Articles | Volume 8, issue 6
https://doi.org/10.5194/cp-8-1957-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-8-1957-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Exploring the controls on element ratios in middle Eocene samples of the benthic foraminifera Oridorsalis umbonatus
C. F. Dawber
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB1 2EQ, UK
A. K. Tripati
Department of Earth and Space Sciences, University of California, Los Angeles, USA
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, USA
Institute of the Environment and Sustainability, University of California, Los Angeles, USA
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Cenozoic
Paleocene–Eocene age glendonites from the Mid-Norwegian Margin – indicators of cold snaps in the hothouse?
Coccolithophorids precipitate carbonate in clumped isotope equilibrium with seawater
Can we reliably reconstruct the mid-Pliocene Warm Period with sparse data and uncertain models?
Assessing environmental change associated with early Eocene hyperthermals in the Atlantic Coastal Plain, USA
Technical note: A new online tool for δ18O–temperature conversions
A 15-million-year surface- and subsurface-integrated TEX86 temperature record from the eastern equatorial Atlantic
Sclerochronological evidence of pronounced seasonality from the late Pliocene of the southern North Sea basin and its implications
Pliocene evolution of the tropical Atlantic thermocline depth
Maastrichtian–Rupelian paleoclimates in the southwest Pacific – a critical re-evaluation of biomarker paleothermometry and dinoflagellate cyst paleoecology at Ocean Drilling Program Site 1172
Southern Ocean bottom-water cooling and ice sheet expansion during the middle Miocene climate transition
Rapid and sustained environmental responses to global warming: the Paleocene–Eocene Thermal Maximum in the eastern North Sea
Atmospheric carbon dioxide variations across the middle Miocene climate transition
OPTiMAL: a new machine learning approach for GDGT-based palaeothermometry
Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow
Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing biomarker paleothermometry at Lomonosov Ridge
Surface-circulation change in the southwest Pacific Ocean across the Middle Eocene Climatic Optimum: inferences from dinoflagellate cysts and biomarker paleothermometry
A new age model for the Pliocene of the southern North Sea basin: a multi-proxy climate reconstruction
Joint inversion of proxy system models to reconstruct paleoenvironmental time series from heterogeneous data
Mercury anomalies across the Palaeocene–Eocene Thermal Maximum
Reinforcing the North Atlantic backbone: revision and extension of the composite splice at ODP Site 982
Highly variable Pliocene sea surface conditions in the Norwegian Sea
The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction
Revisiting carbonate chemistry controls on planktic foraminifera Mg / Ca: implications for sea surface temperature and hydrology shifts over the Paleocene–Eocene Thermal Maximum and Eocene–Oligocene transition
The Paleocene–Eocene Thermal Maximum at DSDP Site 277, Campbell Plateau, southern Pacific Ocean
The bivalve Glycymeris planicostalis as a high-resolution paleoclimate archive for the Rupelian (Early Oligocene) of central Europe
Pliocene diatom and sponge spicule oxygen isotope ratios from the Bering Sea: isotopic offsets and future directions
Re-evaluation of the age model for North Atlantic Ocean Site 982 – arguments for a return to the original chronology
Application of Fourier Transform Infrared Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Alexander J. Clark, Ismael Torres-Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather M. Stoll
EGUsphere, https://doi.org/10.5194/egusphere-2023-2581, https://doi.org/10.5194/egusphere-2023-2581, 2023
Short summary
Short summary
Coccoliths are abundant in sediments across the world’s oceans yet it is difficult to apply traditional carbon or oxygen isotope methodologies for temperature reconstructions. We show that our well-constrained coccolith clumped isotope-temperature calibration falls within error of other biogenic carbonate calibrations, with a systematic offset to inorganic carbonate calibrations. We suggest the use of our well-constrained calibration for future biogenic carbonate temperature reconstructions.
James Douglas Annan, Julia Catherine Hargreaves, Thorsten Mauritsen, Erin McClymont, and Sze Ling Ho
EGUsphere, https://doi.org/10.5194/egusphere-2023-1941, https://doi.org/10.5194/egusphere-2023-1941, 2023
Short summary
Short summary
We have created a new global surface temperature reconstruction of the climate of the mid-Pliocene Warm Period, representing the period roughly 3.2 million years before the present day. We estimate that the globally averaged mean temperature was around 3.6 °C warmer than it was in pre-industrial times, but there is significant uncertainty on this value.
