Articles | Volume 9, issue 3
https://doi.org/10.5194/cp-9-1089-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-9-1089-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Climate of the last millennium: ensemble consistency of simulations and reconstructions
Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany
University of Hamburg, KlimaCampus Hamburg, Hamburg, Germany
now at: Leibniz Institute for Atmospheric Physics at the University of Rostock, Kühlungsborn, Germany
J. H. Jungclaus
Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany
D. Zanchettin
Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany
E. Zorita
Institute for Coastal Research, Helmholtz Centre Geesthacht, Geesthacht, Germany
Bert Bolin Centre for Climate Research, University of Stockholm, Stockholm, Sweden
Related authors
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024, https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary
Short summary
The ability of climate models to faithfully reproduce past warming episodes is a valuable test considering potentially large future warming. We develop a new method to compare simulations of the last deglaciation with temperature reconstructions. We find that reconstructions differ more between regions than simulations, potentially due to deficiencies in the simulation design, models, or reconstructions. Our work is a promising step towards benchmarking simulations of past climate transitions.
Lukas Jonkers, Oliver Bothe, and Michal Kucera
Clim. Past, 17, 2577–2581, https://doi.org/10.5194/cp-17-2577-2021, https://doi.org/10.5194/cp-17-2577-2021, 2021
Oliver Bothe and Eduardo Zorita
Clim. Past, 17, 721–751, https://doi.org/10.5194/cp-17-721-2021, https://doi.org/10.5194/cp-17-721-2021, 2021
Short summary
Short summary
The similarity between indirect observations of past climates and information from climate simulations can increase our understanding of past climates. The further we look back, the more uncertain our indirect observations become. Here, we discuss the technical background for such a similarity-based approach to reconstruct past climates for up to the last 15 000 years. We highlight the potential and the problems.
Oliver Bothe and Eduardo Zorita
Clim. Past, 16, 341–369, https://doi.org/10.5194/cp-16-341-2020, https://doi.org/10.5194/cp-16-341-2020, 2020
Short summary
Short summary
One can use the similarity between sparse indirect observations of past climates and full fields of simulated climates to learn more about past climates. Here, we detail how one can compute uncertainty estimates for such reconstructions of past climates. This highlights the ambiguity of the reconstruction. We further show that such a reconstruction for European summer temperature agrees well with a more common approach.
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Earth Syst. Sci. Data, 11, 1129–1152, https://doi.org/10.5194/essd-11-1129-2019, https://doi.org/10.5194/essd-11-1129-2019, 2019
Short summary
Short summary
Reconstructions try to extract a climate signal from paleo-observations. It is essential to understand their uncertainties. Similarly, comparing climate simulations and paleo-observations requires approaches to address their uncertainties. We describe a simple but flexible noise model for climate proxies for temperature on millennial timescales, which can assist these goals.
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Clim. Past, 15, 307–334, https://doi.org/10.5194/cp-15-307-2019, https://doi.org/10.5194/cp-15-307-2019, 2019
Short summary
Short summary
Our understanding of future climate changes increases if different sources of information agree on past climate variations. Changing climates particularly impact local scales for which future changes in precipitation are highly uncertain. Here, we use information from observations, model simulations, and climate reconstructions for regional precipitation over the British Isles. We find these do not agree well on precipitation variations over the past few centuries.
Climate?
Oliver Bothe
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2018-11, https://doi.org/10.5194/gc-2018-11, 2018
Revised manuscript not accepted
Short summary
Short summary
Everybody experiences weather and has, likely, a grasp on the notion of different climates. There are discussions on how to define climate, since climate is a policy-relevant topic. Here, I try to clarify why the saying
Climate is what you expect, weather is what you getis an appropriate definition that, however, depends on the definition of what may be seen as
weather.
D. Zanchettin, O. Bothe, F. Lehner, P. Ortega, C. C. Raible, and D. Swingedouw
Clim. Past, 11, 939–958, https://doi.org/10.5194/cp-11-939-2015, https://doi.org/10.5194/cp-11-939-2015, 2015
Short summary
Short summary
A discrepancy exists between reconstructed and simulated Pacific North American pattern (PNA) features during the early 19th century. Pseudo-reconstructions demonstrate that the available PNA reconstruction is potentially skillful but also potentially affected by a number of sources of uncertainty and deficiencies especially at multidecadal and centennial timescales. Simulations and reconstructions can be reconciled by attributing the reconstructed PNA features to internal variability.
D. Zanchettin, O. Bothe, C. Timmreck, J. Bader, A. Beitsch, H.-F. Graf, D. Notz, and J. H. Jungclaus
Earth Syst. Dynam., 5, 223–242, https://doi.org/10.5194/esd-5-223-2014, https://doi.org/10.5194/esd-5-223-2014, 2014
O. Bothe, J. H. Jungclaus, and D. Zanchettin
Clim. Past, 9, 2471–2487, https://doi.org/10.5194/cp-9-2471-2013, https://doi.org/10.5194/cp-9-2471-2013, 2013
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
EGUsphere, https://doi.org/10.5194/egusphere-2024-2222, https://doi.org/10.5194/egusphere-2024-2222, 2024
Short summary
Short summary
We designed a tool to predict the storm surges at the Baltic Sea coast with a satisfactorily predictability (70 % correct predictions) using lead times of a few days. The proportion of false warnings is typically as low as 10 to 20 %. We could identify the relevant predictor regions and their patterns – such as low pressure systems and strong winds. Due to its short computing time the method can be used as a pre-warning system triggering the application of more sophisticated algorithms.
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
EGUsphere, https://doi.org/10.5194/egusphere-2024-2281, https://doi.org/10.5194/egusphere-2024-2281, 2024
Short summary
Short summary
Vertical mixing is an important process e.g. for tropical sea surface temperature, but cannot be resolved by ocean models. Comparisons of mixing schemes and settings have usually been done with a single model, sometimes yielding conflicting results. We systematically compare two widely used schemes, TKE and KPP, with different parameter settings, in two different ocean models, and show that most effects from mixing scheme parameter changes are model dependent.
Hera Guðlaugsdóttir, Yannick Peings, Davide Zanchettin, and Guðrún Magnúsdóttir
EGUsphere, https://doi.org/10.5194/egusphere-2024-1302, https://doi.org/10.5194/egusphere-2024-1302, 2024
Short summary
Short summary
Here we use an Earth System Model to simulate a long-lasting volcanic eruption at 65° N to assess its climate effects. We show a Polar Vortex strengthening in winter 1 and a weakening in winters 2–3 due to surface cooling that further causes an increase in sudden stratospheric warmings. This can cause severe cold weather events in the northern hemisphere. Our motivation is to understand how such eruptions impact the climate system for improving decadal climate predictability.
Félix García-Pereira, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, Norman Julius Steinert, Elena García-Bustamante, Philip de Vrese, Johann Jungclaus, Stephan Lorenz, Stefan Hagemann, Francisco José Cuesta-Valero, Almudena García-García, and Hugo Beltrami
Earth Syst. Dynam., 15, 547–564, https://doi.org/10.5194/esd-15-547-2024, https://doi.org/10.5194/esd-15-547-2024, 2024
Short summary
Short summary
According to climate model estimates, the land stored 2 % of the system's heat excess in the last decades, while observational studies show it was around 6 %. This difference stems from these models using land components that are too shallow to constrain land heat uptake. Deepening the land component does not affect the surface temperature. This result can be used to derive land heat uptake estimates from different sources, which are much closer to previous observational reports.
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024, https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary
Short summary
The ability of climate models to faithfully reproduce past warming episodes is a valuable test considering potentially large future warming. We develop a new method to compare simulations of the last deglaciation with temperature reconstructions. We find that reconstructions differ more between regions than simulations, potentially due to deficiencies in the simulation design, models, or reconstructions. Our work is a promising step towards benchmarking simulations of past climate transitions.
