Articles | Volume 5, issue 2
https://doi.org/10.5194/cp-5-229-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-5-229-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Individual and combined effects of ice sheets and precession on MIS-13 climate
Q. Z. Yin
Institut d'Astronomie et de Géophysique G. Lemaître, Université catholique de Louvain, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium
A. Berger
Institut d'Astronomie et de Géophysique G. Lemaître, Université catholique de Louvain, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium
M. Crucifix
Institut d'Astronomie et de Géophysique G. Lemaître, Université catholique de Louvain, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium
Related subject area
Subject: Climate Modelling | Archive: Modelling only | Timescale: Milankovitch
Large-ensemble simulations of the North American and Greenland ice sheets at the Last Glacial Maximum with a coupled atmospheric general circulation–ice sheet model
New estimation of critical insolation–CO2 relationship for triggering glacial inception
Antarctic climate response in Last-Interglacial simulations using the Community Earth System Model (CESM2)
Toward generalized Milankovitch theory (GMT)
Unraveling the complexities of the Last Glacial Maximum climate: the role of individual boundary conditions and forcings
Do phenomenological dynamical paleoclimate models have physical similarity with Nature? Seemingly, not all of them do
Deglacial climate changes as forced by different ice sheet reconstructions
The coupled system response to 250 years of freshwater forcing: Last Interglacial CMIP6–PMIP4 HadGEM3 simulations
An energy budget approach to understand the Arctic warming during the Last Interglacial
Milankovitch, the father of paleoclimate modeling
Greenland climate simulations show high Eemian surface melt which could explain reduced total air content in ice cores
The response of tropical precipitation to Earth's precession: the role of energy fluxes and vertical stability
Interhemispheric effect of global geography on Earth's climate response to orbital forcing
Link between the North Atlantic Oscillation and the surface mass balance components of the Greenland Ice Sheet under preindustrial and last interglacial climates: a study with a coupled global circulation model
Eemian Greenland SMB strongly sensitive to model choice
The importance of snow albedo for ice sheet evolution over the last glacial cycle
Comparison of surface mass balance of ice sheets simulated by positive-degree-day method and energy balance approach
Sea ice led to poleward-shifted winds at the Last Glacial Maximum: the influence of state dependency on CMIP5 and PMIP3 models
The effect of a dynamic soil scheme on the climate of the mid-Holocene and the Last Glacial Maximum
Obliquity forcing of low-latitude climate
Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica
Coupled ice sheet–climate modeling under glacial and pre-industrial boundary conditions
Relative impact of insolation and the Indo-Pacific warm pool surface temperature on the East Asia summer monsoon during the MIS-13 interglacial
Factors controlling the last interglacial climate as simulated by LOVECLIM1.3
Deglacial ice sheet meltdown: orbital pacemaking and CO2 effects
Statistical downscaling of a climate simulation of the last glacial cycle: temperature and precipitation over Northern Europe
Impact of precession on the climate, vegetation and fire activity in southern Africa during MIS4
Mending Milankovitch's theory: obliquity amplification by surface feedbacks
Megalake Chad impact on climate and vegetation during the late Pliocene and the mid-Holocene
Modeling the climatic implications and indicative senses of the Guliya δ18O-temperature proxy record to the ocean–atmosphere system during the past 130 ka
Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise
Southern westerlies in LGM and future (RCP4.5) climates
Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada
The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles
Methane variations on orbital timescales: a transient modeling experiment
Deciphering the spatio-temporal complexity of climate change of the last deglaciation: a model analysis
Effects of orbital forcing on atmosphere and ocean heat transports in Holocene and Eemian climate simulations with a comprehensive Earth system model
Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle
Sam Sherriff-Tadano, Ruza Ivanovic, Lauren Gregoire, Charlotte Lang, Niall Gandy, Jonathan Gregory, Tamsin L. Edwards, Oliver Pollard, and Robin S. Smith
Clim. Past, 20, 1489–1512, https://doi.org/10.5194/cp-20-1489-2024, https://doi.org/10.5194/cp-20-1489-2024, 2024
Short summary
Short summary
Ensemble simulations of the climate and ice sheets of the Last Glacial Maximum (LGM) are performed with a new coupled climate–ice sheet model. Results show a strong sensitivity of the North American ice sheet to the albedo scheme, while the Greenland ice sheet appeared more sensitive to basal sliding schemes. Our result implies a potential connection between the North American ice sheet at the LGM and the future Greenland ice sheet through the albedo scheme.