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Daniel E. Gaskell and Pincelli M. Hull
Clim. Past, 19, 1265–1274, https://doi.org/10.5194/cp-19-1265-2023, https://doi.org/10.5194/cp-19-1265-2023, 2023
Short summary
Short summary
One of the most common ways of reconstructing temperatures in the geologic past is by analyzing oxygen isotope ratios in fossil shells. However, converting these data to temperatures can be a technically complicated task. Here, we present a new online tool that automates this task.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Andrew L. A. Johnson, Annemarie M. Valentine, Bernd R. Schöne, Melanie J. Leng, and Stijn Goolaerts
Clim. Past, 18, 1203–1229, https://doi.org/10.5194/cp-18-1203-2022, https://doi.org/10.5194/cp-18-1203-2022, 2022
Short summary
Short summary
Determining seasonal temperatures demands proxies that record the highest and lowest temperatures over the annual cycle. Many record neither, but oxygen isotope profiles from shells in principle record both. Oxygen isotope data from late Pliocene bivalve molluscs of the southern North Sea basin show that the seasonal temperature range was at times much higher than previously estimated and higher than now. This suggests reduced oceanic heat supply, in contrast to some previous interpretations.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Thomas J. Leutert, Sevasti Modestou, Stefano M. Bernasconi, and A. Nele Meckler
Clim. Past, 17, 2255–2271, https://doi.org/10.5194/cp-17-2255-2021, https://doi.org/10.5194/cp-17-2255-2021, 2021
Short summary
Short summary
The Miocene climatic optimum associated with high atmospheric CO2 levels (~17–14 Ma) was followed by a period of dramatic climate change. We present a clumped isotope-based bottom-water temperature record from the Southern Ocean covering this key climate transition. Our record reveals warm conditions and a substantial cooling preceding the main ice volume increase, possibly caused by thresholds involved in ice growth and/or regional effects at our study site.
Ella W. Stokke, Morgan T. Jones, Lars Riber, Haflidi Haflidason, Ivar Midtkandal, Bo Pagh Schultz, and Henrik H. Svensen
Clim. Past, 17, 1989–2013, https://doi.org/10.5194/cp-17-1989-2021, https://doi.org/10.5194/cp-17-1989-2021, 2021
Short summary
Short summary
In this paper, we present new sedimentological, geochemical, and mineralogical data exploring the environmental response to climatic and volcanic impact during the Paleocene–Eocene Thermal Maximum (~55.9 Ma; PETM). Our data suggest a rise in continental weathering and a shift to anoxic–sulfidic conditions. This indicates a rapid environmental response to changes in the carbon cycle and temperatures and highlights the important role of shelf areas as carbon sinks driving the PETM recovery.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Tom Dunkley Jones, Yvette L. Eley, William Thomson, Sarah E. Greene, Ilya Mandel, Kirsty Edgar, and James A. Bendle
Clim. Past, 16, 2599–2617, https://doi.org/10.5194/cp-16-2599-2020, https://doi.org/10.5194/cp-16-2599-2020, 2020
Short summary
Short summary
We explore the utiliity of the composition of fossil lipid biomarkers, which are commonly preserved in ancient marine sediments, in providing estimates of past ocean temperatures. The group of lipids concerned show compositional changes across the modern oceans that are correlated, to some extent, with local surface ocean temperatures. Here we present new machine learning approaches to improve our understanding of this temperature sensitivity and its application to reconstructing past climates.
