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Abstract. An Earth System Model of Intermediate Com-
plexity is used to investigate the role of insolation and of the
size of ice sheets on the regional and global climate of ma-
rine isotope stage (MIS) 13. The astronomical forcing is se-
lected at two dates with opposite precession, one when north-
ern hemisphere (NH) summer occurs at perihelion (at 506 ka
(1 ka=1000 years) BP,) and the other when it occurs at aphe-
lion (at 495 ka BP). Five different volumes of the Eurasian
ice sheet (EA) and North American ice sheet (NA), ranging
from 0 to the Last Glacial Maximum (LGM) one, are used.
The global cooling due to the ice sheets is mainly related
to their area, little to their height. The regional cooling and
warming anomalies caused by the ice sheets intensify with
increasing size. Precipitation over different monsoon regions
responds differently to the size of the ice sheets. Over North
Africa and India, precipitation decreases with increasing ice
sheet size due to the southward shift of the Intertropical Con-
vergence Zone (ITCZ), whatever the astronomical configu-
ration is. However, the situation is more complicated over
East Asia. The ice sheets play a role through both reduc-
ing the land/ocean thermal contrast and generating a wave
train which is topographically induced by the EA ice sheet.
This wave train contributes to amplify the Asian land/ocean
pressure gradient in summer and finally reinforces the pre-
cipitation. The presence of this wave train depends on the
combined effect of the ice sheet size and insolation. When
NH summer occurs at perihelion, the EA is able to induce
this wave train whatever its size is, and this wave train plays
a more important role than the reduction of the land/ocean
thermal contrast. Therefore, the ice sheets reinforce the sum-
mer precipitation over East China whatever their sizes are.
However, when NH summer occurs at aphelion, there is a
threshold in the ice volume beyond which the wave train is
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not induced anymore. Therefore, below this threshold, the
wave train effect is dominant and the ice sheets reinforce
precipitation over East China. Beyond this threshold, the ice
sheets reduce the precipitation mainly through reducing the
land/ocean thermal contrast.

1 Introduction

The ice sheets are among the largest topographic features on
the Earth. They create regional anomalies in albedo and radi-
ation balance, which have a strong influence on climate. Ice
sheets actively interact with the rest of the climate system
by amplifying and potentially driving global climate change.
Direct and indirect influences of ice sheets on climate cause
changes in oceanic and continental surface temperatures, in
oceanic and atmospheric circulations, in the hydrological cy-
cle, in vegetation, and in land surface albedo which, in turn,
cause additional feedbacks in the climate system. In addi-
tion, modeling experiments have shown that the introduc-
tion of ice sheets can change atmospheric circulations, lo-
cally and remotely via planetary waves (Manabe and Broc-
coli, 1985; Kutzbach and Guetter, 1986; Felzer et al., 1996;
Kageyama and Valdes, 2000; Chiang et al., 2003; Chiang and
Bitz, 2005; Yin et al., 2008).

Many reconstructions have indicated such an influence
of the ice sheets on monsoons and precipitation. Accord-
ing to de Menocal (1995), Africa climate and hydrology
were regulated by low-latitude insolation forcing due to
Earth orbital precession before the onset of the NH glacia-
tion ∼2.8 Ma BP. However, after 2.8 Ma BP, they became
coincident with changes in the high-latitude ice sheets, in-
dicating that they were probably driven by them. An et
al. (2001) reported that the East Asian summer monsoon
(EASM) recorded in the Chinese loess became more variable
and at times weaker after 2.6 Ma BP. According to Clemens
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et al. (1996), the phase between orbital forcing and Indian
monsoon strength also changed around this time.

However, the relationship between monsoon and ice sheet
is not necessarily as clear. On one hand, many terrestrial and
marine records from Asia, Africa and surrounding oceans in-
dicate a significant weakening of the summer monsoon dur-
ing glacial times (Van Campo et al., 1982; Street-Perrott and
Perrott 1990; An et al., 1991; Sirocko et al., 1991; Overpeck
et al. 1996; Guo et al., 2000, 2009; Liu et al., 2003). Simi-
larly, many modeling experiments have shown that the com-
bined effects of ice sheets, CO2 and insolation at the LGM
cause together a large reduction in monsoon precipitation
as compared to today (Kutzbach et al., 1998; Braconnot et
al., 2000; Kitoh et al., 2001; Yanase and Abe-Ouchi, 2007).
Modeling simulations (Barnett et al., 1989; Vernekar et al.,
1995) have also shown that an anomalously high Eurasian
snow cover leads to a weaker monsoon over India mainly
through reducing the land/ocean temperature contrast. From
modern observations, Goes et al. (2005) found that a decline
of the Eurasian snow cover is linked to an intensifying In-
dian summer monsoon. On another hand, conflicting with
the traditional notion that ice sheets reduce summer mon-
soon intensity, strengthened summer monsoon events have
been recorded during some glacials. A strengthened EASM
is recorded in the mollusk assemblages of the Chinese Loess
Plateau during the glacials MIS-10 and -12 (Wu et al., 2007)
and also during the stadial MIS-6.5, 175 ka ago (Rousseau
and Wu, 1999; Rousseau et al., 2009). Speleothem records
from China document an EASM stronger during MIS-6.5
than during MIS-5.5 and -7.3 (Wang et al., 2008). Dur-
ing the same MIS-6.5, an unusual sapropel event occurred
in the Eastern Mediterranean Sea (Rossignol-Strick, 1983;
Mélières et al., 1997) which was interpreted as increasing
discharge of the Nile River into the Mediterranean Sea, pre-
sumably indicating a strengthened African monsoon. This
was confirmed by modeling experiments showing that the
glacial conditions do not necessarily prevent high insola-
tion to generate an increased monsoon activity during MIS-
6.5 (Masson et al., 2000). Consequently the question can
be raised of to which extent the ice sheets influence the
monsoons. Based on marine sediment records, Clemens et
al. (1991) argued that precession-forced insolation changes
are the major driver of monsoon strength, whereas glacial
boundary conditions have played only a minor role in deter-
mining the timing and strength of the Arabian Sea monsoon.

If strengthened summer monsoon occurred during glacial
times, it would not be surprising to have them also during
cooler interglacials. MIS-13 is documented as a “cool” in-
terglacial in the Antarctica ice-core records (Jouzel et al.,
2007). Indirect evidences (Imbrie et al., 1984; Lisiecki and
Raymo, 2005) indicate that the sea-level at MIS-13 was sig-
nificantly lower than today. However, the terrestrial records
in China indicate a strong EASM occurred during MIS-13
(Guo et al., 1998, 2009; Yin and Guo, 2006, 2008). Marine
records also indicate unusually strong African and Indian

monsoons at MIS-13 (Bassinot et al., 1994; Rossignol-Strick
et al., 1998). Modeling results by Yin et al. (2008) show that
high NH insolation at the peak of MIS-13, 506 ka ago, causes
much larger precipitation over the EASM region than at Pre-
Industrial time, and surprisingly, that the EA ice sheet rein-
forces the EASM through a topographically induced wave
train.