Stefanie Talento, Matteo Willeit, and Andrey Ganopolski
Clim. Past, 20, 1349–1364, https://doi.org/10.5194/cp-20-1349-2024, https://doi.org/10.5194/cp-20-1349-2024, 2024
Short summary
Short summary
To trigger glacial inception, the summer maximum insolation at high latitudes in the Northern Hemisphere must be lower than a critical value. This value is not constant but depends on the atmospheric CO2 concentration. Paleoclimatic data do not give enough information to derive the relationship between the critical threshold and CO2. However, knowledge of such a relation is important for predicting future glaciations and the impact anthropogenic CO2 emissions might have on them.
Mira Berdahl, Gunter R. Leguy, William H. Lipscomb, Bette L. Otto-Bliesner, Esther C. Brady, Robert A. Tomas, Nathan M. Urban, Ian Miller, Harriet Morgan, and Eric J. Steig
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-19, https://doi.org/10.5194/cp-2024-19, 2024
Preprint under review for CP
Short summary
Short summary
Studying climate conditions near the Antarctic ice sheet (AIS) during Earth’s past warm periods informs us about how global warming may influence AIS ice loss. Using a global climate model, we investigate climate conditions near the AIS during the Last Interglacial (129 to 116 kyr ago), a period with warmer global temperatures and higher sea level than today. We identify the orbital and freshwater forcings that could cause ice loss and probe the mechanisms that lead to warmer climate conditions.
Andrey Ganopolski
Clim. Past, 20, 151–185, https://doi.org/10.5194/cp-20-151-2024, https://doi.org/10.5194/cp-20-151-2024, 2024
Short summary
Short summary
Despite significant progress in modelling Quaternary climate dynamics, a comprehensive theory of glacial cycles is still lacking. Here, using the results of model simulations and data analysis, I present a framework of the generalized Milankovitch theory (GMT), which further advances the concept proposed by Milutin Milankovitch over a century ago. The theory explains a number of facts which were not known during Milankovitch time's, such as the 100 kyr periodicity of the late Quaternary.
Xiaoxu Shi, Martin Werner, Hu Yang, Roberta D'Agostino, Jiping Liu, Chaoyuan Yang, and Gerrit Lohmann
Clim. Past, 19, 2157–2175, https://doi.org/10.5194/cp-19-2157-2023, https://doi.org/10.5194/cp-19-2157-2023, 2023
Short summary
Short summary
The Last Glacial Maximum (LGM) marks the most recent extremely cold and dry time period of our planet. Using AWI-ESM, we quantify the relative importance of Earth's orbit, greenhouse gases (GHG) and ice sheets (IS) in determining the LGM climate. Our results suggest that both GHG and IS play important roles in shaping the LGM temperature. Continental ice sheets exert a major control on precipitation, atmospheric dynamics, and the intensity of El Niño–Southern Oscillation.
Mikhail Y. Verbitsky and Michel Crucifix
Clim. Past, 19, 1793–1803, https://doi.org/10.5194/cp-19-1793-2023, https://doi.org/10.5194/cp-19-1793-2023, 2023
Short summary
Short summary
Are phenomenological dynamical paleoclimate models physically similar to Nature? We demonstrated that though they may be very accurate in reproducing empirical time series, this is not sufficient to claim physical similarity with Nature until similarity parameters are considered. We suggest that the diagnostics of physical similarity should become a standard procedure before a phenomenological model can be utilized for interpretations of historical records or future predictions.
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023, https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary
Short summary
The last deglaciation is a period of large warming from 21 000 to 9000 years ago, concomitant with ice sheet melting. Here, we evaluate the impact of different ice sheet reconstructions and different processes linked to their changes. Changes in bathymetry and coastlines, although not often accounted for, cannot be neglected. Ice sheet melt results in freshwater into the ocean with large effects on ocean circulation, but the timing cannot explain the observed abrupt climate changes.
Maria Vittoria Guarino, Louise C. Sime, Rachel Diamond, Jeff Ridley, and David Schroeder
Clim. Past, 19, 865–881, https://doi.org/10.5194/cp-19-865-2023, https://doi.org/10.5194/cp-19-865-2023, 2023
Short summary
Short summary
We investigate the response of the atmosphere, ocean, and ice domains to the release of a large volume of glacial meltwaters thought to have occurred during the Last Interglacial period. We show that the signal that originated in the North Atlantic travels over great distances across the globe. It modifies the ocean gyre circulation in the Northern Hemisphere as well as the belt of westerly winds in the Southern Hemisphere, with consequences for Antarctic sea ice.