Martin Tetard, Ross Marchant, Giuseppe Cortese, Yves Gally, Thibault de Garidel-Thoron, and Luc Beaufort
Clim. Past, 16, 2415–2429, https://doi.org/10.5194/cp-16-2415-2020, https://doi.org/10.5194/cp-16-2415-2020, 2020
Short summary
Short summary
Radiolarians are marine micro-organisms that produce a siliceous shell that is preserved in the fossil record and can be used to reconstruct past climate variability. However, their study is only possible after a time-consuming manual selection of their shells from the sediment followed by their individual identification. Thus, we develop a new fully automated workflow consisting of microscopic radiolarian image acquisition, image processing and identification using artificial intelligence.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Emily Dearing Crampton-Flood, Lars J. Noorbergen, Damian Smits, R. Christine Boschman, Timme H. Donders, Dirk K. Munsterman, Johan ten Veen, Francien Peterse, Lucas Lourens, and Jaap S. Sinninghe Damsté
Clim. Past, 16, 523–541, https://doi.org/10.5194/cp-16-523-2020, https://doi.org/10.5194/cp-16-523-2020, 2020
Short summary
Short summary
The mid-Pliocene warm period (mPWP; 3.3–3.0 million years ago) is thought to be the last geological interval with similar atmospheric carbon dioxide concentrations as the present day. Further, the mPWP was 2–3 °C warmer than present, making it a good analogue for estimating the effects of future climate change. Here, we construct a new precise age model for the North Sea during the mPWP, and provide a detailed reconstruction of terrestrial and marine climate using a multi-proxy approach.
Gabriel J. Bowen, Brenden Fischer-Femal, Gert-Jan Reichart, Appy Sluijs, and Caroline H. Lear
Clim. Past, 16, 65–78, https://doi.org/10.5194/cp-16-65-2020, https://doi.org/10.5194/cp-16-65-2020, 2020
Short summary
Short summary
Past climate conditions are reconstructed using indirect and incomplete geological, biological, and geochemical proxy data. We propose that such reconstructions are best obtained by statistical inversion of hierarchical models that represent how multi–proxy observations and calibration data are produced by variation of environmental conditions in time and/or space. These methods extract new information from traditional proxies and provide robust, comprehensive estimates of uncertainty.
Morgan T. Jones, Lawrence M. E. Percival, Ella W. Stokke, Joost Frieling, Tamsin A. Mather, Lars Riber, Brian A. Schubert, Bo Schultz, Christian Tegner, Sverre Planke, and Henrik H. Svensen
Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, https://doi.org/10.5194/cp-15-217-2019, 2019
Short summary
Short summary
Mercury anomalies in sedimentary rocks are used to assess whether there were periods of elevated volcanism in the geological record. We focus on five sites that cover the Palaeocene–Eocene Thermal Maximum, an extreme global warming event that occurred 55.8 million years ago. We find that sites close to the eruptions from the North Atlantic Igneous Province display significant mercury anomalies across this time interval, suggesting that magmatism played a role in the global warming event.
Anna Joy Drury, Thomas Westerhold, David Hodell, and Ursula Röhl
Clim. Past, 14, 321–338, https://doi.org/10.5194/cp-14-321-2018, https://doi.org/10.5194/cp-14-321-2018, 2018
Short summary
Short summary
North Atlantic Site 982 is key to our understanding of climate evolution over the past 12 million years. However, the stratigraphy and age model are unverified. We verify the composite splice using XRF core scanning data and establish a revised benthic foraminiferal stable isotope astrochronology from 8.0–4.5 million years ago. Our new stratigraphy accurately correlates the Atlantic and the Mediterranean and suggests a connection between late Miocene cooling and dynamic ice sheet expansion.
Paul E. Bachem, Bjørg Risebrobakken, Stijn De Schepper, and Erin L. McClymont
Clim. Past, 13, 1153–1168, https://doi.org/10.5194/cp-13-1153-2017, https://doi.org/10.5194/cp-13-1153-2017, 2017
Short summary
Short summary
We present a high-resolution multi-proxy study of the Norwegian Sea, covering the 5.33 to 3.14 Ma time window within the Pliocene. We show that large-scale climate transitions took place during this warmer than modern time, most likely in response to ocean gateway transformations. Strong warming at 4.0 Ma in the Norwegian Sea, when regions closer to Greenland cooled, indicate that increased northward ocean heat transport may be compatible with expanding glaciation and Arctic sea ice growth.