All these results tend to show that the response of the mon-
soons to ice sheets depends on the ice-sheet size and location,
on the different monsoon regions, and on the combined ef-
fects of insolation and ice sheets. It is therefore interesting
to know whether the strengthening of precipitation over East
China due to the EA ice sheet in Yin et al. (2008) holds for
other ice volumes and astronomical configurations. Is there
a threshold in the ice volume beyond which the ice sheets re-
duce the summer precipitation? What is the exact role played
by the insolation in the relationship between the ice-sheets
and the monsoons? What is the response of the precipitation
from other monsoon regions to the different ice sheet and
astronomical forcings? These questions will be investigated
in this paper, focusing mainly on the sensitivity to the NH
ice sheets volumes and to the importance of the astronomical
configurations. The model and experiments will be described
in Sect. 2. In an attempt to characterize the orbital signature
of interglacials (Kukla et al., 1981), climate response to dif-
ferent astronomical forcings will be discussed in Sect. 3. In
Sect. 4, the response of July temperature to different sizes of
the EA and NA ice sheets will be investigated under two op-
posite precessional situations. In Sect. 5, the response of July
precipitation to different sizes of the EA and NA ice sheets
under the two opposite precessional situations will be dis-
cussed for different monsoon regions. Finally, conclusions
will be drawn in Sect. 6.

2 The model and experiments

An Earth system model of intermediate complexity, LOVE-
CLIM (Driesschaert et al., 2007), is used to investigate the re-
sponse of the climate to the astronomical, greenhouse gas and
ice sheet forcings. The atmosphere (ECBilt), the ocean-sea
ice (CLIO) and the terrestrial biosphere (VECODE) are in-
teractively coupled, the oceanic carbon cycle, the Greenland
and Antarctic ice sheets being prescribed to their present-
day situation. ECBilt is a quasi-geostrophic atmospheric
model with 3 levels in the vertical and a T21 horizontal
resolution (Opsteegh et al., 1998). CLIO is a primitive-
equation, free-surface ocean general circulation model cou-
pled to a thermodynamic-dynamic sea ice model (Goosse
and Fichefet, 1999). Its horizontal resolution is 3◦ in lon-
gitude and latitude, and there are 20 levels along the vertical.
VECODE is a reduced-form model of vegetation dynamics
and of the terrestrial carbon cycle (Brovkin et al., 1997). It
simulates the dynamics of two plant functional types (trees
and grassland) at the same resolution as that of ECBilt.
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The ECBilt-CLIO-VECODE model has been used in a large
number of climate studies (reference can be made in particu-
lar tohttp://www.knmi.nl/onderzk/CKO/ecbilt-papers.html).

LOVECLIM is, within the hierarchy of the Earth system
models of intermediate complexity, a low-resolution general
circulation model (Claussen et al., 2002). Its main advantage
compared to more sophisticated general circulation models
is that it is much faster, allowing to study the behavior of
the coupled atmosphere-ocean-sea ice-land surface-ice sheet
system over thousands of years (a run of 1000 years takes
about 3 days on a workstation AMD Opteron 252/2.6 GHZ
with 2 CPU dual core/4 GB RAM). The main simplification
within LOVECLIM is the coarse resolution and the low level
of complexity of some parameterizations. This leads to some
limitations which are related, in particular to the prescribed
cloudiness and the difficulty to simulate the atmospheric
variability at low latitudes. Accordingly, the model results
for the tropics should be treated with caution. In particu-
lar, the East Asian summer precipitation is underestimated
and the low-level geopotential ridge over the North Pacific is
shifted northward 10 degrees in latitude compared to obser-
vations (Yin et al., 2008). These weaknesses are most likely
caused by insufficient spatial resolution and simplified con-
vective physics. As a consequence, quantitative estimates of
the effects of astronomical parameters and ice sheets on East
Asian precipitation should not be interpreted too rigidly. Yet,
LOVECLIM has proved to be a reasonably appropriate tool
to identify teleconnections. Moreover, the synoptic systems
for the East Asian monsoon region are of hybrid nature due
to the existence of a very significant interaction between the
monsoonal aircurrents and impacts from mid and high lat-
itudes (Ding and Sikka, 2006). Along with its computing
efficiency, this justifies using this model for a first qualita-
tive assessment of the connections between ice sheets and
sub-tropical dynamics by means of a series of sensitivity ex-
periments. Moreover, the reliability of our results is tested
on the basis of simulations with more sophisticated ocean-
atmosphere general circulation models (such experiments,
which confirm our results, will be discussed in companion
papers).

Two series of sensitivity experiments with different ice
volumes have been done under two opposite precessional
conditions (Table 1). They hold respectively for 506 ka BP
when NH summer occurs at perihelion (a forcing for the in-
terglacial MIS-13.13) and for 495 ka BP when NH summer
occurs at aphelion (a forcing for the stadial MIS-13.12). The
greenhouse gas concentrations (GHG) are quite stable over
the whole MIS-13.1 (Siegenthaler et al., 2005; Spahni et al.,
2005; Loulergue et al., 2008; Luthi et al., 2008). The dif-
ference between 506 and 495 ka BP being very small, the av-
erage over MIS-13.1 is used for both cases with a CO2 of
240 ppmv, allowing to limit the sensitivity analysis to the
astronomical and ice sheets forcings only. The ice sheet
volumes are estimated from theδ18O of the deep-sea sed-
iments taken from different reconstructions (Imbrie et al.,

1984; Bassinot et al., 1994; Tiedemann et al., 1994; Shackle-
ton, 2000; Lisiecki and Raymo, 2005) using the assumption
that there is a linear relationship betweenδ18O and the total
ice volume over the Earth. Effects of deep-ocean temperature
on theδ18O are neglected here, and therefore the ice volume
might be over estimated, which puts an upper limit to the ice
volume reconstruction. This hypothesis has to be confirmed
from an analysis of the precise role that the deep-ocean tem-
perature plays on theseδ18O records. In the mean time, these
will be used to reconstruct the ice sheets prevailing around
500 ka ago (MIS-13), assuming that the relationship between
the δ18O excess and the ice volume excess at the LGM re-
mains valid for such a time. The values for the LGM are
selected because it is a period for which the ice sheets are
best reconstructed.
Therefore:

1ice volume(at timet)=1ice volume(at LGM)

∗1δ18O(at timet)/1δ18O(at LGM) (1)

where1 refers to the deviation from present-day.
Based on different reconstructions (Imbrie et al., 1984;

