertainty esti-
mates. Median pairwise trends were fitted over the period for each
realisation, with higher confidence assigned by a black dot as de-
scribed in Fig. 9. For each grid box, the 5th percentile(a), median
(b) and 95th percentile(c) trends are shown. If the uncertainty was
large enough to obscure the long-term trends, then it would be ex-
pected that the 5th and 95th percentiles would starkly disagree with
each other. In fact, there is very little difference as shown by(a),
(b) and(c) above. Note non-linear colour-bars.

any analyses on small scales. The coverage uncertainty at the
monthly scale (see Fig. 13 for annual uncertainties) is largest
for the Southern Hemisphere and tropics, where spatial cov-
erage is poorest. The decadal trend estimates (with 95 % con-
fidence limits in the median of the pairwise slopes) are shown
to be 0.089 (0.080 to 0.098) g kg−1 per decade for the globe,
0.086 (0.075 to 0.097) g kg−1 per decade for the Northern
Hemisphere and 0.133 (0.119 to 0.148) g kg−1 per decade
for the tropics. The narrow ranges of the confidence limits
around the trend increases our confidence in these moisten-
ing trends. For the Southern Hemisphere, which includes the
drying regions of Australia and South America, the overall
signal is of very slight moistening but it is not significantly
different from a zero trend at 0.013 (−0.005 to 0.031) g kg−1

per decade. The variability and uncertainty estimates in the
Southern Hemisphere are much larger than elsewhere. This
region has few data compared to the Northern Hemisphere,
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Fig. 13.Comparison of large-scale annual average time series from
HadISDH land specific humidity with land surface air temperature
from CRUTEM4 (Jones et al., 2012) and sea surface temperature
from HadSST3 (Kennedy et al., 2011a, b), including uncertainty
ranges. Temperature data have been adjusted to have a zero mean
over the 1976–2005 climatology period of HadISDH. Correlations
between the land air temperature and SST and land surface humidity
have been performed on the detrended time series.

both because it is mainly ocean and because station density
is lower, making it harder to identify and adjust for inhomo-
geneities. Considering these factors, in addition to the known
historical changes in the ISD record, we urge caution over
Southern Hemisphere trends, which remain unstable with
year-to-year updates.

5.4 Analysis of inter-annual variability in land surface
specific humidity with surface temperature

The strong El Nĩno events of 1998 and 2010 are clear in the
year-to-year variability of the data, these two years being the
moistest since the record began in 1973. These were also two
of the three warmest years for the globe (combined land air
and sea surface temperature) since 1850, the third being 2005
(Sanchez-Lugo et al., 2012). However, the land air tempera-
ture, as shown by CRUTEM4 in Fig. 13, shows a number of
very warm years in the mid-2000s that were not especially
moist years. In fact, specific humidity over the 2000s, al-
though mostly above the long-term average, demonstrates a

period of plateauing more akin to global SSTs. For compari-
son the global SST record from the median of the HadSST3
ensemble is also shown in Fig. 13, with the rationale that
specific humidity over land is likely to be related to SSTs
given that the majority of evaporation occurs over the ocean.
Correlations of the detrended annual time series show rela-
tively strongr values (∼ 0.8) for both land air and sea surface
temperatures with the land specific humidity for all regions
except the Southern Hemisphere, where the land air/specific
humidity lowers tor = 0.54. The stronger correlation with
SSTs is perhaps to be expected here given that the Southern
Hemisphere is mostly ocean. The annual average uncertainty
estimates are also shown in Fig. 13. It is interesting to note
that uncertainty is largest in the tropics for specific humid-
ity, whereas for land air temperature it is by far the largest
in the Southern Hemisphere. This is likely due to the poorer
station coverage in the tropics, where year-to-year variability
in specific humidity is highest.

CRUTEM4, although presenting a different atmospheric
component to HadISDH, uses a number of the same stations
and so is not truly independent. However, HadSST3 uses ship
and buoy data and so is an independent record. Overall, these
relatively high correlations between HadISDH and both tem-
perature records provide further evidence that HadISDH is a
reasonable estimate of large-scale land surface specific hu-
midity. The relatively strong relationship with SST may go
some way to explaining the recent plateauing in the land spe-
cific humidity record, which concurs with the decreasing RH
over land found in Simmons et al. (2010). Assuming that
the oceans are the major source of surface specific humid-
ity, even over land, it follows that the slower rate of warm-
ing over the ocean cannot support evaporation at a rate suf-
ficient to maintain increases in specific humidity in concert
with land surface temperatures. This needs further investi-
gation utilising marine surface specific humidity and marine
and land RH (currently unavailable), in addition to assessing
rates of change over time. This will be addressed further in
future papers.