Harry Dowsett, Aisling Dolan, David Rowley, Robert Moucha, Alessandro M. Forte, Jerry X. Mitrovica, Matthew Pound, Ulrich Salzmann, Marci Robinson, Mark Chandler, Kevin Foley, and Alan Haywood
Clim. Past, 12, 1519–1538, https://doi.org/10.5194/cp-12-1519-2016, https://doi.org/10.5194/cp-12-1519-2016, 2016
Short summary
Short summary
Past intervals in Earth history provide unique windows into conditions much different than those observed today. We investigated the paleoenvironments of a past warm interval (~ 3 million years ago). Our reconstruction includes data sets for surface temperature, vegetation, soils, lakes, ice sheets, topography, and bathymetry. These data are being used along with global climate models to expand our understanding of the climate system and to help us prepare for future changes.
David Evans, Bridget S. Wade, Michael Henehan, Jonathan Erez, and Wolfgang Müller
Clim. Past, 12, 819–835, https://doi.org/10.5194/cp-12-819-2016, https://doi.org/10.5194/cp-12-819-2016, 2016
Short summary
Short summary
We show that seawater pH exerts a substantial control on planktic foraminifera Mg / Ca, a widely applied palaeothermometer. As a result, temperature reconstructions based on this proxy are likely inaccurate over climatic events associated with a significant change in pH. We examine the implications of our findings for hydrological and temperature shifts over the Paleocene-Eocene Thermal Maximum and for the degree of surface ocean precursor cooling before the Eocene-Oligocene transition.
C. J. Hollis, B. R. Hines, K. Littler, V. Villasante-Marcos, D. K. Kulhanek, C. P. Strong, J. C. Zachos, S. M. Eggins, L. Northcote, and A. Phillips
Clim. Past, 11, 1009–1025, https://doi.org/10.5194/cp-11-1009-2015, https://doi.org/10.5194/cp-11-1009-2015, 2015
Short summary
Short summary
Re-examination of a Deep Sea Drilling Project sediment core (DSDP Site 277) from the western Campbell Plateau has identified the initial phase of the Paleocene-Eocene Thermal Maximum (PETM) within nannofossil chalk, the first record of the PETM in an oceanic setting in the southern Pacific Ocean (paleolatitude of ~65°S). Geochemical proxies indicate that intermediate and surface waters warmed by ~6° at the onset of the PETM prior to the full development of the negative δ13C excursion.
E. O. Walliser, B. R. Schöne, T. Tütken, J. Zirkel, K. I. Grimm, and J. Pross
Clim. Past, 11, 653–668, https://doi.org/10.5194/cp-11-653-2015, https://doi.org/10.5194/cp-11-653-2015, 2015
A. M. Snelling, G. E. A. Swann, J. Pike, and M. J. Leng
Clim. Past, 10, 1837–1842, https://doi.org/10.5194/cp-10-1837-2014, https://doi.org/10.5194/cp-10-1837-2014, 2014
K. T. Lawrence, I. Bailey, and M. E. Raymo
Clim. Past, 9, 2391–2397, https://doi.org/10.5194/cp-9-2391-2013, https://doi.org/10.5194/cp-9-2391-2013, 2013
G. E. A. Swann and S. V. Patwardhan
Clim. Past, 7, 65–74, https://doi.org/10.5194/cp-7-65-2011, https://doi.org/10.5194/cp-7-65-2011, 2011
Cited articles
Archer, D. E.: Equatorial Pacific calcite preservation cycles: production or dissolution, Paleoceanography, 65, 561–571, 1991.
Archer, D., Emerson, S., and Reimers, C.: Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results, Geochim. Cosmochim. Ac., 53, 2831–2845, https://doi.org/10.1016/0016-7037(89)90161-0, 1989.
Balter, V., Lécuyer, C., and Barrat, J. A.: Reconstructing seawater Sr/Ca during the last 70 My using fossil fish tooth enamel, Palaeogeogr. Palaeocl., 310, 133–138, https://doi.org/10.1016/j.palaeo.2011.02.024, 2011.
Barker S., Greaves, M., and Elderfield, H.: A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry, Geochem. Geophys. Geosyst, 4, 8407, https://doi.org/10.1029/2003GC000559, 2003.
Billups, K. and Schrag, D.: Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change, Earth Planet. Sc. Lett., 209, 181–195, 2003.