Bassinot et al., 1994; Tiedemann et al., 1994; Shackleton,
2000; Lisiecki and Raymo, 2005),1δ18O varies between
0.24‰ (Lisiecki and Raymo, 2005) and 1.239‰ (Imbrie et
al., 1984) over the whole MIS-13.1 (which includes MIS-
13.11 around 482 ka BP and MIS-13.13 around 501 ka BP).
At the same time, the ratiob:

b = 1δ18O(at timet)/1δ18O(at LGM) (2)

varies from 0.134 (Lisiecki and Raymo, 2005) to 0.318 (Im-
brie et al., 1984). The ice volume excess at the LGM is
assumed to be 47.2×106 km3 (Peltier, 1994) but it actu-
ally varies around 47×106 km3 plus or minus a few million
km3 depending on the reconstructions. The total ice vol-
ume excess during MIS-13.1 would therefore have varied
from 6.3×106 km3 based on Lisiecki and Raymo (2005) to
16.43×106 km3 based on Shackleton (2000). Moreover, the
impact of the uncertainty related to the ice volume excess at
the LGM can be illustrated by using the lowest reconstructed
ice volume for the EA (either by Lambeck et al., 2000 or by
Peltier ICE 5G, 2004), the other ice sheets being kept to their
Peltier (1994) values. Such an assumption leads to a LGM
total ice volume excess of 40×106 km3. Combined with the
smallest value ofb, this leads to an absolute minimum of
the total ice volume excess of 5.3×106 km3 over the whole
MIS-13.1.

In the calculation of the volume of the individual ice
sheets, the ratio between the volumes of EA and of NA is as-
sumed to be constant in time and equal to about 2 (the LGM
ice volume for EA being 11.9×106 km3 and for NA being
24.2×106 km3 in Peltier, 1994). The Greenland and Antarc-
tica ice sheets were kept the same as for the present-day
in all the simulations (the present-day ice volume is about
2.9×106 km3 for Greenland ice sheet and 24.7×106 km3 for
Antarctica ice sheet (IPCC, 2007)).
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Table 1. Orbital parameters and ice volumes used for the exper-
iments in this paper. The same greenhouse gases concentrations
(CO2=240 ppmv, CH4=510 ppbv and N2O=280 ppbv) are used in
all these experiments.

Orbital parameters Exp. NO. Ice volume (106 km3)

EA NA

506 ka BP: Exp. 1 0 0
eccentricity = 0.034046 Exp. 2 1.96 3.48
obliquity = 23.377◦ Exp. 3 2.79 5.67
longitude of perihelion = 274.05◦ Exp. 4 3.63 7.38
NH summer at perihelion Exp. 5 11.9 24.2

495 ka BP: Exp. 6 0 0
eccentricity = 0.038638 Exp. 7 3.63 7.38
obliquity = 23.903◦ Exp. 8 11.9 24.2
longitude of perihelion = 97.82◦

NH summer at aphelion

The shape of the ice sheets was assumed to be axi-
symmetric. For a given maximum thickness,h, and a di-
ameter of the circular basis at the ground,l, the volume of
such ice sheet is given by:

V = 2πhl2/15 (3)

The thickness of the ice sheet at each grid point can be then
calculated assuming that we know the relationship between
h andl and the location of the ice sheet center. According to
Paterson’s model (Paterson, 1994),h2

=aL(L=l/2). Using
a 2-parabolic ice sheet leads to:

a = 0.3562V 2L−5 (4)

and its numerical value 7.4 m, assumed to be a constant,
is obtained using the NA ice sheet at the LGM (its vol-
ume V and sizeL are best known and taken here to be
24.2×106 km3 and 1950 km respectively).

Finally, the centers of the small ice sheets (Exp. 2, 3, 4 and
7, Table 1) are supposed to be 90◦ W and 69◦ N for NA, and
50◦ E and 63◦ N for EA. These locations do not correspond
to the LGM ones. They are tentatively related to the position
that these ice sheets had during their development leading to
the LGM ones. For the large ice sheets scenario (Exp. 5 and
8), the center of NA is located at its LGM position (84◦ W,
58◦ N), but the EA center is kept the same as in the small
volume cases in order to have a better comparison between
them. Sensitivity experiments where the EA ice sheet has
been moved westward by 1000 km to finally be placed over
Scandinavia, shows that this change of the EA location does
not change the conclusion (Yin et al., 2008).

To test the influence of different sizes of ice sheets on the
climate under different astronomical configurations, the as-
tronomical forcing at 506 and 495 ka BP has been selected
(Berger, 1978), these dates both belonging to MIS-13.1.
Two groups of experiments have been made (Table 1). One

Fig. 1. Difference in the latitudinal and seasonal insolation (Wm−2)

distribution between 506 and 495 ka BP. Labels on the X-axis indi-
cate the true longitude of the Sun from the beginning to the end of
the year. Insolation is calculated from the long-term variations of
eccentricity, precession and obliquity (Berger, 1978; Berger et al.,
1993).

is under the astronomical forcing at 506 ka BP (NH sum-
mer is at perihelion) with ice volumes of 1.96, 2.79, 3.63
and 11.9×106 km3 for EA, and of 3.48, 5.67, 7.38 and
24.2×106 km3 for NA. The first three pairs of values are re-
constructed from theδ18O records of Bassinot et al. (1994),
Lisiecki and Raymo (2005) and SPECMAP (Imbrie et al.,
1984), respectively. The largest volumes are from the LGM
given by Peltier (1994). The other group is under the astro-
nomical forcing at 495 ka BP (NH summer is at aphelion),
with ice volumes of 3.63 and 11.9×106 km3 for EA and of
7.38 and 24.2×106 km3 for NA. Only two ice volumes were
used for 495 ka BP because the experience gained from the
506-ka-BP four simulations shows that most of the conclu-
sions can be drawn from these two experiments only. Ex-
periments with no EA nor NA (Exp. 1 and 6) are used as
references.

3 Climate response to the astronomical forcing

At 506 ka BP, the daily mean insolation is larger than at
495 ka BP from the spring equinox to the fall equinox
(Fig. 1). The maximum anomaly amounts to about 70 Wm−2

and is centered at 30◦ N at the summer solstice reflecting the
impact of a smaller obliquity at 506 ka BP. The reverse is true
between the fall equinox and the spring equinox with a max-
imum negative anomaly of 90 Wm−2 centered at the South
Pole.

