Articles | Volume 21, issue 4
https://doi.org/10.5194/cp-21-795-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-795-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution Holocene record based on detailed tephrochronology from Torfdalsvatn, north Iceland, reveals natural and anthropogenic impacts on terrestrial and aquatic environments
David J. Harning
CORRESPONDING AUTHOR
Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
Faculty of Earth Sciences, University of Iceland, Reykjavík, Iceland
Christopher R. Florian
Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
Faculty of Earth Sciences, University of Iceland, Reykjavík, Iceland
National Ecological Observatory Network, Battelle, Boulder, CO, USA
Áslaug Geirsdóttir
Faculty of Earth Sciences, University of Iceland, Reykjavík, Iceland
Thor Thordarson
Faculty of Earth Sciences, University of Iceland, Reykjavík, Iceland
Gifford H. Miller
Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
Yarrow Axford
Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL, USA
Sædís Ólafsdóttir
Reykjavík Energy, Reykjavík, Iceland
Related authors
David J. Harning, Jonathan H. Raberg, Jamie M. McFarlin, Yarrow Axford, Christopher R. Florian, Kristín B. Ólafsdóttir, Sebastian Kopf, Julio Sepúlveda, Gifford H. Miller, and Áslaug Geirsdóttir
Hydrol. Earth Syst. Sci., 28, 4275–4293, https://doi.org/10.5194/hess-28-4275-2024, https://doi.org/10.5194/hess-28-4275-2024, 2024
Short summary
Short summary
As human-induced global warming progresses, changes to Arctic precipitation are expected, but predictions are limited by an incomplete understanding of past changes in the hydrological system. Here, we measured water isotopes, a common tool to reconstruct past precipitation, from lakes, streams, and soils across Iceland. These data will allow robust reconstruction of past precipitation changes in Iceland in future studies.
Nicolò Ardenghi, David J. Harning, Jonathan H. Raberg, Brooke R. Holman, Thorvaldur Thordarson, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Clim. Past, 20, 1087–1123, https://doi.org/10.5194/cp-20-1087-2024, https://doi.org/10.5194/cp-20-1087-2024, 2024
Short summary
Short summary
Analysing a sediment record from Stóra Viðarvatn (NE Iceland), we reveal how natural factors and human activities influenced environmental changes (erosion, wildfires) over the last 11 000 years. We found increased fire activity around 3000 and 1500 years ago, predating human settlement, likely driven by natural factors like precipitation shifts. Declining summer temperatures increased erosion vulnerability, exacerbated by farming and animal husbandry, which in turn may have reduced wildfires.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences, 20, 229–249, https://doi.org/10.5194/bg-20-229-2023, https://doi.org/10.5194/bg-20-229-2023, 2023
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence or absence. Our local temperature calibrations for GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
David Harning, Thor Thordarson, Áslaug Geirsdóttir, Gifford Miller, and Christopher Florian
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-26, https://doi.org/10.5194/gchron-2022-26, 2022
Preprint withdrawn
Short summary
Short summary
Volcanic ash layers are a common tool to synchronize records of past climate, and their estimated age relies on external dating methods. Here, we show that the chemical composition of the well-known, 12000 year-old Vedde Ash is indistinguishable with several other ash layers in Iceland that are ~1000 years younger. Therefore, chemical composition alone cannot be used to identify the Vedde Ash in sedimentary records.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-177, https://doi.org/10.5194/bg-2021-177, 2021
Manuscript not accepted for further review
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence/absence. Our local temperature calibrations for alkenones, GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
Jonathan H. Raberg, David J. Harning, Sarah E. Crump, Greg de Wet, Aria Blumm, Sebastian Kopf, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, https://doi.org/10.5194/bg-18-3579-2021, 2021
Short summary
Short summary
BrGDGT lipids are a proxy for temperature in lake sediments, but other parameters like pH can influence them, and seasonality can affect the temperatures they record. We find a warm-season bias at 43 new high-latitude sites. We also present a new method that deconvolves the effects of temperature, pH, and conductivity and generate global calibrations for these variables. Our study provides new paleoclimate tools, insight into brGDGTs at the biochemical level, and a new method for future study.