Bohaty, S. M., Zachos, J. C., Florindo, F., and Delaney, M.: Coupled greenhouse warming and deep-sea acidification in the middle Eocene, Paleoceanography, 24, PA2207, https://doi.org/10.1029/2008PA001676, 2009.
Bralower, T.: Data report: Paleocene-early Oligocene calcareous nannofossil biostratigraphy, ODP Leg 198 Sites 1209, 1210, and 1211 Shatsky Rise, Pacific Ocean, Proceedings of the Ocean Drilling Program: Scientific Results, 198, 2005.
Broecker, W. S. and Peng, T. H.: Tracers in the Sea, Eldigio Press, 1982.
Brown, R. E., Anderson, L. D., Thomas, E., and Zachos, J. C.: A core-top calibration of B/Ca in the benthic foraminifers Nuttallides umbonifera and Oridorsalis umbonatus: A proxy for Cenozoic bottom water carbonate saturation, Earth Planet. Sc. Lett., 310, 360–368, https://doi.org/10.1016/j.epsl.2011.08.023, 2011.
Browning, J., Miller, K., and Pak, D.: Global implications of lower to middle Eocene sequence boundaries on the New Jersey coastal plain: The icehouse cometh, Geology, 247, 639–642, 1996.
Bryan, S. P. and Marchitto, T. M.: Mg/Ca-temperature proxy in benthic foraminifera: New calibrations from the Florida Straits and a hypothesis regarding Mg/Li, Paleoceanography, 232, PA2220, https://doi.org/10.1029/2007PA001553, 2008.
Coggon, R. M., Teagle, D. A. H., Smith-Duque, C. E., Alt, J. C., and Cooper, M. J.: Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins, Science, 327, 1114–1117, 2010.
Corliss, B. H.: Microhabitats of benthic foraminifera within deep-sea sediments, Nature, 314, 435–438, 1985.
Coxall, H. K. and Wilson, P. A.: Early Oligocene glaciation and productivity in the eastern equatorial Pacific: Insights into global carbon cycling, Paleoceanography, 26, PA2221, https://doi.org/10.1029/2010PA002021, 2011.
Coxall, H. K., Wilson, P. A., Palike, H., Lear, C. H., and Backman, J.: Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean, Nature, 433, 53–57, 2005.
Dawber, C. F. and Tripati, A.: Constraints on glaciation in the middle Eocene 46–37 Ma from Ocean Drilling Program ODP Site 1209 in the tropical Pacific Ocean, Paleoceanography, 26, PA2208, https://doi.org/10.1029/2010PA002037, 2011.
Dawber, C. F. and Tripati, A.: Relationships between bottom water carbonate saturation and element/Ca ratios in coretop samples of the benthic foraminifera Oridorsalis umbonatus, Biogeosciences, 9, 3029–3045, https://doi.org/10.5194/bg-9-3029-2012, 2012.
Dawber, C. F., Tripati, A., Gale, A., MacNiocaill, C., and Hesselbo, S.: Glacioeustasy during the middle Eocene? Insights from the stratigraphy of the Hampshire Basin, UK, Palaeogeogr. Palaeoclim., 300, 84–100, 2011.
DeConto, R. and Pollard, D.: Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2, Nature, 421, 245–249, 2003.
DeConto, R., Pollard, D., Wilson, P. A., Palike, H., Lear, C. H., and Pagani, M.: Thresholds for Cenozoic bipolar glaciation, Nature, 455, 652–656, 2008.
de Villiers, S., Greaves, M., and Elderfield, H.: An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES, Geochem. Geophys. Geosys., 3, 1525–2027, 2002.
Dutton, A., Lohmann, K. C., and Leckie, R. M.: Insights from the Paleogene tropical Pacific: Foraminiferal stable isotope and elemental results from Site 1209, Shatsky Rise, Paleoceanography, 20, PA3004, https://doi.org/10.1029/2004PA001098, 2005.
Edgar, K. M., Wilson, P. A., Sexton, P. F., and Suganuma Y.: No extreme bipolar glaciation during the main Eocene calcite compensation shift, Nature, 448, 908–911, 2007.