As in previous experiments made with NH summer oc-
curring at perihelion or at aphelion (Crucifix and Loutre,
2002), the latitudinal and seasonal distribution of insolation
is reflected in our simulated surface temperature pattern. At
506 ka BP, July is globally warmer and January cooler than
both at 495 ka BP and Pre-Industrial time. In global and
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annual average, the Earth is warmer at 506 ka BP than at
495 ka BP (15.9◦C vs. 15.5◦C) but cooler than during Pre-
Industrial time (16.1◦C, simulated by LOVECLIM). The dif-
ference between 506 and 495 ka BP is only due to the inso-
lation forcing, whereas the difference between these experi-
ments and Pre-Industrial is due to both the insolation and a
reduced CO2 concentration. The Earth warms more during
NH summer at 506 ka BP (July: +0.8◦C above Pre-Industrial
time) than during southern hemisphere (SH) summer (Jan-
uary: −0.1◦C) at 495 ka BP. Similarly, the Earth cools more
(January:−1.1◦C) during NH winter at 506 ka BP than dur-
ing SH winter at 495 ka BP (July:−0.8◦C). The annual mean
temperature 0.4◦C higher at 506 ka BP than at 495 ka BP in-
dicates that the Earth is warmer when NH summer occurs
at perihelion rather than at aphelion. Our experiments with
opposite precessional conditions for the last 6 interglacials
confirm such a result, implying that the NH response affects
more effectively the globally averaged temperature. The Pre-
Industrial situation is a good illustration: when NH summer
occurs at aphelion, the Earth is globally 4.3◦C warmer dur-
ing July than during January, although the Earth is in July
3.4% further away from the Sun (it means receiving globally
6.8% less energy from the Sun). Perhaps even more illustra-
tive, both data and model results show that the NH during its
local summer is warmer than the SH during its local summer
by ∼5 to 6◦C, and the NH during its winter is cooler than
the SH during its winter by∼2 to 3◦C, leading to a seasonal
contrast twice as large in NH (∼13◦C) than in SH (∼6◦C).
There are three contributors to this difference: (1) the larger
thermal inertia of the SH; (2) due to its larger continental
fraction, the NH is the seat of more radiative feedbacks than
the SH; and (3) in the SH, more solar energy is converted into
latent heat, which damps the temperature response.

The details of these features can be seen in Fig. 2a, which
gives the geographical distribution of the difference between
506 and 495 ka BP for the July surface temperature (Exp. 1–
Exp. 6). This shows maxima reaching 15◦C over north-
ern North America and over the Tibetan Plateau, 10◦C over
northeastern Asia, 5 to 7◦C along the west coast of North
America, over North Africa and the Near East, 4 to 5◦C over
most of South America, Australia, central to south Africa,
and over the Antarctic ocean. This represents a considerable
cooling of the whole Earth in July, when going from the peak
of MIS 13 (MIS-13.13) to the stadial MIS-13.12, 11 ka later.

For January, going from 506 to 495 ka BP, the warming
over the continents reaches 4◦C in the SH over Australia
and South America (the reverse of what happens in July),
but barely 2◦C over Eurasia and about 0◦C in North Amer-
ica (Exp. 6–Exp. 1, the opposite of Fig. 2b where Exp. 1–
Exp. 6 is plotted). This increasing seasonal contrast in the
SH, opposed to what happens in the NH, results also directly
from the orbital configuration: July (i.e. NH summer and
SH winter) switches from perihelion (at 506 ka BP) to aphe-
lion (at 495 ka BP), at the same time that January switches
from aphelion to perihelion. But more surprising is the Jan-

Fig. 2. Difference of July(a)(upper panel) and January(b)(lower
panel) surface temperature between 506 and 495 ka BP with no EA
nor NA ice sheets (Exp. 1 minus Exp. 6).

uary cooling all over the Arctic Ocean, with two deep cen-
ters located around the Bering Strait and between Green-
land and North Scandinavia at 495 ka BP when compared
to 506 ka BP. Over the northern North Atlantic, a cooling of
more than 8◦C occurs and the large sea-ice cover is respon-
sible for the deep-water formation to move south. This is ac-
tually due to the cold NH summer of 495 ka BP which makes
ice to persist all through the summer season over the Arctic
Ocean allowing it to be present during the next warm winter.

Analysis of the sea surface temperature shows clearly that
sea surface in July (January) is warmer (cooler) at 506 ka BP
than at 495 ka BP almost everywhere. In July, it is more than
3◦C warmer over the northeastern North Pacific and 1–2◦C
over the central North Pacific. Over the equatorial Pacific,
a cold tongue anomaly resembles more or less to a La Niña
situation. It is 1–3◦C warmer in the mid-high latitudes of the
North Atlantic and it is 1–2◦C cooler over the South Atlantic.

The sensitivity of precipitation to the astronomical and
greenhouse gas forcings has been analyzed in Yin et
al. (2008). It showed, in particular, more precipitation over
all the northern monsoon regions in NH summer at 506 than
at 495 ka BP due to the larger 506 ka BP insolation during the
summer season. This is in consistent with the recent results
of Liu et al. (2006) and Kutzbach et al. (2008) who found
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Fig. 3. Difference in July surface temperature (◦C) at 506 ka BP
between experiment with and experiment without NA and EA ice
sheets.(a)(upper panel) for small ice sheets, Exp. 4 minus Exp. 1;
(b)(lower panel) for large ice sheets, Exp. 5 minus Exp. 1.

a strong and positive response of northern summer monsoon
precipitation to northern summer insolation forcing.

4 July surface temperature response to the ice sheets

Most of the earlier simulations done with NH ice sheets were
for the LGM. In this paper the ice sheets are introduced in an
interglacial and the climate sensitivity to them is therefore
assumed to be different. Moreover the sensitivity during a
warm phase (NH summer at perihelion) is compared to the
sensitivity during a cool phase (NH summer at aphelion) in
the presence of the same ice sheets.

4.1 506 ka BP

When compared to the no EA or NA experiment (Exp. 1), the
small ice sheets (Exp. 4) cool the Earth by 0.4◦C annually, by
0.6◦C in January and by 0.2◦C in July. The largest impact is
over the ice sheets with a cooling of up to 7◦C over the EA ice
sheet and 21◦C over the NA ice sheet (Fig. 3a). In addition,
there are three regions in the NH which get cooler under the
influence of these ice sheets. This cooling amounts to 1–4◦C
over Greenland and to 1–2◦C over both the Taymyr Penin-

sula and the Altai-western Mongolia mountain regions from
where it extends up to East China. In the SH, the winter sur-
face of the Antarctic Ocean cools by 1–3◦C. Our sensitivity
experiments show that the reduced global mean temperature
is mainly due to the albedo, and little to the height. This is
consistent with the result of Felzer et al. (1996) but with a
slab-ocean model. The cooling over high-latitudes is mainly
due to increasing snow area, sea-ice fraction and albedo, un-
derlining their importance in polar climate change (Kukla
and Kukla, 1974). However, the snow field and albedo do not
significantly change over the mid-latitudinal Altai-western
Mongolia regions. The cooling over there might be due to
the ascent of air generated over these elevated regions by the
introduction of the ice sheets.