David J. Harning, Anne E. Jennings, Denizcan Köseoğlu, Simon T. Belt, Áslaug Geirsdóttir, and Julio Sepúlveda
Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, https://doi.org/10.5194/cp-17-379-2021, 2021
Short summary
Short summary
Today, the waters north of Iceland are characterized by high productivity that supports a diverse food web. However, it is not known how this may change and impact Iceland's economy with future climate change. Therefore, we explored how the local productivity has changed in the past 8000 years through fossil and biogeochemical indicators preserved in Icelandic marine mud. We show that this productivity relies on the mixing of Atlantic and Arctic waters, which migrate north under warming.
Áslaug Geirsdóttir, Gifford H. Miller, John T. Andrews, David J. Harning, Leif S. Anderson, Christopher Florian, Darren J. Larsen, and Thor Thordarson
Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, https://doi.org/10.5194/cp-15-25-2019, 2019
Short summary
Short summary
Compositing climate proxies in sediment from seven Iceland lakes documents abrupt summer cooling between 4.5 and 4.0 ka, statistically indistinguishable from 4.2 ka. Although the decline in summer insolation was an important factor, a combination of superposed changes in ocean circulation and explosive Icelandic volcanism were likely responsible for the abrupt perturbation recorded by our proxies. Lake and catchment proxies recovered to a colder equilibrium state following the perturbation.
David J. Harning, Jonathan H. Raberg, Jamie M. McFarlin, Yarrow Axford, Christopher R. Florian, Kristín B. Ólafsdóttir, Sebastian Kopf, Julio Sepúlveda, Gifford H. Miller, and Áslaug Geirsdóttir
Hydrol. Earth Syst. Sci., 28, 4275–4293, https://doi.org/10.5194/hess-28-4275-2024, https://doi.org/10.5194/hess-28-4275-2024, 2024
Short summary
Short summary
As human-induced global warming progresses, changes to Arctic precipitation are expected, but predictions are limited by an incomplete understanding of past changes in the hydrological system. Here, we measured water isotopes, a common tool to reconstruct past precipitation, from lakes, streams, and soils across Iceland. These data will allow robust reconstruction of past precipitation changes in Iceland in future studies.
Nicolò Ardenghi, David J. Harning, Jonathan H. Raberg, Brooke R. Holman, Thorvaldur Thordarson, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Clim. Past, 20, 1087–1123, https://doi.org/10.5194/cp-20-1087-2024, https://doi.org/10.5194/cp-20-1087-2024, 2024
Short summary
Short summary
Analysing a sediment record from Stóra Viðarvatn (NE Iceland), we reveal how natural factors and human activities influenced environmental changes (erosion, wildfires) over the last 11 000 years. We found increased fire activity around 3000 and 1500 years ago, predating human settlement, likely driven by natural factors like precipitation shifts. Declining summer temperatures increased erosion vulnerability, exacerbated by farming and animal husbandry, which in turn may have reduced wildfires.
Gifford H. Miller, Simon L. Pendleton, Alexandra Jahn, Yafang Zhong, John T. Andrews, Scott J. Lehman, Jason P. Briner, Jonathan H. Raberg, Helga Bueltmann, Martha Raynolds, Áslaug Geirsdóttir, and John R. Southon
Clim. Past, 19, 2341–2360, https://doi.org/10.5194/cp-19-2341-2023, https://doi.org/10.5194/cp-19-2341-2023, 2023
Short summary
Short summary
Receding Arctic ice caps reveal moss killed by earlier ice expansions; 186 moss kill dates from 71 ice caps cluster at 250–450, 850–1000 and 1240–1500 CE and continued expanding 1500–1880 CE, as recorded by regions of sparse vegetation cover, when ice caps covered > 11 000 km2 but < 100 km2 at present. The 1880 CE state approached conditions expected during the start of an ice age; climate models suggest this was only reversed by anthropogenic alterations to the planetary energy balance.