Marie Sicard, Masa Kageyama, Sylvie Charbit, Pascale Braconnot, and Jean-Baptiste Madeleine
Clim. Past, 18, 607–629, https://doi.org/10.5194/cp-18-607-2022, https://doi.org/10.5194/cp-18-607-2022, 2022
Short summary
Short summary
The Last Interglacial (129–116 ka) is characterised by an increased summer insolation over the Arctic region, which leads to a strong temperature rise. The aim of this study is to identify and quantify the main processes and feedback causing this Arctic warming. Using the IPSL-CM6A-LR model, we investigate changes in the energy budget relative to the pre-industrial period. We highlight the crucial role of Arctic sea ice cover, ocean and clouds on the Last Interglacial Arctic warming.
Andre Berger
Clim. Past, 17, 1727–1733, https://doi.org/10.5194/cp-17-1727-2021, https://doi.org/10.5194/cp-17-1727-2021, 2021
Short summary
Short summary
This paper stresses the original contributions of Milankovitch related to his caloric seasons and his climate model giving the caloric seasons a climatological meaning.
Andreas Plach, Bo M. Vinther, Kerim H. Nisancioglu, Sindhu Vudayagiri, and Thomas Blunier
Clim. Past, 17, 317–330, https://doi.org/10.5194/cp-17-317-2021, https://doi.org/10.5194/cp-17-317-2021, 2021
Short summary
Short summary
In light of recent large-scale melting of the Greenland ice sheet
(GrIS), e.g., in the summer of 2012 several days with surface melt
on the entire ice sheet (including elevations above 3000 m), we use
computer simulations to estimate the amount of melt during a
warmer-than-present period of the past. Our simulations show more
extensive melt than today. This is important for the interpretation of
ice cores which are used to reconstruct the evolution of the ice sheet
and the climate.
Chetankumar Jalihal, Joyce Helena Catharina Bosmans, Jayaraman Srinivasan, and Arindam Chakraborty
Clim. Past, 15, 449–462, https://doi.org/10.5194/cp-15-449-2019, https://doi.org/10.5194/cp-15-449-2019, 2019
Short summary
Short summary
Insolation is thought to drive monsoons on orbital timescales. We find that insolation can be a trigger for changes in precipitation, but surface energy and vertical stability play an important role too. These feedbacks are found to be dominant over oceans and can even counter the insolation forcing, thus leading to a land–sea differential response in precipitation.
Rajarshi Roychowdhury and Robert DeConto
Clim. Past, 15, 377–388, https://doi.org/10.5194/cp-15-377-2019, https://doi.org/10.5194/cp-15-377-2019, 2019
Short summary
Short summary
The climate response of the Earth to orbital forcing shows a distinct hemispheric asymmetry, and one of the reasons can be ascribed to the unequal distribution of land in the Northern Hemisphere and Southern Hemisphere. We show that a land asymmetry effect (LAE) exists, and that it can be quantified. By using a GCM with a unique geographic setup, we illustrate that there are far-field influences of global geography that moderate or accentuate the Earth's response to orbital forcing.
Silvana Ramos Buarque and David Salas y Melia
Clim. Past, 14, 1707–1725, https://doi.org/10.5194/cp-14-1707-2018, https://doi.org/10.5194/cp-14-1707-2018, 2018
Short summary
Short summary
The link between the surface mass balance components of the Greenland Ice Sheet and both phases of the NAO is examined under preindustrial and warmer and colder climates of the last interglacial from simulations performed with CNRM-CM5.2. Accumulation in south Greenland is correlated with positive (negative) phases of the NAO in a warm (cold) climate. Melting under a warm (cold) climate is correlated with the negative (positive) phase of the NAO in north and northeast Greenland (at the margins).
Andreas Plach, Kerim H. Nisancioglu, Sébastien Le clec'h, Andreas Born, Petra M. Langebroek, Chuncheng Guo, Michael Imhof, and Thomas F. Stocker
Clim. Past, 14, 1463–1485, https://doi.org/10.5194/cp-14-1463-2018, https://doi.org/10.5194/cp-14-1463-2018, 2018
Short summary
Short summary
The Greenland ice sheet is a huge frozen water reservoir which is crucial for predictions of sea level in a warming future climate. Therefore, computer models are needed to reliably simulate the melt of ice sheets. In this study, we use climate model simulations of the last period where it was warmer than today in Greenland. We test different melt models under these climatic conditions and show that the melt models show very different results under these warmer conditions.