Matteo Mastropierro, Daniele Peano, and Davide Zanchettin
EGUsphere, https://doi.org/10.5194/egusphere-2024-823, https://doi.org/10.5194/egusphere-2024-823, 2024
Short summary
Short summary
We address how different ESMs represent vegetation productivity, in terms of carbon fluxes, within the Amazon basin. By statistically assessing the role of climatological and model specific factors that influence vegetation, we showed that surface energy fluxes and the implementation of Phosphorous limitation resulted to be the main drivers of model uncertainties in a future scenario. Reducing these uncertainties allows to increase the reliability of tropical land carbon and climate projections
Marlene Klockmann, Udo von Toussaint, and Eduardo Zorita
Geosci. Model Dev., 17, 1765–1787, https://doi.org/10.5194/gmd-17-1765-2024, https://doi.org/10.5194/gmd-17-1765-2024, 2024
Short summary
Short summary
Reconstructions of climate variability before the observational period rely on climate proxies and sophisticated statistical models to link the proxy information and climate variability. Existing models tend to underestimate the true magnitude of variability, especially if the proxies contain non-climatic noise. We present and test a promising new framework for climate-index reconstructions, based on Gaussian processes, which reconstructs robust variability estimates from noisy and sparse data.
Nele Tim, Birgit Hünicke, and Eduardo Zorita
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-147, https://doi.org/10.5194/nhess-2023-147, 2023
Manuscript not accepted for further review
Short summary
Short summary
Our study analyses extreme precipitation over southern Africa in regional high-resolution atmospheric simulations of the past and future. We investigated heavy precipitation over Southern Africa, coastal South Africa, Cape Town, and the KwaZulu-Natal province in eastern South Africa. Coastal precipitation extremes are projected to intensify, double in intensity in KwaZulu-Natal, and weaken in Cape Town. Extremes are not projected to occur more often in the 21st century than in the last decades.
Nele Tim, Eduardo Zorita, Birgit Hünicke, and Ioana Ivanciu
Weather Clim. Dynam., 4, 381–397, https://doi.org/10.5194/wcd-4-381-2023, https://doi.org/10.5194/wcd-4-381-2023, 2023
Short summary
Short summary
As stated by the IPCC, southern Africa is one of the two land regions that are projected to suffer from the strongest precipitation reductions in the future. Simulated drying in this region is linked to the adjacent oceans, and prevailing winds as warm and moist air masses are transported towards the continent. Precipitation trends in past and future climate can be partly attributed to the strength of the Agulhas Current system, the current along the east and south coasts of southern Africa.
Laura C. Jackson, Eduardo Alastrué de Asenjo, Katinka Bellomo, Gokhan Danabasoglu, Helmuth Haak, Aixue Hu, Johann Jungclaus, Warren Lee, Virna L. Meccia, Oleg Saenko, Andrew Shao, and Didier Swingedouw
Geosci. Model Dev., 16, 1975–1995, https://doi.org/10.5194/gmd-16-1975-2023, https://doi.org/10.5194/gmd-16-1975-2023, 2023
Short summary
Short summary
The Atlantic meridional overturning circulation (AMOC) has an important impact on the climate. There are theories that freshening of the ocean might cause the AMOC to cross a tipping point (TP) beyond which recovery is difficult; however, it is unclear whether TPs exist in global climate models. Here, we outline a set of experiments designed to explore AMOC tipping points and sensitivity to additional freshwater input as part of the North Atlantic Hosing Model Intercomparison Project (NAHosMIP).
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-21, https://doi.org/10.5194/nhess-2023-21, 2023
Manuscript not accepted for further review
Short summary
Short summary
The prediction of extreme coastal sea level, e.g. caused by a storm surge, is operationally carried out with dynamical computer models. These models are expensive to run and still display some limitations in predicting the height of extremes. We present a successful purely data-driven machine learning model to predict extreme sea levels along the Baltic Sea coast a few days in advance. The method is also able to identify the critical predictors for the different Baltic Sea regions.
Evelien van Dijk, Ingar Mørkestøl Gundersen, Anna de Bode, Helge Høeg, Kjetil Loftsgarden, Frode Iversen, Claudia Timmreck, Johann Jungclaus, and Kirstin Krüger
Clim. Past, 19, 357–398, https://doi.org/10.5194/cp-19-357-2023, https://doi.org/10.5194/cp-19-357-2023, 2023
Short summary
Short summary
The mid-6th century was one of the coldest periods of the last 2000 years as characterized by great societal changes. Here, we study the effect of the volcanic double event in 536 CE and 540 CE on climate and society in southern Norway. The combined climate and growing degree day models and high-resolution pollen and archaeological records reveal that the northern and western sites are vulnerable to crop failure with possible abandonment of farms, whereas the southeastern site is more resilient.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Zeguo Zhang, Sebastian Wagner, Marlene Klockmann, and Eduardo Zorita
Clim. Past, 18, 2643–2668, https://doi.org/10.5194/cp-18-2643-2022, https://doi.org/10.5194/cp-18-2643-2022, 2022
Short summary
Short summary
A bidirectional long short-term memory (LSTM) neural network was employed for the first time for past temperature field reconstructions. The LSTM method tested in our experiments using a limited calibration and validation dataset shows worse reconstruction skills compared to traditional reconstruction methods. However, a certain degree of reconstruction performance achieved by the nonlinear LSTM method shows that skill can be achieved even when using small samples with limited datasets.
Shih-Wei Fang, Claudia Timmreck, Johann Jungclaus, Kirstin Krüger, and Hauke Schmidt
Earth Syst. Dynam., 13, 1535–1555, https://doi.org/10.5194/esd-13-1535-2022, https://doi.org/10.5194/esd-13-1535-2022, 2022
Short summary
Short summary
The early 19th century was the coldest period over the past 500 years, when strong tropical volcanic events and a solar minimum coincided. This study quantifies potential surface cooling from the solar and volcanic forcing in the early 19th century with large ensemble simulations, and identifies the regions that their impacts cannot be simply additive. The cooling perspective of Arctic amplification exists in both solar and post-volcano period with the albedo feedback as the main contribution.
Evelien van Dijk, Johann Jungclaus, Stephan Lorenz, Claudia Timmreck, and Kirstin Krüger
Clim. Past, 18, 1601–1623, https://doi.org/10.5194/cp-18-1601-2022, https://doi.org/10.5194/cp-18-1601-2022, 2022
Short summary
Short summary
A double volcanic eruption in 536 and 540 CE caused one of the coldest decades during the last 2000 years. We analyzed new climate model simulations from that period and found a cooling of up to 2°C and a sea-ice extent up to 200 km further south. Complex interactions between sea ice and ocean circulation lead to a reduction in the northward ocean heat transport, which makes the sea ice extend further south; this in turn leads to a surface cooling up to 20 years after the eruptions.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Lukas Jonkers, Oliver Bothe, and Michal Kucera
Clim. Past, 17, 2577–2581, https://doi.org/10.5194/cp-17-2577-2021, https://doi.org/10.5194/cp-17-2577-2021, 2021
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Piero Lionello, Robert J. Nicholls, Georg Umgiesser, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2633–2641, https://doi.org/10.5194/nhess-21-2633-2021, https://doi.org/10.5194/nhess-21-2633-2021, 2021
Short summary
Short summary
Venice is an iconic place, and a paradigm of huge historical and cultural value is at risk. The threat posed by floods has dramatically increased in recent decades and is expected to continue to grow – and even accelerate – through this century. There is a need to better understand the future evolution of the relative sea level and its extremes and to develop adaptive planning strategies appropriate for present uncertainty, which might not be substantially reduced in the near future.