Peter J. K. Puleo and Yarrow Axford
Clim. Past, 19, 1777–1791, https://doi.org/10.5194/cp-19-1777-2023, https://doi.org/10.5194/cp-19-1777-2023, 2023
Short summary
Short summary
We used two lake sediment records at different elevations and landscape evidence to find that a southern Greenland outlet glacier advanced ~ 3700 years ago and then retreated ~ 1600 years ago. This retreat is unlike other nearby outlet glaciers, possibly because of the complex local ice structure or greater sensitivity to snowfall. We also find that the advanced ice surface had an elevation of ~ 670 m a.s.l. (~ 250 m higher than today) from ~ 3700 to 1600 years ago.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences, 20, 229–249, https://doi.org/10.5194/bg-20-229-2023, https://doi.org/10.5194/bg-20-229-2023, 2023
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence or absence. Our local temperature calibrations for GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
David Harning, Thor Thordarson, Áslaug Geirsdóttir, Gifford Miller, and Christopher Florian
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-26, https://doi.org/10.5194/gchron-2022-26, 2022
Preprint withdrawn
Short summary
Short summary
Volcanic ash layers are a common tool to synchronize records of past climate, and their estimated age relies on external dating methods. Here, we show that the chemical composition of the well-known, 12000 year-old Vedde Ash is indistinguishable with several other ash layers in Iceland that are ~1000 years younger. Therefore, chemical composition alone cannot be used to identify the Vedde Ash in sedimentary records.
Laura J. Larocca and Yarrow Axford
Clim. Past, 18, 579–606, https://doi.org/10.5194/cp-18-579-2022, https://doi.org/10.5194/cp-18-579-2022, 2022
Short summary
Short summary
This paper synthesizes 66 records of glacier variations over the Holocene from lake archives across seven Arctic regions. We find that summers only moderately warmer than today drove major environmental change across the Arctic in the early Holocene, including the widespread loss of glaciers. In comparison, future projections of Arctic temperature change far exceed estimated early Holocene values in most locations, portending the eventual loss of most of the Arctic's small glaciers.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-177, https://doi.org/10.5194/bg-2021-177, 2021
Manuscript not accepted for further review
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence/absence. Our local temperature calibrations for alkenones, GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
Jonathan H. Raberg, David J. Harning, Sarah E. Crump, Greg de Wet, Aria Blumm, Sebastian Kopf, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, https://doi.org/10.5194/bg-18-3579-2021, 2021
Short summary
Short summary
BrGDGT lipids are a proxy for temperature in lake sediments, but other parameters like pH can influence them, and seasonality can affect the temperatures they record. We find a warm-season bias at 43 new high-latitude sites. We also present a new method that deconvolves the effects of temperature, pH, and conductivity and generate global calibrations for these variables. Our study provides new paleoclimate tools, insight into brGDGTs at the biochemical level, and a new method for future study.
David J. Harning, Anne E. Jennings, Denizcan Köseoğlu, Simon T. Belt, Áslaug Geirsdóttir, and Julio Sepúlveda
Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, https://doi.org/10.5194/cp-17-379-2021, 2021
Short summary
Short summary
Today, the waters north of Iceland are characterized by high productivity that supports a diverse food web. However, it is not known how this may change and impact Iceland's economy with future climate change. Therefore, we explored how the local productivity has changed in the past 8000 years through fossil and biogeochemical indicators preserved in Icelandic marine mud. We show that this productivity relies on the mixing of Atlantic and Arctic waters, which migrate north under warming.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Áslaug Geirsdóttir, Gifford H. Miller, John T. Andrews, David J. Harning, Leif S. Anderson, Christopher Florian, Darren J. Larsen, and Thor Thordarson
Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, https://doi.org/10.5194/cp-15-25-2019, 2019
Short summary
Short summary
Compositing climate proxies in sediment from seven Iceland lakes documents abrupt summer cooling between 4.5 and 4.0 ka, statistically indistinguishable from 4.2 ka. Although the decline in summer insolation was an important factor, a combination of superposed changes in ocean circulation and explosive Icelandic volcanism were likely responsible for the abrupt perturbation recorded by our proxies. Lake and catchment proxies recovered to a colder equilibrium state following the perturbation.