The reasons for differentiated coolings over the EA and
NA ice sheets need also to be investigated. The ice sheets in
the model are characterized by their height, area and albedo.
The most direct cause for temperature anomalies over the ice
sheets arises from changes related to their volume and loca-
tion. The Stein-Alpert factor separation method (Stein and
Alpert, 1993) shows that roughly half of the local cooling
over the EA ice sheet is due to the albedo effect, the other half
to topography. Assuming this holds for the NA ice sheet as
well would explain part of the difference between the cooling
over the EA and NA ice sheets. The area of the NA ice sheet
being almost 80% larger than the area of the EA ice sheet
and its summit 300 m higher would indeed lead to an addi-
tional cooling of about 7◦C over its surface. This is less than
the simulated 21◦C cooling. Therefore, circulation changes
might also be involved. In July, the Asian jet develops in the
upper troposphere (Fig. 4a). The jet core with zonal winds
exceeding 20 ms−1 exists in the mid-latitudes (50 to 60◦ N)
of the Eurasian and North American continents. The Asian
jet is strong enough to be a waveguide (Enomoto et al., 2003).
The meridian wind distribution (Fig. 4b) implies the exis-
tence of stationary waves on the jet, southerlies and norther-
lies alternating every 2500 km in global average. Over the
Eurasian continent, the stationary wave train appears to be
initiated near the jet entrance (at about 20◦ E) and to prop-
agate along the jet. With the small ice sheet of Exp. 4 for
example, the jet moves south by a few degrees (Fig. 4c), but
intensifies mainly over Europe and slightly over North Amer-
ica, whereas it weakens over the central Siberian Plateau. At
the same time, the northerlies over the western and central
parts of the NA ice sheet intensify and so does the southerly
component of the wind over the whole EA ice sheet (Fig. 4d).
This supports the hypothesis that the limited cooling over EA
and the strong one over NA are also resulting from changes
in horizontal advection. This is in line with the omega field
at 650 hPa, which becomes significantly more negative over
the EA ice sheet (convergence) and more positive over the
NA (subsidence, divergence).

In addition to the general cooling, the ice sheets also intro-
duce a warming over a region extending from West Africa to
the East of the EA ice sheet, the Western Siberian Lowlands.
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Fig. 4. Sequentially from the top to the bottom, the panels are:
(a)July 200 hPa zonal wind (m/s) for Exp. 1 (506 ka BP without
ice sheet),(b)same as (a) but for meridianal wind,(c)July 200 hPa
zonal wind (m/s) for Exp. 4 (506 ka BP with small ice sheet),
(d)Difference in July 200 hPa meridianal wind between Exp. 4 and
Exp. 1 (Exp. 4 minus Exp. 1).

This warming continues to the north of the Pacific Ocean
through northeastern Asia where the temperature increases
by 1–4◦C. A similar warming occurs also over a large region
south of the NA ice sheet. Many LGM simulations have pro-
duced a downstream summer temperature larger than present
day south of the EA (Kutzbach and Guetter, 1986; Rind,
1987), or south of both the NA and EA (Manabe and Broc-
coli, 1985; Felzer et al., 1996). The mechanisms responsible
for the downstream warming are generally attributed to lower
(than modern) glacial land albedo south of the NA ice sheet,
to lower elevations south of the EA ice sheet (Manabe and
Broccoli, 1985), and to subsidence of air flowing off of the
ice sheets (Rind, 1987). In our simulations, the warming east
and southeast of EA might result from the subsidence of air
flowing off of the ice sheet, because the surface wind over
the upstream of the EA ice sheet is westerly and northwest-
erly, and the air flowing off of the ice sheet will subside as
it flows downhill, resulting in winds that warm adiabatically
immediately leeward of the ice sheet. However, this does
not help to explain the warming over North Africa, the Mid-
dle East and northeastern Asia, because these regions are far

away from the EA ice sheet but they correspond to regions of
a low elevation. It can be explained by the fact that the intro-
duction of ice sheets perturbs the atmosphere in a way that
divergence and air subsidence reduce precipitation, decrease
the latent heat, increase the sensible heat and therefore warm
the surface.

When the large ice sheets are introduced (Exp. 5, Fig. 3b)
the pattern of temperature change is similar to that resulting
from the small ice sheets (Exp. 4, Fig. 3a), but the amplitude
is larger. These large ice sheets cool the Earth by 1.1◦C an-
nually, 1.3◦C in January and 1◦C in July. The temperature
decreases by up to 18◦C over the EA ice sheet and by up
to 21◦C over the NA ice sheet. As compared to the small-
ice-sheet case, the temperature over EA decreases consid-
erably (its altitude increased by 700 m). It is not the case
over the NA ice sheet although its altitude increases by the
same amount, but its center at the LGM is located south of
its small-ice-sheet position preventing a further cooling. As
expected, the cooling over Asia, Greenland, North Atlantic
Ocean, the Arctic Ocean and the southern Ocean is larger
than in the small-ice-sheet case. On the contrary, the belt
from Africa to west Siberia low land becomes much warmer.
The warming of 3◦C previously centered over northeastern
Asia in the small-ice-sheet-case is now shifted to the North-
west of the Pacific Ocean. Even more significant is the con-
siderable reduction of the warm area south of the NA ice
sheet. All these features are directly associated to the re-
sponse of the general circulation of the atmosphere.

4.2 495 ka BP

Annually at 495 ka BP, the Earth with small ice sheets
(Exp. 7) is 0.1◦C cooler than without ice sheets. The largest
impact of the ice sheets on the surface temperature is still
over the regions of the ice sheets themselves (Fig. 5a). In
July, the cooling due to small ice sheets is up to 12◦C over the
EA and 16◦C over the NA ice sheets. The main differences
between 506 and 495 ka BP occur over the Taymyr Penin-
sula and over the southern Ocean where the cooling is much
larger at 495 than at 506 ka BP. In the 495 ka BP no-ice-sheet
experiment (Exp. 6), the Taymyr Peninsula is under the in-
fluence of south-easterly winds in July with a strong heat
advection from the interior of the Asian continent. When
the ice sheets are introduced, the meridional wind compo-
nent becomes much weaker, allowing more snow and ice
persisting through summer. However, at 506 ka BP, when the
ice sheets are introduced, the southerly wind component is
strong enough to transport heat from low-latitudes, melting
more snow and ice than at 495 ka BP. Compared to the 506
small-ice-sheet situation (Fig. 3a), the warming area in 495 is
enlarged over the North Atlantic, the Tibetan Plateau, eastern
Siberia, but largely shrinks over the region south of the NA
ice sheet (Fig. 5a).

The large ice sheets at 495 cool the Earth by 1.1◦C an-
nually, 1.1◦C in January and 1.3◦C in July. The warming
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Fig. 5. Difference in July surface temperature (◦C) at 495 ka BP
between experiment with and experiment without NA and EA ice
sheets.(a) (upper panel) for small ice sheets, Exp. 7 minus Exp. 6;
(b) (lower panel) for large ice sheets, Exp. 8 minus Exp. 6.

area observed in all the other experiments discussed above,
largely shrinks and most of the Eurasian continent becomes
cooler (Fig. 5b). This July cooling over the Eurasian conti-
nent due to the EA and NA ice sheets at 495 ka BP (0.3◦C
for the small ice sheets and 2.4◦C for the large ones) is larger
than the cooling due to the same ice sheets at 506 ka BP (re-
spectively 0.1 and 1.8◦C). It is thus seen that the effect of ice
sheets on temperature is larger when the background climate
is cooler, because a cooler climate creates the conditions for
greater sea-ice and snow albedo feedbacks. The increases in
snow area, sea ice and albedo over the high latitudes are the
largest in Exp. 8.