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Oliver Gutjahr, Nils Brüggemann, Helmuth Haak, Johann H. Jungclaus, Dian A. Putrasahan, Katja Lohmann, and Jin-Song von Storch
Geosci. Model Dev., 14, 2317–2349, https://doi.org/10.5194/gmd-14-2317-2021, https://doi.org/10.5194/gmd-14-2317-2021, 2021
Short summary
Short summary
We compare four ocean vertical mixing schemes in 100-year coupled simulations with the Max Planck Institute Earth System Model (MPI-ESM1.2) and analyse their model biases. Overall, the mixing schemes modify biases in the ocean interior that vary with region and variable but produce a similar global bias pattern. We therefore cannot classify any scheme as superior but conclude that the chosen mixing scheme may be important for regional biases.
Oliver Bothe and Eduardo Zorita
Clim. Past, 17, 721–751, https://doi.org/10.5194/cp-17-721-2021, https://doi.org/10.5194/cp-17-721-2021, 2021
Short summary
Short summary
The similarity between indirect observations of past climates and information from climate simulations can increase our understanding of past climates. The further we look back, the more uncertain our indirect observations become. Here, we discuss the technical background for such a similarity-based approach to reconstruct past climates for up to the last 15 000 years. We highlight the potential and the problems.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Camilo Melo-Aguilar, J. Fidel González-Rouco, Elena García-Bustamante, Norman Steinert, Johann H. Jungclaus, Jorge Navarro, and Pedro J. Roldán-Gómez
Clim. Past, 16, 453–474, https://doi.org/10.5194/cp-16-453-2020, https://doi.org/10.5194/cp-16-453-2020, 2020
Short summary
Short summary
This study explores potential sources of bias on borehole-based temperature reconstruction from both methodological and physical factors using pseudo-proxy experiments that consider ensembles of simulations from the Community Earth System Model. The results indicate that both methodological and physical factors may have an impact on the estimation of the recent temperature trends at different spatial scales. Internal variability arises also as an important issue influencing pseudo-proxy results.
Oliver Bothe and Eduardo Zorita
Clim. Past, 16, 341–369, https://doi.org/10.5194/cp-16-341-2020, https://doi.org/10.5194/cp-16-341-2020, 2020
Short summary
Short summary
One can use the similarity between sparse indirect observations of past climates and full fields of simulated climates to learn more about past climates. Here, we detail how one can compute uncertainty estimates for such reconstructions of past climates. This highlights the ambiguity of the reconstruction. We further show that such a reconstruction for European summer temperature agrees well with a more common approach.
Nele Tim, Eduardo Zorita, Kay-Christian Emeis, Franziska U. Schwarzkopf, Arne Biastoch, and Birgit Hünicke
Earth Syst. Dynam., 10, 847–858, https://doi.org/10.5194/esd-10-847-2019, https://doi.org/10.5194/esd-10-847-2019, 2019
Short summary
Short summary
Our study reveals that the latitudinal position and intensity of Southern Hemisphere trades and westerlies are correlated. In the last decades the westerlies have shifted poleward and intensified. Furthermore, the latitudinal shifts and intensity of the trades and westerlies impact the sea surface temperatures around southern Africa and in the South Benguela upwelling region. The future development of wind stress depends on the strength of greenhouse gas forcing.
Maria Pyrina, Eduardo Moreno-Chamarro, Sebastian Wagner, and Eduardo Zorita
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-50, https://doi.org/10.5194/esd-2019-50, 2019
Revised manuscript not accepted
Tine Nilsen, Dmitry V. Divine, Annika Hofgaard, Andreas Born, Johann Jungclaus, and Igor Drobyshev
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-123, https://doi.org/10.5194/cp-2019-123, 2019
Revised manuscript not accepted
Short summary
Short summary
Using a set of three climate model simulations we cannot find a consistent relationship between atmospheric conditions favorable for forest fire activity in northern Scandinavia and weaker ocean circulation in the North Atlantic subpolar gyre on seasonal timescales. In the literature there is support of such a relationship for longer timescales. With the motivation to improve seasonal prediction systems, we conclude that the gyre circulation alone does not indicate forthcoming model drought.
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Earth Syst. Sci. Data, 11, 1129–1152, https://doi.org/10.5194/essd-11-1129-2019, https://doi.org/10.5194/essd-11-1129-2019, 2019
Short summary
Short summary
Reconstructions try to extract a climate signal from paleo-observations. It is essential to understand their uncertainties. Similarly, comparing climate simulations and paleo-observations requires approaches to address their uncertainties. We describe a simple but flexible noise model for climate proxies for temperature on millennial timescales, which can assist these goals.
Oliver Gutjahr, Dian Putrasahan, Katja Lohmann, Johann H. Jungclaus, Jin-Song von Storch, Nils Brüggemann, Helmuth Haak, and Achim Stössel
Geosci. Model Dev., 12, 3241–3281, https://doi.org/10.5194/gmd-12-3241-2019, https://doi.org/10.5194/gmd-12-3241-2019, 2019
Short summary
Short summary
We analyse how climatic mean states of the atmosphere and ocean change with increasing the horizontal model resolution of the Max Planck Institute Earth System Model (MPI-ESM1.2) and how they are affected by the representation of vertical mixing in the ocean. It is in particular a high-resolution ocean that reduces biases not only in the ocean but also in the atmosphere. The vertical mixing scheme affects the strength and stability of the Atlantic meridional overturning circulation (AMOC).
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, Eduardo Zorita, and Fernando Jaume-Santero
Clim. Past, 15, 1099–1111, https://doi.org/10.5194/cp-15-1099-2019, https://doi.org/10.5194/cp-15-1099-2019, 2019
Short summary
Short summary
A database of North American long-term ground surface temperatures, from approximately 1300 CE to 1700 CE, was assembled from geothermal data. These temperatures are useful for studying the future stability of permafrost, as well as for evaluating simulations of preindustrial climate that may help to improve estimates of climate models’ equilibrium climate sensitivity. The database will be made available to the climate science community.
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Clim. Past, 15, 307–334, https://doi.org/10.5194/cp-15-307-2019, https://doi.org/10.5194/cp-15-307-2019, 2019
Short summary
Short summary
Our understanding of future climate changes increases if different sources of information agree on past climate variations. Changing climates particularly impact local scales for which future changes in precipitation are highly uncertain. Here, we use information from observations, model simulations, and climate reconstructions for regional precipitation over the British Isles. We find these do not agree well on precipitation variations over the past few centuries.
Hanna Paulsen, Tatiana Ilyina, Johann H. Jungclaus, Katharina D. Six, and Irene Stemmler
Earth Syst. Dynam., 9, 1283–1300, https://doi.org/10.5194/esd-9-1283-2018, https://doi.org/10.5194/esd-9-1283-2018, 2018
Short summary
Short summary
We use an Earth system model to study the effects of light absorption by marine cyanobacteria on climate. We find that cyanobacteria have a considerable cooling effect on tropical SST with implications for ocean and atmosphere circulation patterns as well as for climate variability. The results indicate the importance of considering phytoplankton light absorption in climate models, and specifically highlight the role of cyanobacteria due to their regulative effect on tropical SST and climate.
Climate?
Oliver Bothe
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2018-11, https://doi.org/10.5194/gc-2018-11, 2018
Revised manuscript not accepted
Short summary
Short summary
Everybody experiences weather and has, likely, a grasp on the notion of different climates. There are discussions on how to define climate, since climate is a policy-relevant topic. Here, I try to clarify why the saying
Climate is what you expect, weather is what you getis an appropriate definition that, however, depends on the definition of what may be seen as
weather.