Ekart, D. D., Cerling, T. E., Montañez, I. P., and Tabor, N. J.: A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide, Am. J. Sci., 299, 805–827, 1999.
Elderfield, H., Yu, J., Anand, P., Kiefer, T., and Nyland, B.: Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis, Earth Planet. Sc. Lett., 250, 633–649, https://doi.org/10.1016/j.epsl.2006.07.041, 2006.
Emerson, S. and Bender, M.: Carbon fluxes at the sediment-water interface of the deep-sea: Calcium carbonate preservation, J. Mar. Res, 391, 139–162, 1981.
Erez, J.: The Source of Ions for Biomineralization in Foraminifera and Their Implications for Paleoceanographic Proxies, Rev. Mineral. Geochem., 541, 115–149, 2003.
Erez, J., Bentov, S., Tishler, C., and Szafranek, D.: Intracellular calcium storage and the calcification mechanism of perforate foraminifera (abstract), Paleo. Bios., 16, p. 30, 1994.
Fantle, M. S. and DePaolo, D. J.: Variations in the marine Ca cycle over the past 20 million years, Earth Planet. Sc. Lett., 2371–2372, 102–117, 2005.
Freeman, K. and Hayes, J.: Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels, Global Biogeochem. Cy., 62, 185–198, 1992.
Gaetani, G. and Cohen, A.: Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies, Geochem. Cosmochim. Ac., 70, 4617–4634, 2006.
Gaetani, G., Cohen, A., Wang, Z., and Crusius, J.: Rayleigh-based, multi-element coral thermometry: A biomineralization approach to developing climate proxies, Geochem. Cosmochim. Ac., 75, 1920–1932, 2011.
Griffith, E. M., Paytan, A., Caldeira, K., Bullen, T. D., and Thomas, E.: A Dynamic Marine Calcium Cycle During the Past 28 Million Years, Science, 322, 1671, https://doi.org/10.1126/science.1163614, 2008.
Gross, O.: Influence of temperature, oxygen and food availability on the migrational activity of bathyal benthic foraminifera: evidence by microcosm experiments, Hydrobiologia, 4261, 123–137, 2000.
Hall, J. M. and Chan, L. H.: Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation, Geochim. Cosmochim. Ac., 683, 529–545, 2004.
Hancock, H. J. L. and Dickens, G. R.: Carbonate Dissolution Episodes in Paleocene and Eocene sediment, Shatsky Rise, West-Central Pacific, in: Proceedings of the Ocean Drilling Program, Scientific Results , 198, 2005.
Healey, S. L., Thunell, R. C., and Corliss, B. H.: 2008 The Mg/Ca-temperature relationship of benthic foraminiferal calcite: New core-top calibrations in the < 4 °C temperature range, Earth Planet. Sc. Lett., 2723–2724, 523–530, 2008.
Heiri, O., Lotter, A. F., and Lemcke, G.: Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results, J. Paleolimnol., 251, 101–110, 2001.
Horita, J., Zimmerman, H., and Holland, H.: Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporates, Geochim. Cosmochim. Ac., 66, 3733–3756, 2002.
Kurschner, W. M., Wagner, F., Dilcher, D. L., and Visscher, H.: Using fossil leaves for the reconstruction of Cenozoic paleoatmospheric CO2 concentrations, in: Geological Perspectives of Global Climate Change, edited by: Gerhard, L. C., Harrison, W. E., and Hanson, B. M., APPG Stud. Geol., 47, 169–189, 2001.
Lear, C. and Rosenthal, Y.: Benthic foraminiferal Li/Ca: Insights into Cenozoic seawater carbonate saturation state, Geology, 3411, 985–988, 2006.
Lear, C. H., Elderfield, H., and Wilson, P.: Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminferal calcite, Science, 287, 269–272, 2000.
Lear, C. H., Rosenthal, Y., and Slowey, N.: Benthic foraminiferal Mg/Ca-paleothermometry: A revised core-top calibration, Geochim. Cosmochim. Ac., 6619, 3375–3387, 2002.
Lear, C. H., Elderfield, H., and Wilson, P.: A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes, Earth Planet. Sc. Lett., 2081-2, 69–84, 2003.