5 July precipitation

Only the precipitation features significant at more than the
95% confidence level (a measure based on t-test) are dis-
cussed in this section.

5.1 506 ka BP

The Earth globally gets cooler and also drier when the ice
sheets are introduced. The main pattern of precipitation

Fig. 6. July precipitation difference between experiment with and
experiment without NA and EA ice sheets, for 506 ka BP.(a) (upper
panel) for small ice sheets, Exp. 4 minus Exp. 1;(b) (lower panel)
for large ice sheets, Exp. 5 minus Exp. 1. The color shading indi-
cates precipitation anomaly in cm/year and the black contour lines
limit the regions where the anomalies are significant at more than
the 95% confidence level.

changes is the same in all three experiments with “small”
ice sheets (Exp. 2, 3 and 4). Upslope of the EA ice sheet,
a drier zone results from anticyclongenesis due to the de-
crease of vorticity, and downslope of it a wetter zone ap-
pears related to cyclogenesis due to the increase of vorticity
(Fig. 6a). Around the NA ice sheet, there are also wetter and
drier zones, but their pattern is slightly more complicated due
to the presence of the Greenland ice sheet immediately east
of it. Over central North America, the precipitation is largely
reduced. In the high latitudes, there is a succession of cen-
ters of positive and negative precipitation anomaly. These
are thermodynamically induced by the modification of the
albedo, sea ice and snow due to the introduction of the EA
and NA ice sheets. In the mid and low latitudes, the most sig-
nificant features are (1) a drier belt extending from the tropi-
cal western Atlantic to the eastern North Africa and most of
the Middle East, (2) a wetter belt over Inner Asia extending
from the south-west to the north-east, (3) a wetter belt over
East China oriented from south-west to north-east and disap-
pearing over the Pacific, (4) a wetter belt extending from the
south of the Bay of Bengal, through the Indonesian islands
and to the east over the whole equatorial Pacific, and (5) a
wetter zone from west of Mexico to the western Atlantic. All
the regions with precipitation increase (decrease) correspond
to air ascent (descent). Away of the ice sheets, most of the
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wetter (drier) regions correspond to a surface temperature de-
crease (increase).

The fundamental driving mechanisms of monsoon in-
clude: (1) land/ocean thermal contrast and the resulting
pressure gradient force between the differentially heated re-
gions and (2) moisture-related processes that determine the
strength and location of the monsoon precipitation (Web-
ster et al., 1998). According to (1), one might expect that
ice sheets, by cooling the continents, will induce a smaller
land/ocean thermal contrast and so will contribute to reduce
the monsoon rainfall. However, this is not the case over East
China. Although the temperature gradient between the Asian
land and the surrounding ocean gets indeed slightly smaller,
July precipitation increases by 20% over East China relative
to the no-ice-sheet case (Exp. 1). Consistent with the precip-
itation increase, the summer low at 800 hPa deepens over a
large area of Siberia-Mongolia-China, but at the same time
pressure increases over a large region extending from north-
eastern China to Japan and up to the Pacific. These two pres-
sure anomalies induce a westerly wind anomaly over western
China and an easterly wind anomaly blowing from the sea to
the land over East China, which converge over central China
resulting in more convection there. At the same time, there
is a significantly increase of water vapor flux convergence
over East China. These intensified convection and moisture
availability contribute to increase the precipitation.

These changes in precipitation, pressure and wind fields
are also associated with a wave train originating from the
EA ice sheet and propagating to the Southeast. This wave
train is characterized by (1) an alternation of precipitation in-
crease and decrease ending over East China with a reinforce-
ment of precipitation (Fig. 6a), and (2) alternating positive
(subsidence) and negative (ascent) omega anomalies ending
over East China with a large scale ascent (not shown here).
This wave train is also remarkably present in the wind diver-
gence field. Our sensitivity experiments using either albedo
or topography as the only forcing show that this wave train
is mainly generated by the EA ice-sheet topography. The
existence of this wave train is consistent with the results of
Grose and Hoskins (1979) and Hoskins and Karoly (1981)
showing that wave trains can be orographically generated in
barotropic or baroclinic atmospheres. The phase lock of our
wave train over East China is related to the summer low there
and to the Tibetan Plateau (Yin et al., 2008). The increase of
land/ocean pressure gradient due to the introduction of the
ice sheets, opposite to what is expected from the decrease of
the land/ocean thermal contrast, is therefore tentatively at-
tributed to the topographically induced wave train.

The pattern of precipitation change is similar for the three
experiments with small NA and EA ice sheets, but precipita-
tion over East China increases by 14, 16 and 20% for the ice
volume of 5.5 (Exp. 2), 8.5 (Exp. 3) and 11 106 km3 (Exp. 4),
respectively. By contrast, this ice volume increase reduces
progressively the precipitation over North Africa.

Fig. 7. Difference between Exp. 5 and Exp. 1 in July 800 hPa
geopotential (m2 s−2) and wind (m/s) over East Asia.

Are these features holding if the ice sheets reach their max-
imum LGM size (Exp. 5)? Figure 6b shows the impact on
July precipitation in this large-ice-sheet case with a volume
of 24.2 and 11.9×106 km3 respectively for the NA and EA
ice sheets. The pattern of precipitation change is generally
consistent with that due to the small ice sheets, but globally
the amplitude is much larger. Over East China, precipitation
is larger than in the no-ice-sheet experiment. The large ice
sheets cause an anticyclonic anomaly north of about 60◦ N,
but south of 60◦ N the thermal low deepens over most of the
Eurasian continent (Fig. 7). Although the northwestern Pa-
cific High weakens slightly, the land/sea pressure gradient
remains larger than in Exp. 1. Consistently, there is a south-
easterly wind anomaly blowing from the sea to the land over
East China which reinforces the EASM (Fig. 7). The conver-
gence of the water vapor flux over East China remains larger
than in Exp. 1, which favors convective precipitation. This
larger precipitation over East China is still associated with
a wave train similar as in the small-ice-sheet cases with the
same phase and wave-length although with a larger ampli-
tude and further extension. Here the precipitation increase
(14%) relative to Exp. 1 is less than in Exp. 3 and Exp. 4.
This is related to the fact that the large ice sheets cool the
Asian continent more and the land/ocean thermal contrast
gets even smaller than in the small-ice-sheet cases. This con-
tributes to reduce the land/ocean pressure gradient, but not
enough to counteract the effects of the wave train.