Simon L. Pendleton, Gifford H. Miller, Robert A. Anderson, Sarah E. Crump, Yafang Zhong, Alexandra Jahn, and Áslaug Geirsdottir
Clim. Past, 13, 1527–1537, https://doi.org/10.5194/cp-13-1527-2017, https://doi.org/10.5194/cp-13-1527-2017, 2017
Short summary
Short summary
Recent warming in the high latitudes has prompted the accelerated retreat of ice caps and glaciers, especially in the Canadian Arctic. Here we use the radiocarbon age of preserved plants being exposed by shrinking ice caps that once entombed them. These ages help us to constrain the timing and magnitude of climate change on southern Baffin Island over the past ~ 2000 years. Our results show episodic cooling up until ~ 1900 CE, followed by accelerated warming through present.
Fred Prata, Mark Woodhouse, Herbert E. Huppert, Andrew Prata, Thor Thordarson, and Simon Carn
Atmos. Chem. Phys., 17, 10709–10732, https://doi.org/10.5194/acp-17-10709-2017, https://doi.org/10.5194/acp-17-10709-2017, 2017
Short summary
Short summary
This paper investigates the separation of gases and particles that frequently occurs during violent volcanic eruptions. This problem is important because atmospheric winds spread volcanic aerosols at great distances from the source, and wind shear then causes the aerosols to spread in different directions at different altitudes. This has important repercussions for accurately forecasting the movement of hazardous volcanic clouds. The May 2011 Grímsvötn eruption is analysed in great detail.
J. A. Stevenson, S. C. Millington, F. M. Beckett, G. T. Swindles, and T. Thordarson
Atmos. Meas. Tech., 8, 2069–2091, https://doi.org/10.5194/amt-8-2069-2015, https://doi.org/10.5194/amt-8-2069-2015, 2015
Short summary
Short summary
We attempt to understand why volcanic ash grains found 100s of km from their source volcanoes (cryptotephra), which are typically 20–125 microns in length, are much larger than the size distributions measured by satellite remote sensing, which are centred at less than 10 microns. Our observations and models show that cryptotephra-sized grains are to be expected in distal plumes. Retrievals of effective radius made on simulated satellite images are shown to be biased toward smaller values.
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Holocene
Multi-century mean summer temperature variations in the Southern Rhaetian Alps reconstructed from Larix decidua blue intensity data
A continental reconstruction of hydroclimatic variability in South America during the past 2000 years
A Holocene history of climate, fire, landscape evolution, and human activity in northeastern Iceland
A global compilation of diatom silica oxygen isotope records from lake sediment – trends and implications for climate reconstruction
BrGDGT-based seasonal paleotemperature reconstruction for the last 15 000 years from a shallow lake on the eastern Tibetan Plateau
Reconstructing 15 000 years of southern France temperatures from coupled pollen and molecular (branched glycerol dialkyl glycerol tetraether) markers (Canroute, Massif Central)
Pollen-based reconstructions of Holocene climate trends in the eastern Mediterranean region
Spatiotemporal Intertropical Convergence Zone dynamics during the last 3 millennia in northeastern Brazil and related impacts in modern human history
Holocene climates of the Iberian Peninsula: pollen-based reconstructions of changes in the west–east gradient of temperature and moisture
Holocene climate and oceanography of the coastal Western United States and California Current System
Reconstructing Holocene temperatures in time and space using paleoclimate data assimilation
Long-term trends in diatom diversity and palaeoproductivity: a 16 000-year multidecadal record from Lake Baikal, southern Siberia
A 406-year non-growing-season precipitation reconstruction in the southeastern Tibetan Plateau
Climatic variations during the Holocene inferred from radiocarbon and stable carbon isotopes in speleothems from a high-alpine cave
Winter–spring warming in the North Atlantic during the last 2000 years: evidence from southwest Iceland
Climate reconstructions based on GDGT and pollen surface datasets from Mongolia and Baikal area: calibrations and applicability to extremely cold–dry environments over the Late Holocene
Sampling density and date along with species selection influence spatial representation of tree-ring reconstructions
Changes in high-intensity precipitation on the northern Apennines (Italy) as revealed by multidisciplinary data over the last 9000 years
Neoglacial trends in diatom dynamics from a small alpine lake in the Qinling mountains of central China
Centennial- to millennial-scale monsoon changes since the last deglaciation linked to solar activities and North Atlantic cooling