Lear, C. H., Rosenthal, Y., Coxall, H. K., and Wilson, P. A.: Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle, Paleoceanography, 194, 1–11, 2004.
Lear, C. H., Mawbey, E. M., and Rosenthal, Y.: Cenozoic benthic foraminiferal Mg/Ca and Li/Ca records: Toward unlocking temperatures and saturation states, Paleoceanography, 254, PA4215, https://doi.org/10.1029/2009PA001880, 2010.
Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., and Demicco, R. V.: Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions in salt deposits, Science, 294, 1086–1088, https://doi.org/10.1126/science.1064280, 2001.
Lyle, M., Olivarez Lyle, A., Backman, J., and Tripati, A.: Biogenic sedimentation in the Eocene equatorial Pacific-the stuttering greenhouse and Eocene carbonate compensation depth, in: Proc. ODP, Sci. Results, 199: College Station, TX (Ocean Drilling Program), edited by: Wilson, P. A., Lyle, M., and Firth, J. V., 1–35, https://doi.org/10.2973/odp.proc.sr.199.219.2005, 2005.
Marchitto, T. M., Bryan, S. P., Curry, W. B., and McCorkle, D. C.: Mg/Ca temperature calibration for the benthic foraminifer Cibicidoides pachyderma, Paleoceanography, 22, PA1203, https://doi.org/10.1029/2006PA001287, 2007.
Marriott, C. S., Henderson, G. M., Crompton, R., Staubwasser, M., and Shaw, S.: Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate, Chem. Geol., 2121–2122, 5–15, 2004.
Martin, P. A., Lea, D. W., Mashiotta, T. A., Papenfuss, T., and Sarnthein, M.: Variation of foraminiferal Sr/Ca over Quaternary glacial-interglacial cycles: Evidence for changes in mean ocean Sr/Ca?, Geochem. Geophys. Geosyst., 1, 1004, https://doi.org/10.1029/1999GC000006, 1999.
Martin, W. and Sayles, F.: CaCO3 dissolution in sediments of the Ceara Rise, western equatorial Atlantic, Geochim. Cosmochim. Ac., 60, 233–263, 1996.
McElwain, J. C.: Do fossil plants signal palaeoatmospheric carbon dioxide concentration in the geological past?, Philos. T. R. Soc. B, 353, 83–96, 1998
Merico, A., Tyrrell, T., and Wilson, P. A.: Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall, Nature, 452, 979-983, 2008.
Miller, K., Kominz, M. A., Brwning, J. V., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and Pekar, S. F.: The phanerozoic record of global sea-level change, Science, 310, 1293–1298, 2005.
Pagani, M., Zachos, J., Freeman, K. H., Tipple, B., and Bohaty, S.: Marked decline in atmospheric carbon dioxide concentrations during the Paleogene, Science, 309, 600–603, 2005.
Pearson, P. N., Foster, G. L., and Wade, B. S.: Atmospheric carbon dioxide through the Eocene–Oligocene climate transition, Nature, 461, 1110–1113, 2009.
Petrizzo, M. R., Premoli Silva, I., and Ferrari, P.: Data Report: Paleogene Planktonic Foraminifer Biostratigraphy, ODP Leg 198 Holes 1209A, 1210A, and 1211A Shatsky Rise, Northwest Pacific Ocean, in: Proceedings of the Ocean Drilling Program: Scientific Results, 198, 2005.
Rae, J. W. B., Foster, G. L., Schmidt, D. N., and Elliott, T.: Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system, Earth Planet. Sc. Lett., 302, 403–413, https://doi.org/10.1016/j.epsl.2010.12.034, 2011.
Rathburn, A. and Corliss, B.: The ecology of livingstained deep-sea benthic foraminifera from the Sulu Sea, Paleoceanography, 91, 87–150, 1994.
Rathmann, S. and Kuhnert, H.: Carbonate ion effect on Mg/Ca, Sr/Ca and stable isotopes on the benthic foraminifera Oridorsalis umbonatus off Namibia, Mar. Micropaleontol., 66, 120–133, 2008.