Although monsoon is emphasized as a global system, for
example by considering it as a manifestation of seasonal mi-
gration of the ITCZ (Trenberth et al., 2006; Wang, 2009),
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Fig. 8. (a)(upper panel) Difference between Exp. 5 and Exp. 1
in July 200 hPa zonal wind (Exp. 5 minus Exp. 1), and(b)(lower
panel) Difference between Exp. 5 and Exp. 1 in July 650 hPa omega
field.

different monsoon subsystems respond differently to the
forcing due to, for example, the different land-ocean config-
uration and topography (Wang et al., 2003; Ding and Sikka,
2006). Over North Africa, July precipitation is largely re-
duced (−24%) by the introduction of the large ice sheets
(Exp. 5). This drier belt extends eastwards through the Indian
subcontinent, over the South China Sea and around the whole
NH tropics. South of it, there is a wetter belt over SH tropics
up to 10◦ S. The southward shift of the tropical rainfall max-
imum is associated with a southward migration of the ITCZ
under the influence of the large ice sheets. These results
are consistent with those obtained by Chiang et al. (2003),
Broccoli et al. (2006) and Braconnot et al. (2007) where the
ITCZ shifts southwards due to the NH dramatic cooling in-
duced by the LGM ice sheets and with the hypothesis that
the ITCZ should move towards the relatively warmer hemi-
sphere in response to a differential cooling (Brocolli et al.,
2006). In July, under the insolation and GHG forcings only,
the Asian jet develops in the upper troposphere at about 50 to
60◦ N. The jet core with zonal winds exceeding 20 ms−1 ex-
ists over the North of the Eurasian continent (Fig. 4a). When
the EA and NA ice sheets are introduced, the mean posi-
tion of the 200 hPa zonal wind is also shifted southwards
(Fig. 8a). There is a subsidence anomaly over most of the
NH tropics and a slight ascent over the SH tropical region
(Fig. 8b). This is similar to what Chiang and Bitz (2005)
found with a shift meridionally away from the hemisphere
with an imposed added ice sheet, altering the global Hadley
cell circulation with an increase tropical subsidence in the
hemisphere with imposed ice and uplift in the other. These

migrations of the ITCZ and of the jet stream are more pro-
nounced in the large-ice-sheet case than in the small ones.

In summary, the ice sheets always reinforce July precipi-
tation over East China when the NH summer occurs at per-
ihelion, whatever their sizes. The mechanism involves a to-
pographically induced wave train by the EA ice sheet, which
largely contributes to deepen the summer low over the Asian
continent, and then reinforce the land/ocean pressure gra-
dient, the easterly wind and the water vapor flux conver-
gence over East China. Although the land/ocean thermal
contrast gets slightly weaker when the ice sheets are intro-
duced, this weakening is not sufficient to reduce significantly
the land/ocean pressure gradient increase associated with the
wave train. On the contrary, the ice sheets always reduce pre-
cipitation over North Africa through shifting the ITCZ south-
wards. The precipitation response to the ice sheets is much
larger over North Africa than over Asia. Over India, the
precipitation response depends on the ice sheet size. Small
ice sheets reinforce precipitation over North India, but large
ice sheets reduce it over most of India due to the significant
southward migration of the ITCZ.

5.2 495 ka BP

The only difference between the simulations at 506 ka BP
and 495 ka BP is their astronomical configurations. In
Sect. 3, we have shown that the continents are much warmer
in summer at 506 ka BP than 495 ka BP due to their insola-
tion difference which is mainly attributed to their opposite
precession. Therefore, comparing the impact of ice sheets
on monsoon rainfall at 506 ka BP and 495 ka BP will give an
idea on how the insolation plays a role on this impact of ice
sheets.

Figure 9a shows July precipitation change under the influ-
ence of the small NA and EA ice sheets at 495 ka BP (Exp. 7–
Exp. 6). The pattern of the precipitation change is simi-
lar to the 506 ka BP small-ice-sheet case (Exp. 4–Exp. 1,
Fig. 6a). The EA ice sheet generates again a wave train over
the Eurasian continent. This wave train has almost the same
phase and wave-length as in the 506 ka BP case. The pre-
cipitation increase over East China is also of the same order
of magnitude (20%) but the total amount is only half of it
because the climate at 495 ka BP is globally cooler and drier
than at 506 ka BP. On the other hand, the introduction of the
small ice sheets causes a drier belt extending from North
Africa through northern India to the South China Sea, and
a slightly wetter condition over South India.

When the NA and EA ice sheets reach their LGM vol-
ume, July precipitation decreases over a large part of the
Earth (Fig. 9b). In high latitudes, the pattern of precipita-
tion change at 495 ka BP is similar to the impact of the large
ice sheet at 506 ka BP, with large scale alternating precipi-
tation increases and decreases. There are two main differ-
ences between 506 and 495 ka BP. First, the southwards mi-
gration of the ITCZ due to the ice sheets is more pronounced
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Fig. 9. July precipitation difference between experiment with and
experiment without NA and EA ice sheets, for 495 ka BP.(a)(upper
panel) for small ice sheets, Exp. 7 minus Exp. 6;(b)(lower panel)
for large ice sheets, Exp. 8 minus Exp. 6. The color shading indi-
cates precipitation anomaly in cm/year and the black contour lines
limit the regions where the anomalies are significant at more than
the 95% confidence level.

when the NH summer is at perihelion (506 ka BP) than at
aphelion (495 ka BP). This might be due to the fact that the
mean position of ITCZ is located more North in the 506 no-
ice-sheet experiment than in the 495 one, because there is
greater warming in the NH than in the SH at 506 ka BP in
response to insolation. The more northern position of the
ITCZ at 506 ka BP makes it more sensitive to the ice sheets
forcing, leading to a more pronounced displacement than at
495 ka BP. Second, the wave train which propagates south-
eastwards from the EA ice sheet across the Asian continent
and the North Pacific at 506 ka BP, disappears at 495 ka BP.
Precipitation is reduced significantly over all the monsoon
regions (Exp. 8), with 13% less over north Africa, and 10%
over Asia (70–120◦ E, 20–40◦ N) when compared to the no-
ice-sheet experiment (Exp. 6). Over East China, the large
ice sheets lead to a 6% precipitation decrease. At 495 ka BP,
the large ice sheets are responsible for a large anticyclonic
anomaly at 800 hPa over most of the Eurasian continent
(Fig. 10) centered over central Siberia. At the same time,
the northwestern Pacific High largely weakens. This anticy-
clonic anomaly over land and cyclonic anomaly over ocean
largely reduce the land/ocean pressure gradient and gener-
ate a northwesterly wind anomaly over East China (Fig. 10).
At the same time, the water vapor flux divergence increases
over East Asia. All these impacts eventually weaken the

Fig. 10. Difference between Exp. 8 and Exp. 6 in July 800 hPa
geopotential (m2 s−2) and wind (m/s) at 495 ka BP over East Asia.

