Articles | Volume 9, issue 5
Clim. Past, 9, 2253–2267, 2013
https://doi.org/10.5194/cp-9-2253-2013

Special issue: International Partnerships in Ice Core Sciences (IPICS): 2012...

Clim. Past, 9, 2253–2267, 2013
https://doi.org/10.5194/cp-9-2253-2013

Research article 09 Oct 2013

Research article | 09 Oct 2013

Why could ice ages be unpredictable?

M. Crucifix

Related authors

A Gaussian process emulator for simulating ice sheet-climate interactions on a multi-million year timescale: CLISEMv1.0
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-136,https://doi.org/10.5194/gmd-2021-136, 2021
Preprint under review for GMD
Short summary
ESD Ideas: The Peclet number is a cornerstone of the orbital and millennial Pleistocene variability
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 12, 63–67, https://doi.org/10.5194/esd-12-63-2021,https://doi.org/10.5194/esd-12-63-2021, 2021
Short summary
π-theorem generalization of the ice-age theory
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 11, 281–289, https://doi.org/10.5194/esd-11-281-2020,https://doi.org/10.5194/esd-11-281-2020, 2020
Short summary
ESD Ideas: Propagation of high-frequency forcing to ice age dynamics
Mikhail Y. Verbitsky, Michel Crucifix, and Dmitry M. Volobuev
Earth Syst. Dynam., 10, 257–260, https://doi.org/10.5194/esd-10-257-2019,https://doi.org/10.5194/esd-10-257-2019, 2019
Short summary
A theory of Pleistocene glacial rhythmicity
Mikhail Y. Verbitsky, Michel Crucifix, and Dmitry M. Volobuev
Earth Syst. Dynam., 9, 1025–1043, https://doi.org/10.5194/esd-9-1025-2018,https://doi.org/10.5194/esd-9-1025-2018, 2018
Short summary

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Pleistocene
The role of land cover in the climate of glacial Europe
Patricio Velasquez, Jed O. Kaplan, Martina Messmer, Patrick Ludwig, and Christoph C. Raible
Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021,https://doi.org/10.5194/cp-17-1161-2021, 2021
Short summary
Simulated stability of the Atlantic Meridional Overturning Circulation during the Last Glacial Maximum
Frerk Pöppelmeier, Jeemijn Scheen, Aurich Jeltsch-Thömmes, and Thomas F. Stocker
Clim. Past, 17, 615–632, https://doi.org/10.5194/cp-17-615-2021,https://doi.org/10.5194/cp-17-615-2021, 2021
Short summary
Large-scale features of Last Interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4)
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021,https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Evaluation of Arctic warming in mid-Pliocene climate simulations
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020,https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model
Dipayan Choudhury, Axel Timmermann, Fabian Schloesser, Malte Heinemann, and David Pollard
Clim. Past, 16, 2183–2201, https://doi.org/10.5194/cp-16-2183-2020,https://doi.org/10.5194/cp-16-2183-2020, 2020
Short summary

Cited articles

Belogortsev, A. B.: Quasiperiodic resonance and bifurcations of tori in the weakly nonlinear duffing oscillator, Physica D, 59, 417–429, https://doi.org/10.1016/0167-2789(92)90079-3, 1992.
Berger, A.: Support for the astronomical theory of climatic change, Nature, 268, 44–45, https://doi.org/10.1038/269044a0, 1977.
Berger, A. L.: Long-term variations of daily insolation and Quaternary climatic changes, J. Atmos. Sci., 35, 2362–2367, https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2, 1978.
Crucifix, M.: Oscillators and relaxation phenomena in Pleistocene climate theory, Philos. T. R. Soc. A, 370, 1140–1165, https://doi.org/10.1098/rsta.2011.0315, 2012.
De Saedeleer, B., Crucifix, M., and Wieczorek, S.: Is the astronomical forcing a reliable and unique pacemaker for climate? A conceptual model study, Clim. Dynam., 40, 273–294, https://doi.org/10.1007/s00382-012-1316-1, 2013.