Xing Yi, Birgit Hünicke, and Eduardo Zorita
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-63, https://doi.org/10.5194/cp-2018-63, 2018
Revised manuscript not accepted
Short summary
Short summary
In this study, we analyse the outputs of Earth System Models to investigate the Arabian Sea upwelling for the last 1000 years and in the 21st century. Due to the orbital forcing of the models, the upwelling in the past is found to reveal a negative long-term trend, which matches the observed sediment records. In the future under the RCP8.5 scenario, the warming of the sea water tends to stabilize the surface layer and thus interrupts the upwelling.
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
Lauren Marshall, Anja Schmidt, Matthew Toohey, Ken S. Carslaw, Graham W. Mann, Michael Sigl, Myriam Khodri, Claudia Timmreck, Davide Zanchettin, William T. Ball, Slimane Bekki, James S. A. Brooke, Sandip Dhomse, Colin Johnson, Jean-Francois Lamarque, Allegra N. LeGrande, Michael J. Mills, Ulrike Niemeier, James O. Pope, Virginie Poulain, Alan Robock, Eugene Rozanov, Andrea Stenke, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, and Fiona Tummon
Atmos. Chem. Phys., 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018, https://doi.org/10.5194/acp-18-2307-2018, 2018
Short summary
Short summary
We use four global aerosol models to compare the simulated sulfate deposition from the 1815 Mt. Tambora eruption to ice core records. Inter-model volcanic sulfate deposition differs considerably. Volcanic sulfate deposited on polar ice sheets is used to estimate the atmospheric sulfate burden and subsequently radiative forcing of historic eruptions. Our results suggest that deriving such relationships from model simulations may be associated with greater uncertainties than previously thought.
Sitar Karabil, Eduardo Zorita, and Birgit Hünicke
Earth Syst. Dynam., 9, 69–90, https://doi.org/10.5194/esd-9-69-2018, https://doi.org/10.5194/esd-9-69-2018, 2018
Short summary
Short summary
We analysed the contribution of atmospheric factors to interannual off-shore sea-level variability in the Baltic Sea region. We identified a different atmospheric circulation pattern that is more closely linked to sea-level variability than the NAO. The inverse barometer effect contributes to that link in the winter and summer seasons. Freshwater flux is connected to the link in summer and net heat flux in winter.The new atmospheric-pattern-related wind forcing plays an important role in summer.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Sitar Karabil, Eduardo Zorita, and Birgit Hünicke
Earth Syst. Dynam., 8, 1031–1046, https://doi.org/10.5194/esd-8-1031-2017, https://doi.org/10.5194/esd-8-1031-2017, 2017
Short summary
Short summary
We statistically analysed the mechanisms of the variability in decadal sea-level trends for the whole Baltic Sea basin over the last century. We used two different sea-level data sets and several climatic data sets. The results of this study showed that precipitation has a lagged effect on decadal sea-level trend variations from which the signature of atmospheric effect is removed. This detected underlying factor is not connected to oceanic forcing driven from the North Atlantic region.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Maria Pyrina, Sebastian Wagner, and Eduardo Zorita
Clim. Past, 13, 1339–1354, https://doi.org/10.5194/cp-13-1339-2017, https://doi.org/10.5194/cp-13-1339-2017, 2017
Svenja E. Bierstedt, Birgit Hünicke, Eduardo Zorita, and Juliane Ludwig
Earth Syst. Dynam., 8, 639–652, https://doi.org/10.5194/esd-8-639-2017, https://doi.org/10.5194/esd-8-639-2017, 2017
Short summary
Short summary
We statistically analyse the relationship between the structure of migrating dunes in the southern Baltic and the driving wind conditions over the past 26 years, with the long-term aim of using migrating dunes as a proxy for past wind conditions at an interannual resolution.
Juan José Gómez-Navarro, Eduardo Zorita, Christoph C. Raible, and Raphael Neukom
Clim. Past, 13, 629–648, https://doi.org/10.5194/cp-13-629-2017, https://doi.org/10.5194/cp-13-629-2017, 2017
Short summary
Short summary
This contribution aims at assessing to what extent the analogue method, a classic technique used in other branches of meteorology and climatology, can be used to perform gridded reconstructions of annual temperature based on the limited information from available but un-calibrated proxies spread across different locations of the world. We conclude that it is indeed possible, albeit with certain limitations that render the method comparable to more classic techniques.
Xing Yi and Eduardo Zorita
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-124, https://doi.org/10.5194/cp-2016-124, 2016
Revised manuscript not accepted
Short summary
Short summary
In this paper we study the upwelling in the Arabian Sea simulated in two Earth System Models for the last millennium and for the 21st century. Revealing a negative long-term trend due to the model orbital forcing, the upwelling over the last millennium is strongly correlated with the SST, the Indian summer Monsoon and the G.bulloides abundance observed in the sediment records. In the future scenarios the warming of the sea water tends to stabilize the surface layer and hinder the upwelling.
Jonathan M. Gregory, Nathaelle Bouttes, Stephen M. Griffies, Helmuth Haak, William J. Hurlin, Johann Jungclaus, Maxwell Kelley, Warren G. Lee, John Marshall, Anastasia Romanou, Oleg A. Saenko, Detlef Stammer, and Michael Winton
Geosci. Model Dev., 9, 3993–4017, https://doi.org/10.5194/gmd-9-3993-2016, https://doi.org/10.5194/gmd-9-3993-2016, 2016
Short summary
Short summary
As a consequence of greenhouse gas emissions, changes in ocean temperature, salinity, circulation and sea level are expected in coming decades. Among the models used for climate projections for the 21st century, there is a large spread in projections of these effects. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) aims to investigate and explain this spread by prescribing a common set of changes in the input of heat, water and wind stress to the ocean in the participating models.
Stephen M. Griffies, Gokhan Danabasoglu, Paul J. Durack, Alistair J. Adcroft, V. Balaji, Claus W. Böning, Eric P. Chassignet, Enrique Curchitser, Julie Deshayes, Helge Drange, Baylor Fox-Kemper, Peter J. Gleckler, Jonathan M. Gregory, Helmuth Haak, Robert W. Hallberg, Patrick Heimbach, Helene T. Hewitt, David M. Holland, Tatiana Ilyina, Johann H. Jungclaus, Yoshiki Komuro, John P. Krasting, William G. Large, Simon J. Marsland, Simona Masina, Trevor J. McDougall, A. J. George Nurser, James C. Orr, Anna Pirani, Fangli Qiao, Ronald J. Stouffer, Karl E. Taylor, Anne Marie Treguier, Hiroyuki Tsujino, Petteri Uotila, Maria Valdivieso, Qiang Wang, Michael Winton, and Stephen G. Yeager
Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, https://doi.org/10.5194/gmd-9-3231-2016, 2016
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This document defines OMIP and details a protocol both for simulating global ocean/sea-ice models and for analysing their output.
Davide Zanchettin, Myriam Khodri, Claudia Timmreck, Matthew Toohey, Anja Schmidt, Edwin P. Gerber, Gabriele Hegerl, Alan Robock, Francesco S. R. Pausata, William T. Ball, Susanne E. Bauer, Slimane Bekki, Sandip S. Dhomse, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Michael Mills, Marion Marchand, Ulrike Niemeier, Virginie Poulain, Eugene Rozanov, Angelo Rubino, Andrea Stenke, Kostas Tsigaridis, and Fiona Tummon
Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, https://doi.org/10.5194/gmd-9-2701-2016, 2016
Short summary
Short summary
Simulating volcanically-forced climate variability is a challenging task for climate models. The Model Intercomparison Project on the climatic response to volcanic forcing (VolMIP) – an endorsed contribution to CMIP6 – defines a protocol for idealized volcanic-perturbation experiments to improve comparability of results across different climate models. This paper illustrates the design of VolMIP's experiments and describes the aerosol forcing input datasets to be used.