It is clear from Fig. 13 that very warm years do not al-
ways lead to very moist years. While we may not expect
land specific humidity to follow land air temperatures ex-
actly given that SSTs are also an important factor, the 2000s
saw warm years both in the land air and sea surface temper-
ature records that did not constitute especially moist years.
Annual anomaly maps of HadISDH and HadCRUT4 for the
two warm and moist years of 1998 and 2010 are shown in
Fig. 14 in comparison to 2007, a very warm year over land
but not exceptionally moist. It is clear that the main tem-
perature signal in 2007 originates from the high latitudes,
whereas in the strong El Niño years it is in the lower lati-
tudes. This matches the spatial distribution of high specific
humidity anomalies. Following the Clausius–Clapeyron re-
lation, the warmer lower latitudes can drive a much greater
increase in moisture for a given rise in temperature than the
cooler higher latitudes. On further investigation (not shown
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Fig. 14. Annual average anomalies (from the 1976–2005 clima-
tology period) for HadISDH specific humidity and HadCRUT4
(Morice et al., 2012) temperature for the two moistest years within
the HadISDH record (1998 and 2010) which were also among the
warmest years since records began in 1850, and one of the warmest
years in the land record from CRUTEM4 (2007: see Fig. 13) that
was not simultaneously very moist. Note non-linear colour bars.

here), the warmth of 2007 was strongest during the boreal
winter and over land, whereas during the 1998 and 2010 El
Niño years temperature anomalies remained high from the
beginning of the year through to boreal summer and featured
over both land and ocean. This also helps to explain the en-
hanced moisture increase in the El Niño years. So, in terms of
changes in surface temperature, the “where” and the “when”
are important factors governing changes in moisture con-
tent, and the surface specific humidity record shows a strong
influence from the phase of El Niño–Southern Oscillation.
However, the correlation of the detrended monthly HadISDH
from the tropics and an optimally lagged (at 4 months) Nino
3.4 index derived from HadSST2 (Rayner et al., 2006; pro-
vided by John Kennedy) is only approximately 0.54. This
suggests the importance of other factors in explaining indi-
vidual monthly variability. These could be land–sea temper-
ature differences, changes in atmospheric circulation includ-
ing subsidence of the dry air in descending regions, the verti-
cal structure of temperature anomalies throughout the atmo-
spheric column, and other modes of variability.

Despite the moistening (in absolute terms) shown here,
other research shows that the land surface atmosphere be-
came less saturated over recent years, as shown by the de-
creasing relative humidity in Simmons et al. (2010). The
decrease is too recent to be defined as a long-term trend.
HadISDH paves the way for a later development of a rela-
tive humidity product in addition to other humidity variables
which will allow this aspect to be fully explored. In absolute
terms, the globe contains more moisture over the land sur-
face now than in the 1970s. In relative terms, this depends on
the simultaneous temperature changes and whether enough
water has been evaporated to sustain the relative humidity.
Following Clausius–Clapeyron this would need to be 7 % for
every 1 kelvin rise in temperature.

6 Data availability and logistics

The gridded product of HadISDH used here is
HadISDH.landq.1.0.0.2012p. It is freely available for
research purposes fromwww.metoffice.gov.uk/hadobs/
hadisdh, along with supporting material, diagnostics
and also some of the source code used in develop-
ment. Individual stations are also available on request.
Version control will follow the HadISD format (Dunn
et al., 2012) with HadISD updates being fed through
to HadISDH. HadISDH version control and format is
fully described on the download web page. The version
of the pairwise algorithm used is that associated with
the GHCN v3.2 release and can be downloaded from
http://www.ncdc.noaa.gov/oa/climate/research/ushcn/#phas.
While great effort has been made to ensure high quality and
long-term homogeneity of the data, all users are advised to
use the uncertainty estimates and station numbers contribut-
ing to each grid-box mean where possible. Furthermore,
there is some instability resulting from continual ISD
updates and improvements to the historical data, as noted in
Sect. 5.1. For each update an assessment will be made of any
resulting differences in HadISDH. This will be documented
on the website. Feedback is very much appreciated and
future versions/annual updates will endeavour to address any
issues found. Table 3 documents the fields available.

7 Conclusions

We have presented a new, improved and updatable surface
specific humidity product over land, HadISDH, for the pur-
pose of assessing long-term changes. It benefits from im-
proved station coverage and compositing, more in-depth
quality control, and more thorough and objective homogeni-
sation. It also has uncertainties parameterised through a for-
mal error model. HadISDH has been compared against all
existing global products over their respective overlaps and
shown to be in very good agreement. It is the only purely
observationally based estimate that exists after 2007, and it
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Table 3.Description of data contained in the HadISDH CF-compliant netCDF file.