Rathmann, S., Hess, S., Kuhnert, H., and Mulitza, S.: Mg/Ca ratios of the benthic foraminifera Oridorsalis umbonatus obtained by laser ablation from core top sediments: Relationship to bottom water temperature, Geochem. Geophys. Geosyst, 5, Q12013, https://doi.org/10.1029/2004GC000808, 2004.
Riesselman, C. R., Dunbar, R. B., Mucciarone, D. A., and Kitasei, S. S.: High resolution stable isotope and carbonate variability during the early Oligocene climate transition: Walvis Ridge ODP Site 1263: US Geological Survey and The National Academies, USGS OF-2007-1047, Short Research Paper 095, 2007.
Rosenthal, Y., Lear, C. H., Oppo, D. W., and Linsley, B. K.: Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans, Paleoceanography, $21$, PA1007, https://doi.org/10.1029/2005PA001158, 2006.
Sexton, P. F., Wilson, P. A., and Pearson, P. N.: Microstructural and geochemical perspectives on planktic foraminiferal preservation:"Glassy" versus "Frosty", Geochem. Geophys. Geosyst., $7$, Q12P19, https://doi.org/10.1029/2006GC001291, 2006.
Sosdian, S. and Rosenthal, Y.: Deep-Sea Temperature and Ice Volume Changes Across the Pliocene-Pleistocene Climate Transitions, Science, 325, 306–310, 2009.
Spofforth, D. J. A., Agnini, C., Pälike, H., Rio, D., Fornaciari, E., Giusberti, L., Luciani, V., Lanci, L., and Muttoni, G.: Organic carbon burial following the middle Eocene climatic optimum in the central western Tethys, Paleoceanography, 25, PA3210, https://doi.org/10.1029/2009PA001738, 2010.
Stoll, H. M. and Schrag, D.: Effects of Quaternary sea level cycles on strontium in seawater, Geochim. Cosmochim. Ac., 627, 1107–1118, 1998.
Stoll, H. M., Schrag, D. P., and Clemens, S. C.: Are seawater Sr/Ca variations preserved in quaternary foraminifera? – An in situ study in the Panama Basin, Geochim. Cosmochim. Ac., 63, 3535–3547, 1999.
Tripati, A. K. and Elderfield, H.: The impact of changing deepwater carbonate ion on reconstructions of temperature and seawater oxygen isotope ratios, paper presented at Biogeochemical Controls on Palaeoceanographic Proxies, Geol. Soc. London, 3–4 October 2005.
Tripati, A., Backman, J., Elderfield, H., and Ferretti, P.: Eocene bipolar glaciation associated with global carbon cycle changes, Nature, 436, 341–346, 2005.
Tripati, A. K., Eagle, R. A., Morton, A., Dowdeswell, J. A., Atkinson, K. L., Bahe, Y., Dawber, C. F., Khadun, E., Shaw, R. M. H., Shottle, O., and Thanabalasundaram, L.: Evidence for glaciation in the Northern Hemisphere back to 44 Ma from ice-rafted debris in the Greenland Sea, Earth Planet. Sc. Lett., 2651–2652, 112–122, 2008.
Tripati, A. K., Allmon, W. D., and Sampson, D. E.: Possible evidence for a large decrease in seawater strontium/calcium ratios and strontium concentrations during the Cenozoic, Earth Planet. Sc. Lett., 282, 122–130, https://doi.org/10.1016/j.epsl.2009.03.020, 2009.
Wilkinson, B. H. and Algeo, T. J.: Sedimentary carbonate record of calcium-magnesium cycling, Am. J. Sci., 289, 1158–1194, 1989.
Yu, J. and Elderfield, H.: Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state, Earth Planet. Sc. Lett., 2581–2582, 73–86, 2007.
Yu, J. and Elderfield, H.: Mg/Ca in the benthic foraminifera Cibicidoides wuellerstorfi and Cibicidoides mundulus: Temperature versus carbonate ion saturation, Earth Planet. Sc. Lett., 276, 129–139, 2008.
Yu, J., Day, J., Greaves, M., and Elderfield, H.: Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS, Geochem. Geophys. Geosyst., 6, Q08P01, https://doi.org/10.1029/2005GC000964, 2005.