Algal lipids reveal unprecedented warming rates in alpine areas of SW Europe during the industrial period
Reconstructing seasonality through stable-isotope and trace-element analyses of the Proserpine stalagmite, Han-sur-Lesse cave, Belgium: indications for climate-driven changes during the last 400 years
Two millennia of Main region (southern Germany) hydroclimate variability
Combining a pollen and macrofossil synthesis with climate simulations for spatial reconstructions of European climate using Bayesian filtering
Lignin oxidation products as a potential proxy for vegetation and environmental changes in speleothems and cave drip water – a first record from the Herbstlabyrinth, central Germany
How dry was the Younger Dryas? Evidence from a coupled δ2H–δ18O biomarker paleohygrometer applied to the Gemündener Maar sediments, Western Eifel, Germany
Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions
The 4.2 ka BP Event in the Mediterranean region: an overview
Technical note: Optimizing the utility of combined GPR, OSL, and Lidar (GOaL) to extract paleoenvironmental records and decipher shoreline evolution
The onset of neoglaciation in Iceland and the 4.2 ka event
Hydroclimatic variations in southeastern China during the 4.2 ka event reflected by stalagmite records
Fire, vegetation, and Holocene climate in a southeastern Tibetan lake: a multi-biomarker reconstruction from Paru Co
Climate impact on the development of Pre-Classic Maya civilisation
Synchronizing 10Be in two varved lake sediment records to IntCal13 14C during three grand solar minima
Technical note: Open-paleo-data implementation pilot – the PAGES 2k special issue
A chironomid-based record of temperature variability during the past 4000 years in northern China and its possible societal implications
Insights into Atlantic multidecadal variability using the Last Millennium Reanalysis framework
Three distinct Holocene intervals of stalagmite deposition and nondeposition revealed in NW Madagascar, and their paleoclimate implications
Examining bias in pollen-based quantitative climate reconstructions induced by human impact on vegetation in China
A dual-biomarker approach for quantification of changes in relative humidity from sedimentary lipid D∕H ratios
Pseudo-proxy tests of the analogue method to reconstruct spatially resolved global temperature during the Common Era
Development and evaluation of a system of proxy data assimilation for paleoclimate reconstruction
A chironomid-based mean July temperature inference model from the south-east margin of the Tibetan Plateau, China
Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world
Quantitative reconstruction of summer precipitation using a mid-Holocene δ13C common millet record from Guanzhong Basin, northern China
North Atlantic Oscillation controls on oxygen and hydrogen isotope gradients in winter precipitation across Europe; implications for palaeoclimate studies
A 368-year maximum temperature reconstruction based on tree-ring data in the northwestern Sichuan Plateau (NWSP), China
Inferring late-Holocene climate in the Ecuadorian Andes using a chironomid-based temperature inference model
A high-altitude peatland record of environmental changes in the NW Argentine Andes (24 ° S) over the last 2100 years
Technical note: The Linked Paleo Data framework – a common tongue for paleoclimatology
Riccardo Cerrato, Maria Cristina Salvatore, Michele Brunetti, Andrea Somma, and Carlo Baroni
Clim. Past, 21, 609–626, https://doi.org/10.5194/cp-21-609-2025, https://doi.org/10.5194/cp-21-609-2025, 2025
Short summary
Short summary
Understanding past climates requires data extending beyond modern instrumental records. This study shows that blue intensity (BI) measurements from European larch trees in the Southern Rhaetian Alps provide a stronger proxy for reconstructing past summer temperatures than traditional tree-ring-width data. BI processing enables regional-scale reconstructions and helps extend these reconstructions to the Mediterranean Basin and northern Europe, with excellent correlations to existing data.
Mathurin A. Choblet, Janica C. Bühler, Valdir F. Novello, Nathan J. Steiger, and Kira Rehfeld
Clim. Past, 20, 2117–2141, https://doi.org/10.5194/cp-20-2117-2024, https://doi.org/10.5194/cp-20-2117-2024, 2024
Short summary
Short summary
Past climate reconstructions are essential for understanding climate mechanisms and drivers. Our focus is on the South American continent over the past 2000 years. We offer a new reconstruction that particularly utilizes data from speleothems, previously absent from continent-wide reconstructions. We use paleoclimate data assimilation, a reconstruction method that combines information from climate archives and climate simulations.