Anastasios Matsikaris, Martin Widmann, and Johann Jungclaus
Clim. Past, 12, 1555–1563, https://doi.org/10.5194/cp-12-1555-2016, https://doi.org/10.5194/cp-12-1555-2016, 2016
Short summary
Short summary
We have assimilated proxy-based (PAGES 2K) and instrumental (HadCRUT3v) observations into a General Circulation Model (MPI-ESM-CR). Assimilating instrumental data improves the performance of Data Assimilation. No skill on small spatial scales is however found for either of the two schemes. Errors in the assimilated data are therefore not the main reason for this lack of skill; continental mean temperatures cannot provide skill on small spatial scales in palaeoclimate reconstructions.
Nele Tim, Eduardo Zorita, Birgit Hünicke, Xing Yi, and Kay-Christian Emeis
Ocean Sci., 12, 807–823, https://doi.org/10.5194/os-12-807-2016, https://doi.org/10.5194/os-12-807-2016, 2016
Short summary
Short summary
The impact of external climate forcing on the four eastern boundary upwelling systems is investigated for the recent past and future. Under increased radiative forcing, upwelling-favourable winds should strengthen due to unequal heating of land and oceans. However, coastal upwelling simulated in ensembles of climate simulations do not show any imprint of external forcing neither for the past millennium nor for the future, with the exception of the strongest future scenario.
Svenja E. Bierstedt, Birgit Hünicke, Eduardo Zorita, Sebastian Wagner, and Juan José Gómez-Navarro
Clim. Past, 12, 317–338, https://doi.org/10.5194/cp-12-317-2016, https://doi.org/10.5194/cp-12-317-2016, 2016
X. Yi, B. Hünicke, N. Tim, and E. Zorita
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-2683-2015, https://doi.org/10.5194/osd-12-2683-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
In this paper, we use the vertical water mass transport data provided by a high-resolution global ocean simulation to study the western Arabian Sea coastal upwelling system. Our results show that: 1). no significant long-term trend is detected in the upwelling time series. 2). the impact of Indian summer monsoon on the simulated upwelling is weak. 3). the upwelling is strongly affected by the sea level pressure gradient and the air temperature gradient.
J. J. Gómez-Navarro, O. Bothe, S. Wagner, E. Zorita, J. P. Werner, J. Luterbacher, C. C. Raible, and J. P Montávez
Clim. Past, 11, 1077–1095, https://doi.org/10.5194/cp-11-1077-2015, https://doi.org/10.5194/cp-11-1077-2015, 2015
N. Tim, E. Zorita, and B. Hünicke
Ocean Sci., 11, 483–502, https://doi.org/10.5194/os-11-483-2015, https://doi.org/10.5194/os-11-483-2015, 2015
Short summary
Short summary
The atmospheric drivers of the Benguela upwelling systems and its variability are statistically analysed with an ocean-only simulation over the last decades. Atmospheric upwelling-favourable conditions are southerly wind/wind stress, a strong subtropical anticyclone, and an ocean-land sea level pressure gradient as well as a negative ENSO and a positive AAO phase. No long-term trends of upwelling and of ocean-minus-land air pressure gradients, as supposed by Bakun, can be seen in our analysis.
D. Zanchettin, O. Bothe, F. Lehner, P. Ortega, C. C. Raible, and D. Swingedouw
Clim. Past, 11, 939–958, https://doi.org/10.5194/cp-11-939-2015, https://doi.org/10.5194/cp-11-939-2015, 2015
Short summary
Short summary
A discrepancy exists between reconstructed and simulated Pacific North American pattern (PNA) features during the early 19th century. Pseudo-reconstructions demonstrate that the available PNA reconstruction is potentially skillful but also potentially affected by a number of sources of uncertainty and deficiencies especially at multidecadal and centennial timescales. Simulations and reconstructions can be reconciled by attributing the reconstructed PNA features to internal variability.
J. A. Santos, M. F. Carneiro, A. Correia, M. J. Alcoforado, E. Zorita, and J. J. Gómez-Navarro
Clim. Past, 11, 825–834, https://doi.org/10.5194/cp-11-825-2015, https://doi.org/10.5194/cp-11-825-2015, 2015
K. Lohmann, J. Mignot, H. R. Langehaug, J. H. Jungclaus, D. Matei, O. H. Otterå, Y. Q. Gao, T. L. Mjell, U. S. Ninnemann, and H. F. Kleiven
Clim. Past, 11, 203–216, https://doi.org/10.5194/cp-11-203-2015, https://doi.org/10.5194/cp-11-203-2015, 2015
Short summary
Short summary
We use model simulations to investigate mechanisms of similar Iceland--Scotland overflow (outflow from the Nordic seas) and North Atlantic sea surface temperature variability, suggested from palaeo-reconstructions (Mjell et al., 2015). Our results indicate the influence of Nordic Seas surface temperature on the pressure gradient across the Iceland--Scotland ridge, not a large-scale link through the meridional overturning circulation, is responsible for the (simulated) co-variability.
A. Matsikaris, M. Widmann, and J. Jungclaus
Clim. Past, 11, 81–93, https://doi.org/10.5194/cp-11-81-2015, https://doi.org/10.5194/cp-11-81-2015, 2015
Short summary
Short summary
We compare an off-line and an on-line ensemble-based data assimilation method, for the climate of the 17th century. Both schemes perform better than the simulations without DA, and similar skill on the continental and hemispheric scales is found. This indicates either a lack of control of the slow components in our setup or a lack of skill in the information propagation on decadal timescales. The temporal consistency of the analysis in the on-line method makes it generally more preferable.
D. Zanchettin, O. Bothe, C. Timmreck, J. Bader, A. Beitsch, H.-F. Graf, D. Notz, and J. H. Jungclaus
Earth Syst. Dynam., 5, 223–242, https://doi.org/10.5194/esd-5-223-2014, https://doi.org/10.5194/esd-5-223-2014, 2014
K. Lohmann, J. H. Jungclaus, D. Matei, J. Mignot, M. Menary, H. R. Langehaug, J. Ba, Y. Gao, O. H. Otterå, W. Park, and S. Lorenz
Ocean Sci., 10, 227–241, https://doi.org/10.5194/os-10-227-2014, https://doi.org/10.5194/os-10-227-2014, 2014
O. Bothe, J. H. Jungclaus, and D. Zanchettin
Clim. Past, 9, 2471–2487, https://doi.org/10.5194/cp-9-2471-2013, https://doi.org/10.5194/cp-9-2471-2013, 2013
J. J. Gómez-Navarro, J. P. Montávez, S. Wagner, and E. Zorita
Clim. Past, 9, 1667–1682, https://doi.org/10.5194/cp-9-1667-2013, https://doi.org/10.5194/cp-9-1667-2013, 2013
G. Esnaola, J. Sáenz, E. Zorita, A. Fontán, V. Valencia, and P. Lazure
Ocean Sci., 9, 655–679, https://doi.org/10.5194/os-9-655-2013, https://doi.org/10.5194/os-9-655-2013, 2013
J. Segschneider, A. Beitsch, C. Timmreck, V. Brovkin, T. Ilyina, J. Jungclaus, S. J. Lorenz, K. D. Six, and D. Zanchettin
Biogeosciences, 10, 669–687, https://doi.org/10.5194/bg-10-669-2013, https://doi.org/10.5194/bg-10-669-2013, 2013
S. Tietsche, D. Notz, J. H. Jungclaus, and J. Marotzke
Ocean Sci., 9, 19–36, https://doi.org/10.5194/os-9-19-2013, https://doi.org/10.5194/os-9-19-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Modelling only | Timescale: Centennial-Decadal
Utilising a multi-proxy to model comparison to constrain the season and regionally heterogeneous impacts of the Mt Samalas 1257 eruption
A multi-model assessment of the early last deglaciation (PMIP4 LDv1): a meltwater perspective
The unidentified eruption of 1809: a climatic cold case
South Pacific Subtropical High from the late Holocene to the end of the 21st century: insights from climate proxies and general circulation models
Oceanic response to changes in the WAIS and astronomical forcing during the MIS31 superinterglacial
Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model
Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium
Using simulations of the last millennium to understand climate variability seen in palaeo-observations: similar variation of Iceland–Scotland overflow strength and Atlantic Multidecadal Oscillation
Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum
Changing correlation structures of the Northern Hemisphere atmospheric circulation from 1000 to 2100 AD
Using palaeo-climate comparisons to constrain future projections in CMIP5
Consistency of the multi-model CMIP5/PMIP3-past1000 ensemble
Variability of the ocean heat content during the last millennium – an assessment with the ECHO-g Model
Climate variability of the mid- and high-latitudes of the Southern Hemisphere in ensemble simulations from 1500 to 2000 AD
Evaluating climate model performance with various parameter sets using observations over the recent past
Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium
Laura Wainman, Lauren R. Marshall, and Anja Schmidt
Clim. Past, 20, 951–968, https://doi.org/10.5194/cp-20-951-2024, https://doi.org/10.5194/cp-20-951-2024, 2024
Short summary
Short summary
The Mt Samalas eruption had global-scale impacts on climate and has been linked to historical events throughout latter half of the 13th century. Using model simulations and multi-proxy data, we constrain the year and season of the eruption to summer 1257 and investigate the regional-scale variability in surface cooling following the eruption. We also evaluate our model-to-proxy comparison framework and discuss current limitations of the approach.