Matteo Willeit and Andrey Ganopolski
Clim. Past, 14, 697–707, https://doi.org/10.5194/cp-14-697-2018, https://doi.org/10.5194/cp-14-697-2018, 2018
Short summary
Short summary
The surface energy and mass balance of ice sheets strongly depends on surface albedo. Here, using an Earth system model of intermediate complexity, we explore the role played by surface albedo for the simulation of glacial cycles. We show that the evolution of the Northern Hemisphere ice sheets over the last glacial cycle is very sensitive to the parameterization of snow grain size and the effect of dust deposition on snow albedo.
Eva Bauer and Andrey Ganopolski
Clim. Past, 13, 819–832, https://doi.org/10.5194/cp-13-819-2017, https://doi.org/10.5194/cp-13-819-2017, 2017
Short summary
Short summary
Transient glacial cycle simulations with an EMIC and the PDD method require smaller melt factors for inception than for termination and larger factors for American than European ice sheets. The PDD online method with standard values simulates a sea level drop of 250 m at the LGM. The PDD online run reproducing the LGM ice volume has deficient ablation for reversing from glacial to interglacial climate, so termination is delayed. The SEB method with dust impact on snow albedo is seen as superior.
Louise C. Sime, Dominic Hodgson, Thomas J. Bracegirdle, Claire Allen, Bianca Perren, Stephen Roberts, and Agatha M. de Boer
Clim. Past, 12, 2241–2253, https://doi.org/10.5194/cp-12-2241-2016, https://doi.org/10.5194/cp-12-2241-2016, 2016
Short summary
Short summary
Latitudinal shifts in the Southern Ocean westerly wind jet could explain large observed changes in the glacial to interglacial ocean CO2 inventory. However there is considerable disagreement in modelled deglacial-warming jet shifts. Here multi-model output is used to show that expansion of sea ice during the glacial period likely caused a slight poleward shift and intensification in the westerly wind jet. Issues with model representation of the winds caused much of the previous disagreement.
M. Stärz, G. Lohmann, and G. Knorr
Clim. Past, 12, 151–170, https://doi.org/10.5194/cp-12-151-2016, https://doi.org/10.5194/cp-12-151-2016, 2016
Short summary
Short summary
In order to account for coupled climate-soil processes, we developed a soil scheme which is asynchronously coupled to an earth system model. We tested the scheme and found additional warming for a relatively warm climate (mid-Holocene), and extra cooling for a colder (Last Glacial Maximum) than preindustrial climate. These findings indicate a relatively strong positive soil feedback to climate, which may help to reduce model-data discrepancies for the climate of the geological past.
J. H. C. Bosmans, F. J. Hilgen, E. Tuenter, and L. J. Lourens
Clim. Past, 11, 1335–1346, https://doi.org/10.5194/cp-11-1335-2015, https://doi.org/10.5194/cp-11-1335-2015, 2015
Short summary
Short summary
Our study shows that the influence of obliquity (the tilt of Earth's rotational axis) can be explained through changes in the insolation gradient across the tropics. This explanation is fundamentally different from high-latitude mechanisms that were previously often inferred to explain obliquity signals in low-latitude paleoclimate records, for instance glacial fluctuations. Our study is based on state-of-the-art climate model experiments.
N. Sudarchikova, U. Mikolajewicz, C. Timmreck, D. O'Donnell, G. Schurgers, D. Sein, and K. Zhang
Clim. Past, 11, 765–779, https://doi.org/10.5194/cp-11-765-2015, https://doi.org/10.5194/cp-11-765-2015, 2015
F. A. Ziemen, C. B. Rodehacke, and U. Mikolajewicz
Clim. Past, 10, 1817–1836, https://doi.org/10.5194/cp-10-1817-2014, https://doi.org/10.5194/cp-10-1817-2014, 2014
Q. Z. Yin, U. K. Singh, A. Berger, Z. T. Guo, and M. Crucifix
Clim. Past, 10, 1645–1657, https://doi.org/10.5194/cp-10-1645-2014, https://doi.org/10.5194/cp-10-1645-2014, 2014
M. F. Loutre, T. Fichefet, H. Goosse, P. Huybrechts, H. Goelzer, and E. Capron