Nicolò Ardenghi, David J. Harning, Jonathan H. Raberg, Brooke R. Holman, Thorvaldur Thordarson, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Clim. Past, 20, 1087–1123, https://doi.org/10.5194/cp-20-1087-2024, https://doi.org/10.5194/cp-20-1087-2024, 2024
Short summary
Short summary
Analysing a sediment record from Stóra Viðarvatn (NE Iceland), we reveal how natural factors and human activities influenced environmental changes (erosion, wildfires) over the last 11 000 years. We found increased fire activity around 3000 and 1500 years ago, predating human settlement, likely driven by natural factors like precipitation shifts. Declining summer temperatures increased erosion vulnerability, exacerbated by farming and animal husbandry, which in turn may have reduced wildfires.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Xiaohuan Hou, Nannan Wang, Zhe Sun, Kan Yuan, Xianyong Cao, and Juzhi Hou
Clim. Past, 20, 335–348, https://doi.org/10.5194/cp-20-335-2024, https://doi.org/10.5194/cp-20-335-2024, 2024
Short summary
Short summary
We present an ice-free season temperature based on brGDGTs over last 15 kyr on the eastern Tibetan Plateau (TP). The result shows that Holocene Thermal Maximum occurred during 8–3.5 ka, which lags behind pollen-based temperature recorded in same core, indicating a significant seasonal bias between different proxies. We also investigated previously published brGDGT-based temperatures on the TP to determine the pattern of Holocene temperature changes and possible reasons for the diverse records.
Léa d'Oliveira, Lucas Dugerdil, Guillemette Ménot, Allowen Evin, Serge D. Muller, Salomé Ansanay-Alex, Julien Azuara, Colline Bonnet, Laurent Bremond, Mehmet Shah, and Odile Peyron
Clim. Past, 19, 2127–2156, https://doi.org/10.5194/cp-19-2127-2023, https://doi.org/10.5194/cp-19-2127-2023, 2023
Short summary
Short summary
In southern Europe, Holocene climate variability is characterized by a strong heterogeneity whose patterns are still poorly understood. Here, a multi-proxy approach (pollen and biomarkers) is applied to the Canroute sequence to reconstruct the climatic variation over the last 15 000 years in southern Massif Central, France. Results reveal that reconstructions of regional climate trends notably differ depending on proxies and sites, notably concerning the presence of a Holocene thermal maximum.
Esmeralda Cruz-Silva, Sandy P. Harrison, I. Colin Prentice, Elena Marinova, Patrick J. Bartlein, Hans Renssen, and Yurui Zhang
Clim. Past, 19, 2093–2108, https://doi.org/10.5194/cp-19-2093-2023, https://doi.org/10.5194/cp-19-2093-2023, 2023
Short summary
Short summary
We examined 71 pollen records (12.3 ka to present) in the eastern Mediterranean, reconstructing climate changes. Over 9000 years, winters gradually warmed due to orbital factors. Summer temperatures peaked at 4.5–5 ka, likely declining because of ice sheets. Moisture increased post-11 kyr, remaining high from 10–6 kyr before a slow decrease. Climate models face challenges in replicating moisture transport.
Giselle Utida, Francisco W. Cruz, Mathias Vuille, Angela Ampuero, Valdir F. Novello, Jelena Maksic, Gilvan Sampaio, Hai Cheng, Haiwei Zhang, Fabio Ramos Dias de Andrade, and R. Lawrence Edwards
Clim. Past, 19, 1975–1992, https://doi.org/10.5194/cp-19-1975-2023, https://doi.org/10.5194/cp-19-1975-2023, 2023
Short summary
Short summary
We reconstruct the Intertropical Convergence Zone (ITCZ) behavior during the past 3000 years over northeastern Brazil based on oxygen stable isotopes of stalagmites. Paleoclimate changes were mainly forced by the tropical South Atlantic and tropical Pacific sea surface temperature variability. We describe an ITCZ zonal behavior active around 1100 CE and the period from 1500 to 1750 CE. The dataset also records historical droughts that affected modern human population in this area of Brazil.