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024, https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary
Short summary
Geological records show rapid climate change throughout the recent deglaciation. The drivers of these changes are still misunderstood but are often attributed to shifts in the Atlantic Ocean circulation from meltwater input. A cumulative effort to understand these processes prompted numerous simulations of this period. We use these to explain the chain of events and our collective ability to simulate them. The results demonstrate the importance of the meltwater amount used in the simulation.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Valentina Flores-Aqueveque, Maisa Rojas, Catalina Aguirre, Paola A. Arias, and Charles González
Clim. Past, 16, 79–99, https://doi.org/10.5194/cp-16-79-2020, https://doi.org/10.5194/cp-16-79-2020, 2020
Short summary
Short summary
The South Pacific Subtropical High (SPSH) is a main feature of the South American (SA) climate. We analyzed its behavior during two extreme temperature events based on paleoclimate records and climate models. The SPSH expands (contracts) in warm (cold) periods. The changes affect other elements of the SA climate like the strength of the southerly winds and the position of the westerly wind belt. Projections indicate that this expansion and its consequences will continue during the 21st century.
Flavio Justino, Douglas Lindemann, Fred Kucharski, Aaron Wilson, David Bromwich, and Frode Stordal
Clim. Past, 13, 1081–1095, https://doi.org/10.5194/cp-13-1081-2017, https://doi.org/10.5194/cp-13-1081-2017, 2017
Short summary
Short summary
These modeling results have enormous implications for paleoreconstructions of the MIS31 climate that assume overall ice-free conditions in the vicinity of the Antarctic continent. Since these reconstructions may depict dominant signals in a particular time interval and locale, they cannot be assumed to geographically represent large-scale domains, and their ability to reproduce long-term environmental conditions should be considered with care.
Walter Acevedo, Bijan Fallah, Sebastian Reich, and Ulrich Cubasch
Clim. Past, 13, 545–557, https://doi.org/10.5194/cp-13-545-2017, https://doi.org/10.5194/cp-13-545-2017, 2017
Short summary
Short summary
The purpose of this study is to contribute to the present knowledge of paleo data assimilation techniques by addressing the following two questions: (i) Does the off-line regime naturally appear for the assimilation of tree-ring-width records into an AGCM? (ii) Is the fuzzy logic (FL)-based extension of a forward model still useful to improve the performance of a time-averaged ensemble Kalman filter technique when a climate model is used?
PAGES 2k-PMIP3 group
Clim. Past, 11, 1673–1699, https://doi.org/10.5194/cp-11-1673-2015, https://doi.org/10.5194/cp-11-1673-2015, 2015
Short summary
Short summary
A comparison of model simulations and reconstructions at the continental scale over the past millennium indicates that models are in relatively good agreement with temperature reconstructions for Northern Hemisphere regions, particularly in the Arctic. This is likely due to the relatively large amplitude of the externally forced response across northern and high-latitudes regions. Conversely, models disagree strongly with the reconstructions in the Southern Hemisphere.
K. Lohmann, J. Mignot, H. R. Langehaug, J. H. Jungclaus, D. Matei, O. H. Otterå, Y. Q. Gao, T. L. Mjell, U. S. Ninnemann, and H. F. Kleiven
Clim. Past, 11, 203–216, https://doi.org/10.5194/cp-11-203-2015, https://doi.org/10.5194/cp-11-203-2015, 2015
Short summary
Short summary
We use model simulations to investigate mechanisms of similar Iceland--Scotland overflow (outflow from the Nordic seas) and North Atlantic sea surface temperature variability, suggested from palaeo-reconstructions (Mjell et al., 2015). Our results indicate the influence of Nordic Seas surface temperature on the pressure gradient across the Iceland--Scotland ridge, not a large-scale link through the meridional overturning circulation, is responsible for the (simulated) co-variability.
J. G. Anet, S. Muthers, E. V. Rozanov, C. C. Raible, A. Stenke, A. I. Shapiro, S. Brönnimann, F. Arfeuille, Y. Brugnara, J. Beer, F. Steinhilber, W. Schmutz, and T. Peter
Clim. Past, 10, 921–938, https://doi.org/10.5194/cp-10-921-2014, https://doi.org/10.5194/cp-10-921-2014, 2014
C. C. Raible, F. Lehner, J. F. González-Rouco, and L. Fernández-Donado
Clim. Past, 10, 537–550, https://doi.org/10.5194/cp-10-537-2014, https://doi.org/10.5194/cp-10-537-2014, 2014
G. A. Schmidt, J. D. Annan, P. J. Bartlein, B. I. Cook, E. Guilyardi, J. C. Hargreaves, S. P. Harrison, M. Kageyama, A. N. LeGrande, B. Konecky, S. Lovejoy, M. E. Mann, V. Masson-Delmotte, C. Risi, D. Thompson, A. Timmermann, L.-B. Tremblay, and P. Yiou
Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, https://doi.org/10.5194/cp-10-221-2014, 2014
O. Bothe, J. H. Jungclaus, and D. Zanchettin
Clim. Past, 9, 2471–2487, https://doi.org/10.5194/cp-9-2471-2013, https://doi.org/10.5194/cp-9-2471-2013, 2013
P. Ortega, M. Montoya, F. González-Rouco, H. Beltrami, and D. Swingedouw
Clim. Past, 9, 547–565, https://doi.org/10.5194/cp-9-547-2013, https://doi.org/10.5194/cp-9-547-2013, 2013
S. B. Wilmes, C. C. Raible, and T. F. Stocker
Clim. Past, 8, 373–390, https://doi.org/10.5194/cp-8-373-2012, https://doi.org/10.5194/cp-8-373-2012, 2012
M. F. Loutre, A. Mouchet, T. Fichefet, H. Goosse, H. Goelzer, and P. Huybrechts
Clim. Past, 7, 511–526, https://doi.org/10.5194/cp-7-511-2011, https://doi.org/10.5194/cp-7-511-2011, 2011
M. Widmann, H. Goosse, G. van der Schrier, R. Schnur, and J. Barkmeijer
Clim. Past, 6, 627–644, https://doi.org/10.5194/cp-6-627-2010, https://doi.org/10.5194/cp-6-627-2010, 2010
Cited articles
Anderson, J. L.: A method for producing and evaluating probabilistic forecasts from ensemble model integrations, J. Climate, 9, 1518–1530, 1996.