EASM and reduce precipitation. Therefore, the impacts of
the large ice sheets at 495 ka BP are markedly different from
what happens at 506 ka BP. In the 495 large-ice-sheet case,
the ice sheets influence the EASM mainly through cooling
the continent and reducing the land/ocean thermal contrast
with no counteraction. On the other hand, in the 495-small-
ice-sheet, 506-small-ice-sheet and 506-large-ice-sheet cases,
the ice sheets play a role on the EASM through both reducing
the land/ocean thermal contrast which tends to weaken the
monsoon, and a topographically induced wave train which
tends to reinforces it. In these three cases, the reduction of
the land/ocean thermal contrast is too small to overcome the
wave train effect on the land/ocean pressure gradient.

The different responses of the EASM to the same ice
sheets under two opposite precessional conditions indicate
that insolation plays a very important role in shaping the ice
sheets impacts including both the reduction of the land/ocean
thermal contrast and the generation of the wave train. Al-
though the mechanism of the wave train topographically in-
duced by the EA ice sheet needs to be further investigated,
the following explanation is tentatively given. There are ac-
tually three factors playing a role on shaping the precipitation
over East China: a different warming due to the NH summer
occurring either at perihelion or at aphelion, a cooling due
to the existence of the ice sheets, and a wave train induced
by the EA topography. The competition of these three fac-
tors creates a threshold beyond which monsoon activity is
greatly reduced, a threshold which is easily reached when
NH summer occurs at aphelion. Two cases are therefore
existing. First, when the NH summer occurs at perihelion,
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the cooling due to the large ice sheet is partly attenuated by
the warmer NH due to the larger insolation and therefore is
not sufficient to reduce the large scale ascent over the conti-
nent. Moreover, the orographic effect generates a wave train
which reinforces the ascent and so precipitation over East
China. Second, when NH summer is at aphelion, the cool-
ing effect due to the large ice sheets is sufficient to reduce
the (weaker) convection over the continent. When the ice
sheets are small, the orographic effect remains more impor-
tant than the cooling effect and therefore the induced wave
train still contributes to increase the precipitation over East
China. When the ice sheets are sufficiently large (i.e. above
the threshold), the cooling effect is stronger than orographic
effect, preventing the formation of the wave train and there-
fore reducing precipitation over East China.

Although almost all the coldest peaks of the glacials cor-
respond to NH summer at aphelion (low NH summer insola-
tion) (Imbrie et al., 1984; Bassinot et al., 1994; Tiedemann
et al., 1994; Shackleton, 2000; Lisiecki and Raymo, 2005;
Berger, 1978), there are some periods within the glacials cor-
responding to NH summer at perihelion with a quite large
NH summer insolation. During the last one million years,
these specific periods occurred during MIS-6.5, -8.5, -10.3,
-12.3, -14.3, -16.3 and -18.3. According to our results, it is
expected that during these specific periods the EASM would
be strenghened not only by the high NH summer insolation
but also by the ice sheets themselves. The same conclusion
holds for the cooler or more glaciated interglacials such as
MIS-7, -13, -15 and -17. Moreover, at some glacial peaks
corresponding to NH summer at aphelion, precipitation over
East China might be reinforced by the ice sheets whose vol-
umes are below the threshold. It is significant indeed that
a strengthened EASM has been found in the proxy records
of China during the glacials MIS-6.5 (Rousseau and Wu,
1999; Wang et al., 2008), MIS-10 and 12 (Wu et al., 2007;
Rousseau et al., 2009), during the interstadial MIS-3 (Feng
et al., 2007), and during the cooler interglacials MIS-13 and
-15 (Guo et al., 1998; Guo et al., 2000; Yin and Guo, 2006).

6 Conclusions

The Earth system model of intermediate complexity, LOVE-
CLIM, was used to investigate the climate response to in-
solation, the EA and NA ice sheets and their combined ef-
fects. Two precessional opposite situations have been used,
one at 506 ka BP when NH summer occurs at perihelion, and
the other at 495 ka BP when NH summer occurs at aphelion.
Experiments with different sizes of the EA and NA under
these two astronomical conditions lead to the following con-
clusions:

1. Confirming earlier results of sensitivity analysis to as-
tronomical elements, the Earth is warmer when the NH
summer occurs at perihelion rather than at aphelion, in-
dicating that the NH plays a leading role in the Earth

climate. The seasonal contrast in the NH (SH) is larger
when the NH summer occurs at perihelion (aphelion).
The NH monsoon precipitation is much more abundant
in the NH summer at 506 ka BP due to its larger insola-
tion than at 495 ka BP.

2. When the EA and NA ice sheets are introduced, the
cooling they induce over the whole Earth is mainly at-
tributed to their albedo, and little to their height. In
high latitudes, the cooling is mainly due to the subse-
quent increase of snow and sea ice. In mid-latitudes, it
is due to the ascent of air topographically induced by
the ice sheets. These ice sheets are not only at the ori-
gin of cooling anomalies but also of warming anoma-
lies. Such warming anomalies are due to the subsidence
of air resulting from either air flowing off the ice sheets,
or remote atmospheric perturbations caused by the ice
sheets. The amplitude of both cooling and warming
anomalies gets larger when the size of the ice sheets
increases.

3. Precipitation over different monsoon regions responds
differently to the size of the ice sheets. Over North
Africa and India, precipitation decreases with increas-
ing ice sheet size due to the southward shift of the ITCZ,
whatever the astronomical configuration is. However,
the situation is more complicated over East Asia. The
ice sheets play a role on the EASM through both re-
ducing the land/ocean thermal contrast and generating
a wave train which is topographically induced by the
EA ice sheet. The first impact tends to reduce the
land/ocean pressure gradient and finally the EASM. On
the contrary, the second impact contributes to amplify
the Asian land/ocean pressure gradient in summer and
finally reinforces the monsoon. The presence of this
wave train depends on the combined effect of the ice
sheet size and insolation. When NH summer occurs
at perihelion (506 ka BP), the EA topography is able
to induce this wave train whatever the ice sheet size
is, and this wave train plays a more important role on
the EASM than the reduction of the land/ocean thermal
contrast. Therefore, the ice sheets reinforce the sum-
mer precipitation over East China whatever their sizes
are. However, when NH summer occurs at aphelion
(495 ka BP), there is a threshold in the ice volume be-
yond which the wave train fails to be induced. There-
fore, within this threshold, the wave train effect is dom-
inant and the ice sheets reinforce precipitation over East
China. Beyond this threshold, the ice sheets weaken the
EASM mainly through reducing the land/ocean thermal
contrast. This different response of the EASM to the
ice sheet sizes under different astronomical configura-
tions might also partly explain the intensification of the
EASM during some glacials or “cool” interglacials doc-
umented in the proxy records, a hypothesis which de-
serves more attention.
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