Mengmeng Liu, Yicheng Shen, Penelope González-Sampériz, Graciela Gil-Romera, Cajo J. F. ter Braak, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past, 19, 803–834, https://doi.org/10.5194/cp-19-803-2023, https://doi.org/10.5194/cp-19-803-2023, 2023
Short summary
Short summary
We reconstructed the Holocene climates in the Iberian Peninsula using a large pollen data set and found that the west–east moisture gradient was much flatter than today. We also found that the winter was much colder, which can be expected from the low winter insolation during the Holocene. However, summer temperature did not follow the trend of summer insolation, instead, it was strongly correlated with moisture.
Hannah M. Palmer, Veronica Padilla Vriesman, Caitlin M. Livsey, Carina R. Fish, and Tessa M. Hill
Clim. Past, 19, 199–232, https://doi.org/10.5194/cp-19-199-2023, https://doi.org/10.5194/cp-19-199-2023, 2023
Short summary
Short summary
To better understand and contextualize modern climate change, this systematic review synthesizes climate and oceanographic patterns in the Western United States and California Current System through the most recent 11.75 kyr. Through a literature review and coded analysis of past studies, we identify distinct environmental phases through time and linkages between marine and terrestrial systems. We explore climate change impacts on ecosystems and human–environment interactions.
Michael P. Erb, Nicholas P. McKay, Nathan Steiger, Sylvia Dee, Chris Hancock, Ruza F. Ivanovic, Lauren J. Gregoire, and Paul Valdes
Clim. Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, https://doi.org/10.5194/cp-18-2599-2022, 2022
Short summary
Short summary
To look at climate over the past 12 000 years, we reconstruct spatial temperature using natural climate archives and information from model simulations. Our results show mild global mean warmth around 6000 years ago, which differs somewhat from past reconstructions. Undiagnosed seasonal biases in the data could explain some of the observed temperature change, but this still would not explain the large difference between many reconstructions and climate models over this period.
Anson W. Mackay, Vivian A. Felde, David W. Morley, Natalia Piotrowska, Patrick Rioual, Alistair W. R. Seddon, and George E. A. Swann
Clim. Past, 18, 363–380, https://doi.org/10.5194/cp-18-363-2022, https://doi.org/10.5194/cp-18-363-2022, 2022
Short summary
Short summary
We investigated the diversity of algae called diatoms in Lake Baikal, the oldest and deepest lake in the world, because algae sit at the base of aquatic foodwebs and provide energy (in the form of primary production) for other organisms to use. Diatom diversity and primary production have been influenced by both long-term and abrupt climate change over the past 16 000 years. The shape of these responses appears to be time-period specific.
Maierdang Keyimu, Zongshan Li, Bojie Fu, Guohua Liu, Fanjiang Zeng, Weiliang Chen, Zexin Fan, Keyan Fang, Xiuchen Wu, and Xiaochun Wang
Clim. Past, 17, 2381–2392, https://doi.org/10.5194/cp-17-2381-2021, https://doi.org/10.5194/cp-17-2381-2021, 2021
Short summary
Short summary
We created a residual tree-ring width chronology and reconstructed non-growth-season precipitation (NGSP) over the period spanning 1600–2005 in the southeastern Tibetan Plateau (SETP), China. Reconstruction model verification as well as similar variations of NGSP reconstruction and Palmer Drought Severity Index reconstructions from the surrounding region indicate the reliability of the present reconstruction. Our reconstruction is representative of NGSP variability of a large region in the SETP.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Nora Richter, James M. Russell, Johanna Garfinkel, and Yongsong Huang
Clim. Past, 17, 1363–1383, https://doi.org/10.5194/cp-17-1363-2021, https://doi.org/10.5194/cp-17-1363-2021, 2021
Short summary
Short summary
We present a reconstruction of winter–spring temperatures developed using organic proxies preserved in well-dated lake sediments from southwest Iceland to assess seasonal temperature changes in the North Atlantic region over the last 2000 years. The gradual warming trend observed in our record is likely influenced by sea surface temperatures, which are sensitive to changes in ocean circulation and seasonal insolation, during the winter and spring season.