Maximum and
Field Description Dimensions minimum values

qhumabs Monthly mean specific humidity 72 by 36 by 468 0.000 to 23.570 g kg−1

qhumanoms Monthly mean anomaly specific humidity from the 1976–2005
climatology period

72 by 36 by 468 −6.308 to 5.867 g kg−1

qhumstd Standard deviation of all station monthly mean anomalies
within the grid box for each month

72 by 36 by 468 0.0 to 100.0 g kg−1

qhumcombinederr Station uncertainty and sampling uncertainty combined in
quadrature to give a 2σ uncertainty

72 by 36 by 468 0.031 to 2.272 g kg−1

qhumsamplingerr 2σ sampling uncertainty 72 by 36 by 468 0.002 to 0.778 g kg−1

qhumrbar Average inter-site correlation 72 by 36 0.100 to 0.891 g kg−1

qhumsbarSQ Estimate of the mean variance of individual stations in the grid
box

72 by 36 0.030 to 10.000 g kg−1

qhumstationerr Climatological, measurement and adjustment uncertainty
combined in quadrature to give a 2σ station uncertainty

72 by 36 by 468 0.015 to 2.656 g kg−1

qhumadjerr 1.65σ adjustment uncertainty 72 by 36 by 468 0.015 to 2.186 g kg−1

qhumobserr 2σ measurement uncertainty 72 by 36 by 468 0.001 to 0.131 g kg−1

qhumclimerr 1.65σ climatological uncertainty 72 by 36 by 468 0.003 to 1.144 g kg−1

qhumclims Monthly climatologies over the 1976–2005 period 72 by 36 by 12 0.041 to 22.364 g kg−1

meann stations Total number of stations within the grid box over entire record 72 by 36 1 to 42
actualn stations Actual number of stations within the grid box for each time step 72 by 36 by 468 0 to 41
lat Latitude in 5◦ 72 by 36 −87.5◦S to 87.5◦ N
lon Longitude in 5◦ 72 by 36 −177.5◦ W to 177.5◦ E
times Months since January 1973 468 1 = January 1973,

480 = December 2012
months 1–12 12 1 to 12

provides a valuable complement to the reanalysis data that
have provided monitoring since then. This is the first time
that the pairwise homogenisation algorithm has been used for
surface humidity. The close agreement with existing prod-
ucts suggests that the pairwise algorithm is an effective tool
for homogenising the surface humidity data. Further work is
necessary to thoroughly assess the strengths and weaknesses
of this important process using humidity benchmark data in
addition to exploring seasonally varying and proportionally
applied adjustments. The uncertainty model could also be re-
fined.

HadISDH shows widespread and significant moistening
across the globe from 1973 to 2012. This is shown to be
highly significant and robust to an assessment of uncer-
tainties that for the first time accounts in an explicit and
quantified manner for random, systematic and sampling ef-
fects on estimates of large-scale specific humidity averages.
Moistening is strongest over the tropics. There are a few re-
gions showing a spatially coherent drying signal: southern
South America, south-western USA, parts of south-eastern
USA, and parts of Australia, all essentially in the subtropics.
There is generally lower confidence in these signals given the
spread of the trend range. However, this creates a general pic-
ture of moistening wet regions and drying dry regions, con-
sistent with the theory of an intensified hydrological cycle

resulting from a warming globe. For large-scale averages, un-
certainty is dominated by the spatial coverage component;
station and grid-box sampling uncertainties are essentially
negligible. Large-scale averages exhibit increasing trends
that exceed the uncertainty estimate for the globe, North-
ern Hemisphere and tropics, suggesting that the atmosphere
above the global land surface is moister now that it was in
the 1970s. The moistest year on record was 1998, followed
by 2010, two strong El Nĩno years and concurrently two of
the three warmest years on record. A small moistening trend
is discernible for the Southern Hemisphere, although it is
not statistically significant, and variability, both month-to-
month and annual, in addition to the estimated uncertainties,
is large.

It is intended that HadISDH be updated annually so that
it can be used to monitor year-to-year changes in specific
humidity. Future work will deliver similar products for rel-
ative humidity, vapour pressure, wet bulb temperature and
dew point temperature, and also the simultaneously observed
temperatures. Such a suite of simultaneously derived temper-
ature and humidity products will be a valuable addition to
further our understanding of the water cycle under climate
change.
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Asokan, S. M., Jarsjö, J., and Destouni, G.: Vapor flux by evapotran-
spiration: effects of changes in climate, land use and water use, J.
Geophys. Res., 115, D24102,doi:10.1029/2010JD014417, 2010.

Berry, D. I. and Kent, E. C.: Air–Sea fluxes from ICOADS: the con-
struction of a new gridded dataset with uncertainty estimates, Int.
J. Climatol., 31, 987–1001,doi:10.1002/joc.2059, 2011.

BIPM (Bureau International des Poids et Mesures): Guide to the
Expression of Uncertainty in Measurements. Joint Committee for
Guides in Metrology JCGM 100, available at:http://www.bipm.
org/en/publications/guides/gum.html(last access: August 2012),
120 pp., 2008.

Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., and Jones, P. D.:
Uncertainty estimates in regional and global observed tempera-
ture changes: a new dataset from 1850, J. Geophys. Res., 111,
D12106,doi:10.1029/2005JD006548, 2006.

Brutsaert, W. and Parlange, M. B.: Hydrologic cycle explains the
evaporation paradox, Nature, 396, 30–30,doi:10.1038/23845,
1998.

Buck, A. L.: New equations for computing vapor pressure and en-
hancement factor, J. Appl. Meteorol., 20, 1527–1532, 1981.

Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D, Matsui, N., Al-
lan, R. J., Yin, X., Gleason Jr., B. E., Vose, R. S., Rutledge, G.,
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