Clim. Past, 10, 1541–1565, https://doi.org/10.5194/cp-10-1541-2014, https://doi.org/10.5194/cp-10-1541-2014, 2014
M. Heinemann, A. Timmermann, O. Elison Timm, F. Saito, and A. Abe-Ouchi
Clim. Past, 10, 1567–1579, https://doi.org/10.5194/cp-10-1567-2014, https://doi.org/10.5194/cp-10-1567-2014, 2014
N. Korhonen, A. Venäläinen, H. Seppä, and H. Järvinen
Clim. Past, 10, 1489–1500, https://doi.org/10.5194/cp-10-1489-2014, https://doi.org/10.5194/cp-10-1489-2014, 2014
M.-N. Woillez, G. Levavasseur, A.-L. Daniau, M. Kageyama, D. H. Urrego, M.-F. Sánchez-Goñi, and V. Hanquiez
Clim. Past, 10, 1165–1182, https://doi.org/10.5194/cp-10-1165-2014, https://doi.org/10.5194/cp-10-1165-2014, 2014
C. R. Tabor, C. J. Poulsen, and D. Pollard
Clim. Past, 10, 41–50, https://doi.org/10.5194/cp-10-41-2014, https://doi.org/10.5194/cp-10-41-2014, 2014
C. Contoux, A. Jost, G. Ramstein, P. Sepulchre, G. Krinner, and M. Schuster
Clim. Past, 9, 1417–1430, https://doi.org/10.5194/cp-9-1417-2013, https://doi.org/10.5194/cp-9-1417-2013, 2013
D. Xiao, P. Zhao, Y. Wang, and X. Zhou
Clim. Past, 9, 735–747, https://doi.org/10.5194/cp-9-735-2013, https://doi.org/10.5194/cp-9-735-2013, 2013
E. J. Stone, D. J. Lunt, J. D. Annan, and J. C. Hargreaves
Clim. Past, 9, 621–639, https://doi.org/10.5194/cp-9-621-2013, https://doi.org/10.5194/cp-9-621-2013, 2013
Y. Chavaillaz, F. Codron, and M. Kageyama
Clim. Past, 9, 517–524, https://doi.org/10.5194/cp-9-517-2013, https://doi.org/10.5194/cp-9-517-2013, 2013
J. Majorowicz, J. Safanda, and K. Osadetz
Clim. Past, 8, 667–682, https://doi.org/10.5194/cp-8-667-2012, https://doi.org/10.5194/cp-8-667-2012, 2012
A. Ganopolski and R. Calov
Clim. Past, 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011, https://doi.org/10.5194/cp-7-1415-2011, 2011
T. Y. M. Konijnendijk, S. L. Weber, E. Tuenter, and M. van Weele
Clim. Past, 7, 635–648, https://doi.org/10.5194/cp-7-635-2011, https://doi.org/10.5194/cp-7-635-2011, 2011
D. M. Roche, H. Renssen, D. Paillard, and G. Levavasseur
Clim. Past, 7, 591–602, https://doi.org/10.5194/cp-7-591-2011, https://doi.org/10.5194/cp-7-591-2011, 2011
N. Fischer and J. H. Jungclaus
Clim. Past, 6, 155–168, https://doi.org/10.5194/cp-6-155-2010, https://doi.org/10.5194/cp-6-155-2010, 2010
S. Bonelli, S. Charbit, M. Kageyama, M.-N. Woillez, G. Ramstein, C. Dumas, and A. Quiquet
Clim. Past, 5, 329–345, https://doi.org/10.5194/cp-5-329-2009, https://doi.org/10.5194/cp-5-329-2009, 2009
Cited articles
An, Z. S., Kukla, G., Porter, S. C., and Xiao, J. L.: Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130 000 years, Quaternary Res., 36, 29–36, 1991.
An, Z. S., Kutzbach, J. E., Prell, W. L., and Porter, S. C.: Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since late Miocene times, Nature, 411, 62–66, 2001.
Barnett, T. P., Damenil, K., Schlese, U., Roeckner, E., and Latif, M.: The effect of Eurasian snow cover on regional and global climate variations, J. Atmos. Sci., 46, 661–685, 1989.
Bassinot, F. C., Labeyrie, L. D., Vincent, E., Quidelleur, X., Shackleton, N. J., and Lancelot, Y.: The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal, Earth Planet. Sci. Lett., 126, 91–108, 1994.
Berger, A.: Long-term variations of daily insolation and Quaternary Climatic Changes, J. Atmos. Sci., 35(12), 2362–2367, 1978.
Berger, A., Loutre, M. F., and Tricot, C.: Insolation and Earth's orbital periods, J. Geophys. Res., 98(D6), 10341–10362, 1993.
Braconnot, P., Joussaume, S., de Noblet, N., and Ramstein, G.: Mid-Holocene and Last Glacial Maximum African monsoon changes as simulated within the Paleoclimate Modelling Intercomparison Project, Global Planet. Change, 26, 51–66, 2000.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., La\^{i}né, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, 2007.
Broccoli, A. J., Dahl, K. A., and Stouffer, R. J.: Response of the ITCZ to Northern Hemisphere Cooling, Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546, 2006.