Annan, J. D. and Hargreaves, J. C.: Reliability of the CMIP3 ensemble, Geophys. Res. Lett., 37, L02703, https://doi.org/10.1029/2009GL041994, 2010.
Annan, J. D., Hargreaves, J. C., and Tachiiri, K.: On the observational assessment of climate model performance, Geophys. Res. Lett., 38, L24702, https://doi.org/10.1029/2011GL049812, 2011.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., La\^{i}né, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, https://doi.org/10.5194/cp-3-261-2007, 2007.
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate models using palaeoclimatic data, Nat. Clim. Change, 2, 417–424, https://doi.org/10.1038/nclimate1456, 2012.
Bradley, D. R., Bradley, T. D., McGrath, S. G., and Cutcomb, S. D.: Type I error rate of the Chi-square test in independence in $R \times C$ tables that have small expected frequencies, Psychol. Bull., 86, 1290–1297, https://doi.org/10.1037/0033-2909.86.6.1290, 1979.
Bradley, R. S.: High-resolution paleoclimatology, in: Dendroclimatology, edited by: Hughes, M. K., Swetnam, T. W., and Diaz, H. F., Developments in Paleoenvironmental Research, Vol. 11, chapter 1, Springer, Dordrecht, 3–15, https://doi.org/10.1007/978-1-4020-5725-0_1, 2011.
Brázdil, R., Dobrovoln\'{y}, P., Luterbacher, J., Moberg, A., Pfister, C., Wheeler, D., and Zorita, E.: European climate of the past 500 years: new challenges for historical climatology, Climatic Change, 101, 7–40, https://doi.org/10.1007/s10584-009-9783-z, 2010.
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and Bladé, I.: The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field, J. Climate, 12, 1990–2009, 1999.
Briffa, K. R.: Annual climate variability in the holocene: interpreting the message of ancient trees, Quaternary Sci. Rev., 19, 87–105, https://doi.org/10.1016/S0277-3791(99)00056-6, 2000.
Crowley, T. J. and Unterman, M. B.: Technical details concerning development of a 1200-yr proxy index for global volcanism, Earth Syst. Sci. Data Discuss., 5, 1–28, https://doi.org/10.5194/essdd-5-1-2012, 2012.
D'Arrigo, R., Wilson, R., and Jacoby, G.: On the long-term context for late twentieth century warming, J. Geophys. Res., 111, D03103, https://doi.org/10.1029/2005JD006352, 2006.
Dobrovoln\'{y}, P., Moberg, A., Brázdil, R., Pfister, C., Glaser, R., Wilson, R., Engelen, A., Limanówka, D., Kiss, A., Halíčková, M., Macková, J., Riemann, D., Luterbacher, J., and Böhm, R.: Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500, Climatic Change, 101, 69–107, https://doi.org/10.1007/s10584-009-9724-x, 2010.
Efron, B. and Tibshirani, R. J.: An Introduction to the Bootstrap, Monographs on Statistics & Applied Probability, Chapman and Hall/CRC, New York, 1st Edn., 1994.
Emile-Geay, J., Cane, M., Seager, R., Kaplan, A., and Almasi, P.: El Niño as a mediator of the solar influence on climate, Paleoceanography, 22, PA3210, https://doi.org/10.1029/2006PA001304, 2007.
Fernández-Donado, L., González-Rouco, J. F., Raible, C. C., Ammann, C. M., Barriopedro, D., Garc\'{i}a-Bustamante, E., Jungclaus, J. H., Lorenz, S. J., Luterbacher, J., Phipps, S. J., Servonnat, J., Swingedouw, D., Tett, S. F. B., Wagner, S., Yiou, P., and Zorita, E.: Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium, Clim. Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013, 2013.
Frank, D., Esper, J., and Cook, E. R.: Adjustment for proxy number and coherence in a large-scale temperature reconstruction, Geophys. Res. Lett., 34, L16709, https://doi.org/10.1029/2007GL030571, 2007.
Frank, D. C., Esper, J., Raible, C. C., Büntgen, U., Trouet, V., Stocker, B., and Joos, F.: Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate, Nature, 463, 527–530, https://doi.org/10.1038/nature08769, 2010.
Franke, J., Frank, D., Raible, C. C., Esper, J., and Brönnimann, S.: Spectral biases in tree-ring climate proxies, Nature Clim. Change, 3, 360–364, https://doi.org/10.1038/nclimate1816, 2013.
Gao, C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models, J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008JD010239, 2008.
Hamill, T. M.: Interpretation of rank histograms for verifying ensemble forecasts, Mon. Weather Rev., 129, 550–560, 2001.
Hargreaves, J. C., Paul, A., Ohgaito, R., Abe-Ouchi, A., and Annan, J. D.: Are paleoclimate model ensembles consistent with the MARGO data synthesis?, Clim. Past, 7, 917–933, https://doi.org/10.5194/cp-7-917-2011, 2011.
Hegerl, G. C., Crowley, T. J., Allen, M., Hyde, W. T., Pollack, H. N., Smerdon, J., and Zorita, E.: Detection of human influence on a new, validated 1500-year temperature reconstruction, J. Climate, 20, 650–666, https://doi.org/10.1175/JCLI4011.1, 2007.
Hind, A., Moberg, A., and Sundberg, R.: Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 2: A pseudo-proxy study addressing the amplitude of solar forcing, Clim. Past, 8, 1355–1365, https://doi.org/10.5194/cp-8-1355-2012, 2012.
Jansen, E., Overpeck, J., Briffa, K. R., Duplessy, J. C., Joos, F., Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W. R., Rahmstorf, S., Ramesh, R., Raynaud, D., Rind, D., Solomina, O., Villalba, R., and Zhang, D.: Palaeoclimate, in: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007.
Johnson, C. and Bowler, N.: On the reliability and calibration of ensemble forecasts, Mon. Weather Rev., 137, 1717–1720, https://doi.org/10.1175/2009MWR2715.1, 2009.
Jolliffe, I. T. and Primo, C.: Evaluating rank histograms using decompositions of the Chi-square test statistic, Mon. Weather Rev., 136, 2133–2139, https://doi.org/10.1175/2007MWR2219.1, 2008.
Jones, P. D., Briffa, K. R., Barnett, T. P., and Tett, S. F. B.: High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures, Holocene, 8, 455–471, https://doi.org/10.1191/095968398667194956, 1998.
Joussaume, S. and Taylor, K. E.: The paleoclimate modelling intercomparison project, in: Paleoclimate Modelling Intercomparison Project (PMIP): Proceedings of the Third PMIP Workshop, edited by: Braconnot, P., Canada, 43–50, 2000.
Juckes, M. N., Allen, M. R., Briffa, K. R., Esper, J., Hegerl, G. C., Moberg, A., Osborn, T. J., and Weber, S. L.: Millennial temperature reconstruction intercomparison and evaluation, Clim. Past, 3, 591–609, https://doi.org/10.5194/cp-3-591-2007, 2007.
Jungclaus, J. H., Keenlyside, N., Botzet, M., Haak, H., Luo, J. J., Latif, M., Marotzke, J., Mikolajewicz, U., and Roeckner, E.: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM, J. Climate, 19, 3952–3972, https://doi.org/10.1175/JCLI3827.1, 2006.
Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V., Six, K., Segschneider, J., Giorgetta, M. A., Crowley, T. J., Pongratz, J., Krivova, N. A., Vieira, L. E., Solanki, S. K., Klocke, D., Botzet, M., Esch, M., Gayler, V., Haak, H., Raddatz, T. J., Roeckner, E., Schnur, R., Widmann, H., Claussen, M., Stevens, B., and Marotzke, J.: Climate and carbon-cycle variability over the last millennium, Clim. Past, 6, 723–737, https://doi.org/10.5194/cp-6-723-2010, 2010.
Luterbacher, J., Xoplaki, E., Dietrich, D., Rickli, R., Jacobeit, J., Beck, C., Gyalistras, D., Schmutz, C., and Wanner, H.: Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500, Clim. Dynam., 18, 545–561, https://doi.org/10.1007/s00382-001-0196-6, 2002.
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H.: European seasonal and annual temperature variability, trends, and extremes since 1500, Science, 303, 1499–1503, https://doi.org/10.1126/science.1093877, 2004.
Luterbacher, J., Koenig, S. J., Franke, J., Schrier, G., Zorita, E., Moberg, A., Jacobeit, J., Della-Marta, P. M., Küttel, M., Xoplaki, E., Wheeler, D., Rutishauser, T., Stössel, M., Wanner, H., Brázdil, R., Dobrovoln\'{y}, P., Camuffo, D., Bertolin, C., Engelen, A., Gonzalez-Rouco, F. J., Wilson, R., Pfister, C., Limanówka, D., Nordli, Leijonhufvud, L., Söderberg, J., Allan, R., Barriendos, M., Glaser, R., Riemann, D., Hao, Z., and Zerefos, C. S.: Circulation dynamics and its influence on European and Mediterranean January–April climate over the past half millennium: results and insights from instrumental data, documentary evidence and coupled climate models, Climatic Change, 101, 201–234, https://doi.org/10.1007/s10584-009-9782-0, 2010.
Mann, M. E. and Jones, P. D.: Global surface temperatures over the past two millennia, Geophys. Res. Lett., 30, 1820, https://doi.org/10.1029/2003GL017814, 2003.
Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S., and Ni, F.: Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia, P. Natl. Acad. Sci., 105, 13252–13257, https://doi.org/10.1073/pnas.0805721105, 2008.
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., and Ni, F.: Global signatures and dynamical origins of the Little Ice Age and medieval climate anomaly, Science, 326, 1256–1260, https://doi.org/10.1126/science.1177303, 2009.
Marzban, C., Wang, R., Kong, F., and Leyton, S.: On the effect of correlations on rank histograms: reliability of temperature and wind speed forecasts from finescale ensemble reforecasts, Mon. Weather Rev., 139, 295–310, https://doi.org/10.1175/2010MWR3129.1, 2011.
Meehl, G. A., Arblaster, J. M., Matthes, K., Sassi, F., and van Loon, H.: Amplifying the Pacific climate system response to a small 11-year solar cycle forcing, Science, 325, 1114–1118, https://doi.org/10.1126/science.1172872, 2009.
Misios, S. and Schmidt, H.: Mechanisms involved in the amplification of the 11-yr solar cycle signal in the Tropical Pacific Ocean, J. Climate, 25, 5102–5118, https://doi.org/10.1175/JCLI-D-11-00261.1, 2012.
Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., and Karlen, W.: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data, Nature, 433, 613–617, https://doi.org/10.1038/nature03265, 2005.
Murphy, A. H.: A new vector partition of the probability score, J. Appl. Meteorol., 12, 595–600, 1973.
Neukom, R., Luterbacher, J., Villalba, R., Küttel, M., Frank, D., Jones, P. D., Grosjean, M., Wanner, H., Aravena, J. C., Black, D. E., Christie, D. A., D'Arrigo, R., Lara, A., Morales, M., Soliz-Gamboa, C., Srur, A., Urrutia, R., and Gunten, L.: Multiproxy summer and winter surface air temperature field reconstructions for Southern South America covering the past centuries, Clim. Dynam., 37, 35–51, https://doi.org/10.1007/s00382-010-0793-3, 2011.
Persson, A.: User Guide to ECMWF forecast products, Tech. rep., ECMWF, 2011.
Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R. J., Sumi, A., and Taylor, K. E.: Climate models and their evaluation, in: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007.
Sanderson, B. M. and Knutti, R.: On the interpretation of constrained climate model ensembles, Geophys. Res. Lett., 39, L16708, https://doi.org/10.1029/2012GL052665, 2012.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev., 4, 33–45, https://doi.org/10.5194/gmd-4-33-2011, 2011.
Schrijver, C. J., Livingston, W. C., Woods, T. N., and Mewaldt, R. A.: The minimal solar activity in 2008–2009 and its implications for long-term climate modeling, Geophys. Res. Lett., 38, L06701, https://doi.org/10.1029/2011GL046658, 2011.
Shapiro, A. I., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M., Shapiro, A. V., and Nyeki, S.: A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing, Astron. Astrophys., 529, 8 pp., https://doi.org/10.1051/0004-6361/201016173, 2011.
Steinhilber, F., Beer, J., and Fröhlich, C.: Total solar irradiance during the Holocene, Geophys. Res. Lett., 36, L19704, https://doi.org/10.1029/2009GL040142, 2009.
Sundberg, R., Moberg, A., and Hind, A.: Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 1: Theory, Clim. Past, 8, 1339–1353, https://doi.org/10.5194/cp-8-1339-2012, 2012.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Toth, Z., Talagrand, O., Candille, G., and Zhu, Y.: Probability and ensemble forecasts, in: Forecast Verification: A Practitioner's Guide in Atmospheric Science, edited by: Jolliffe, I. T. and Stephenson, D. B., John Wiley, Chichester, UK, 137–163, 2003.
Wilks, D. S.: On the reliability of the rank histogram, Mon. Weather Rev., 139, 311–316, https://doi.org/10.1175/2010MWR3446.1, 2011.
Wilson, R., D'Arrigo, R., Buckley, B., Büntgen, U., Esper, J., Frank, D., Luckman, B., Payette, S., Vose, R., and Youngblut, D.: A matter of divergence: tracking recent warming at hemispheric scales using tree ring data, J. Geophys. Res., 112, D17103, https://doi.org/10.1029/2006JD008318, 2007.
Xoplaki, E., Luterbacher, J., Paeth, H., Dietrich, D., Steiner, N., Grosjean, M., and Wanner, H.: European spring and autumn temperature variability and change of extremes over the last half millennium, Geophys. Res. Lett., 32, L15713, https://doi.org/10.1029/2005GL023424, 2005.
Zanchettin, D., Rubino, A., and Jungclaus, J. H.: Intermittent multidecadal-to-centennial fluctuations dominate global temperature evolution over the last millennium, Geophys. Res. Lett., 37, L14702, https://doi.org/10.1029/2010GL043717, 2010.
Zanchettin, D., Rubino, A., Matei, D., Bothe, O., and Jungclaus, J. H.: Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium, Clim. Dynam., 40, 1301–1318, https://doi.org/10.1007/s00382-012-1361-9, 2013.
Zorita, E., Moberg, A., Leijonhufvud, L., Wilson, R., Brázdil, R., Dobrovoln\'{y}, P., Luterbacher, J., Böhm, R., Pfister, C., Riemann, D., Glaser, R., Söderberg, J., and González-Rouco, F.: European temperature records of the past five centuries based on documentary/instrumental information compared to climate simulations, Climatic Change, 101, 143–168, https://doi.org/10.1007/s10584-010-9824-7, 2010.