Brovkin, V., Ganapolski, A., and Svirezhev, Y.: A continuous climate-vegetation classification for use in climate-biosphere studies, Ecol. Model., 101, 251–261, 1997.
Chiang, J. C. H. and Bitz, C. M.: Influence of high latitude ice cover on the marine Intertropical Convergence Zone, Clim. Dynam., 25(5), 477–496, 2005.
Chiang, J. C. H., Biasutti, M., and Battisti, D. S.: Sensitivity of the Atlantic intertropical convergence zone to last glacial maximum boundary conditions, Paleoceanography, 18(4), 1094, https://doi.org/10.1029/2003PA000916, 2003.
Clemens, S. C., Murray, D. W., and Prell, W. L.: Nonstationary Phase of the Plio-Pleistocene Asian Monsoon, Science, 274, 943–948, 1996.
Clemens, S., Prell, W., Murray, D., Shimmield, G., and Weedon, G.: Forcing mechanisms of the Indian Ocean monsoon, Nature, 353, 720–725, 1991.
Claussen, M., Mysak, L. A., Weaver, A. J., Crucifix, M., Fichefet, T., Loutre, M.-F., Weber, S. L., Alcamo, J., Alexeev, V. A., Berger, A., Calov, R., Ganopolski, A., Goosse, H., Lohman, G., Lunkeit, F., Mokhov, I. I., Petoukhov, V., Stone, P., and Wang, Z.: Earth system models of intermediate complexity: Closing the gap in the spectrum of climate system models, Clim. Dynam., 18, 579–586, 2002.
Crucifix, M. and Loutre, M. F.: Transient simulations over the last interglacial period (126–115 kyr BP): feedback and forcing analysis, Clim. Dynam., 19, 417–433, 2002.
deMenocal, P. B.: Plio-Pleistocene African Climate, Science, 270, 53–59, 1995.
Ding, Y., Sikka, D. R.: Synoptic systems and weather, in: The Asian Monsoon, edited by: Wang, B., Springer Praxis, Springer, Berlin Heidelberg, 131–202, 2006.
Driesschaert, E., Fichefet, T., Goosse, H., Huybrechts, P., Janssens, I., Mouchet, A., Munhoven, G., Brovkin, V., and Weber, S. L.: Modeling the influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during the next millennia, Geophys. Res. Lett., 34, L10707, https://doi.org/10.1029/2007GL029516, 2007.
Enomoto, T., Hoskin, B., and Matsuda, Y.: The formation mechanism of the Bonin high in August, Q. J. Roy. Meteor. Soc., 129, 157–178, 2003.
Felzer, B., Oglesby, R. J., Webb III, T., and Hymand, E.: Sensitivity of a general circulation model to changes in northern hemisphere ice sheets, J. Geophys. Res., 101, 19077–19092, 1996.
Feng, Z.-D., Tang, L. Y., Ma, Y. Z., Zhai, Z. X., Wu, H. N., Li, F., Zou, S. B., Yang, Q. L., Wang, W. G., Derbyshire, E., and Liu, K.-B.: Vegetation variations and associated environmental changes during marine isotope stage 3 in the western part of the Chinese Loess Plateau, Palaeog. Palaeoclim. Palaeoec., 246, 278–291, 2007.
Goes, J. I., Thoppil, P. G., do R Gomes, H., and Fasullo, J. T.: Warming of the Eurasian Landmass Is Making the Arabian Sea More Productive, Science, 308(5721), 545–547, 2005.
Goosse, H. and T. Fichefet: Importance of ice-ocean interactions for the global ocean circulation: a model study, J. Geophys. Res., 104(C10), 23337–23355, 1999.
Grose, W. L. and Hoskins, B. J.: On the Influence of Orography on Large-Scale Atmospheric Flow, J. Atmos. Sci., 36, 223–234, 1979.
Guo, Z. T., Berger, A., Yin, Q. Z., and Qin, L.: Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records, Clim. Past, 5, 21–31, 2009.
Guo, Z. T., Liu, T. S., Fedoroff, N., Wei, L. Y., Ding, Z. L., Wu, N. Q., Lü, H. Y., Jiang, W. Y., and An, Z. S.: Climate extremes in Loess of China coupled with the strength of Deep-Water Formation in the North Atlantic, Global Planet. Change, 18, 113–128, 1998.
Guo, Z. T., Biscaye, P., Wei, L. Y., Chen, X. F., Peng, S. Z., and Liu, T. S.: Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China, Geophys. Res. Lett., 27, 1751–1754, 2000.
Hoskins, B. J. and Karoly, D. J.: The steady linear response of a spherical atmosphere to thermal and orographic forcing, J. Atmos. Sci., 38, 1179–1196, 1981.
Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., and Shackleton, N. J.: The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record, in: Milankovitch and Climate, Part 1, edited by: Berger, A. L., Imbrie, J., Hays, J., et al., D. Reidel Pub. Co., 269–305, 1984.
IPCC-Group I: Climate Change 2007: the Physical Science Basis, Summary for Policymakers, Contribution of Working Group I to the Fourth Assessment Report of IPCC, IPCC secretariat, C/O WMO, Geneva, February, 2007.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and Millennial Antarctic Climate Variability over the Past 800 000 Years, Science, 317, 793–796, 2007.
Kageyama, M. and Valdes, P. J.: Impact of the North American ice-sheet orography on the Last Glacial Maximum eddies and snowfall, Geophys. Res. Lett., 27(10), 1515–1518, 2000.
Kitoh, A., Murakami, S., and Koide, H.: A simulation of the Last Glacial Maximum with a coupled atmosphere-ocean GCM, Geophys. Res. Lett., 28, 2221–2224, 2001.
Kukla, J. and Kukla, H. J.: Increased surface albedo in the northern hemisphere, Science, 183, 709–714, 1974.
Kukla, G., Berger, A., Lotti, R., and Brown, J.: Orbital signature of interglacials, Nature, 290, 295–300, 1981.
Kutzbach, J. E., Liu, X. D., Liu, Z. Y., and Chen, G. S.: Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280 000 years, Clim. Dynam., 30, 567–579, 2008.
Kutzbach J. E., Gallimore, R., Harrison, S., Behling, P., Selin, R., and Laarif, F.: Climate and biome simulations for the past 21 000 years, Quaternary Sci. Rev., 17(6–7), 473–506, 1998.
Kutzbach, J. E. and Guetter, P. J.: The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18 000 years, J. Atmos. Sci., 43, 1726–1759, 1986.
Lambeck, K., Yokoyama, Y., Johnston, P., and Purcell, A.: Global ice volumes at the last glacial maximum and early lateglacial, Earth Planet. Sci. Lett., 181, 513–527, 2000.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic delta δ18O records, Paleoceanography, 20(1), PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Liu, X. D., Liu, Z. Y., Kutzbach, J. E., Clemens, S. C., and Prell, W. L.: Hemispheric insolation forcing of the Indian Ocean and Asian monsoon: local versus remote impacts, J. Climate, 19, 6195–6208, 2006.
Liu, Z., Trentesaux, A., Clemens, S. C., Colin, C., Wang, P., Huang, B., and Boulay, S.: Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years, Mar. Geol., 201, 133–146, 2003.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J. M., Raynaud, D., Stocker, T. F., and Chappellaz, J.: Orbital and millennial-scale features of atmospheric CH4 over the past 800 000 years, Nature, 453, 383–386, 2008.
Luthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J. M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and Stocker, T. F.: High-resolution carbon dioxide concentration record 650 000–800 000 years before present, Nature, 453, 379–382, 2008.
Manabe, S. and Broccoli, A. J.: The influence of continental ice sheets on the climate of an ice age, J. Geophys. Res., 90, 2167–2190, 1985.
Masson, V., Braconnot, P., Jouzel, J., de Noblet, N., Cheddadi, R., and Marchal, O.: Simulation of intense monsoons under glacial conditions, Geophys. Res. Lett., 27, 1747–1750, 2000.
Mélières, M. A., Rossignol-Strick, M., and Malaizé, B.: Relation between low latitude insolation and δ18O change of atmospheric oxygen for the last 200 kyrs, as revealed by Mediterranean sapropels, Geophys. Res. Lett., 24(10), 1235–1238, 1997.
Opsteegh, J. D., Haarsma, R. J., Selten, F. M., and Kattenberg, A.: ECBILT: A dynamic alternative to mixed boundary conditions in ocean models, Tellus, 50A, 348–367, 1998.
Overpeck, J., Anderson, D., Trumbore, S., and Prell, W.: The southwest Indian Monsoon over the last 18 000 years, Clim. Dynm., 12, 213–225, 1996.
Paterson, W. S. B.: The Physics of Glaciers, Pergamon, Tarrytown, N.Y., 1994.
Peltier, W. R.: Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Pl. Sc., 32, 111–149, 2004.
Peltier, W. R.: Ice age paleotopography, Science, 265, 195–201, 1994.
Rind, D.: Components of the ice age circulation, J. Geophys. Res., 92, 4241–4281, 1987.
Rossignol-Strick, M.: African monsoons, an immediate climate response to orbital insolation, Nature, 304, 46–49, 1983.
Rossignol-Strick, M., Paterne, M., Bassinot, F. C., Emeis, K.-C., and De Lange, G. J.: An unusual mid-Pleistocene monsoon period over Africa and Asia, Nature, 392, 269–272, 1998.
Rousseau, D. D. and Wu, N.: Mollusk record of monsoon variability during the L2–S2 Cycle in the Luochuan loess sequence, China, Quaternary Res., 52, 286–292, 1999.
Rousseau, D.-D., Wu, N., Pei, Y., and Li, F.: Three exceptionally strong East-Asian summer monsoon events during glacial times in the past 470 kyr, Clim. Past, 5, 157–169, 2009.
Shackleton, N. J.: The 100 000-year Ice-Age Cycle identified and found to lag temperature, carbon dioxide and orbital eccentricity, Science, 289, 1897–1902, 2000.
Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Ficher, H., Masson-Delmott, V., and Jouzel, J.: Stable carbon cycle-climate relationship during the late Pleistocene, Science, 310, 1313–1317, 2005.
Sirocko, F., Sarnthein, M., Lange, H., and Erlenkeuser, H.: Atmospheric summer circulation and coastal upwelling in the Arabian Sea during the Holocene and the last glaciation, Quaternary Res. 36, 72–93, 1991.
Spahni, R., Chappellaz, J., Stocker, T. F., Loulergue, L., Hausammann, G., Kawamura, K., Fluckiger, J., Schwander, J., Raynaud, D., Masson-Delmotte, V., and Jouzel, J.: Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores, Science, 310, 1317–1321, 2005.
Street-Perrott, F. A. and Perrott, R. A.: Abrupt climate fluctuations in the tropics: the influence of Atlantic Ocean circulation, Nature, 343, 607–612, 1990.
Stein, U. and Alpert, P.: Factor Separation in Numerical Simulations, J. Atmos. Sci., 50(14), 2107–2115, 1993.
Tiedemann, R., Sarntheim, M., and Shackleton, N. J.: Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program site 659, Paleoceanography, 9, 619–638, 1994.
Trenberth, K. E., Hurrell, J. W., and Stepaniak, D. P.: The Asian monsoon: Global perspectives, in: The Asian Monsoon, edited by: Wang, B., Springer Praxis, Springer, Berlin, Heidelberg, 67–87, 2006.
Van Campo, E., Duplessy J. C., and Rossignol-Strick, M.: Climatic conditions deduced from a 150 Kyr oxygen isotope-pollen record from the Arabian Sea, Nature, 296, 56–59, 1982.
Vernekar, A. D. and Shukla, J.: The effect of Eurasian snow cover on the Indian monsoon, J. Climate, 8, 248–266, 1995.
Wang, B., Clemens, S. C., and Liu, P.: Contrasting the Indian and East Asian monsoons: implications on geologic timescales, Mar. Geol., 201, 5–21, 2003.
Wang, P. X.: Global monsoon in a geological perspective, Chinese Sci. Bull., 54(7), 1113–1136, 2009.
Wang, Y., Cheng, H., Edwards, R. L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., and An, Z.: Millenial- and orbital-scale changes in the East Asian monsoon over the past 224 000 years, Science, 451, 1090–1093, 2008.
Webster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M., and Yasunari, T.: Monsoons: processes, predictability and the prospects for prediction, J. Geophys. Res., 103(C7), 14451–14510, 1998.
Wu, N. Q., Chen X. Y., Rousseau, D. D., Li, F. J., Pei, Y. P., and Wu, B.: Climatic conditions recorded by terrestrial mollusk assemblages in the Chinese Loess Plateau during marine Oxygen Isotope Stages 12–10, Quaternary Sci. Rev., 26, 1884–1896, 2007.
Yanase, W. and Abe-Ouchi, A.: The LGM surface climate and atmospheric circulation over East Asia and the North Pacific in the PMIP2 coupled model simulations, Clim. Past, 3, 439–451, 2007.
Yin, Q. Z. and Guo, Z. T.: Mid-Pleistocene vermiculated red soils in southern China as an indication of unusually strengthened East Asian monsoon, Chinese Sci. Bull., 51(2), 213–220, 2006.
Yin, Q. Z. and Guo, Z. T.: Strong summer monsoon during the cool MIS-13, Clim. Past, 4, 29–34, 2008.
Yin, Q. Z., Berger, A., Driesschaert, E., Goosse, H., Loutre, M. F., and Crucifix, M.: The Eurasian ice sheet reinforces the East Asian summer monsoon during the interglacial 500 000 years ago, Clim. Past, 4, 79–90, 2008.