Lucas Dugerdil, Sébastien Joannin, Odile Peyron, Isabelle Jouffroy-Bapicot, Boris Vannière, Bazartseren Boldgiv, Julia Unkelbach, Hermann Behling, and Guillemette Ménot
Clim. Past, 17, 1199–1226, https://doi.org/10.5194/cp-17-1199-2021, https://doi.org/10.5194/cp-17-1199-2021, 2021
Short summary
Short summary
Since the understanding of Holocene climate change appears to be a relevant issue for future climate change, the paleoclimate calibrations have to be improved. Here, surface samples from Mongolia and Siberia were analyzed to provide new calibrations for pollen and biomarker climate models. These calibrations appear to be more powerful than global calibrations, especially in an arid central Asian context. These calibrations will improve the understanding of monsoon Holocene oscillations.
Justin T. Maxwell, Grant L. Harley, Trevis J. Matheus, Brandon M. Strange, Kayla Van Aken, Tsun Fung Au, and Joshua C. Bregy
Clim. Past, 16, 1901–1916, https://doi.org/10.5194/cp-16-1901-2020, https://doi.org/10.5194/cp-16-1901-2020, 2020
Short summary
Short summary
We found that increasing the density of chronologies in the tree-ring network resulted in estimated soil moisture conditions that better matched the spatial variability of the values that were instrumentally recorded for droughts and, to a lesser extent, pluvials. By sampling trees in 2010 compared to 1980, the sensitivity of tree rings to soil moisture decreased in the southern portion of our region, where severe drought conditions have been absent over recent decades.
Stefano Segadelli, Federico Grazzini, Veronica Rossi, Margherita Aguzzi, Silvia Marvelli, Marco Marchesini, Alessandro Chelli, Roberto Francese, Maria Teresa De Nardo, and Sandro Nanni
Clim. Past, 16, 1547–1564, https://doi.org/10.5194/cp-16-1547-2020, https://doi.org/10.5194/cp-16-1547-2020, 2020
Short summary
Short summary
In an attempt to consolidate trends in the hydrological cycle induced by recent warming, we conducted a multidisciplinary study combining meteorological data, climate proxies from the literature, and original coring and pollen data acquired in an area that has been hit by record-breaking precipitation events. A detailed study of recent flash-flood deposits compared with fossil peat bog and lake sediments supports the expected increase in precipitation intensity during warm climatic phases.
Bo Cheng, Jennifer Adams, Jianhui Chen, Aifeng Zhou, Qing Zhang, and Anson W. Mackay
Clim. Past, 16, 543–554, https://doi.org/10.5194/cp-16-543-2020, https://doi.org/10.5194/cp-16-543-2020, 2020
Short summary
Short summary
The Qinling mountains in China are biodiversity rich. We studied one of the high-latitude lakes on Mount Taibai with a view to looking at how aquatic diversity responded to long-term changes in climate over the past 3500 years. We specifically looked at a group of single-celled algae called diatoms, as they are very sensitive to the environment. We found that these algae changed gradually over time, but they showed abrupt change during the period known as the Little Ice Age, about 400 years ago.
Xingxing Liu, Youbin Sun, Jef Vandenberghe, Peng Cheng, Xu Zhang, Evan J. Gowan, Gerrit Lohmann, and Zhisheng An
Clim. Past, 16, 315–324, https://doi.org/10.5194/cp-16-315-2020, https://doi.org/10.5194/cp-16-315-2020, 2020
Short summary
Short summary
The East Asian summer monsoon and winter monsoon are anticorrelated on a centennial timescale during 16–1 ka. The centennial monsoon variability is connected to changes of both solar activity and North Atlantic cooling events during the Early Holocene. Then, North Atlantic cooling became the major forcing of events during the Late Holocene. This work presents the great challenge and potential to understand the response of the monsoon system to global climate changes in the past and the future.
Antonio García-Alix, Jaime L. Toney, Gonzalo Jiménez-Moreno, Carmen Pérez-Martínez, Laura Jiménez, Marta Rodrigo-Gámiz, R. Scott Anderson, Jon Camuera, Francisco J. Jiménez-Espejo, Dhais Peña-Angulo, and María J. Ramos-Román
Clim. Past, 16, 245–263, https://doi.org/10.5194/cp-16-245-2020, https://doi.org/10.5194/cp-16-245-2020, 2020
Short summary
Short summary
In this paper we identify warming thresholds, rates, and forcing mechanisms from a novel alpine temperature record of the southern Iberian Peninsula during the Common Era in order to contextualize the modern warming and its potential impact on these vulnerable alpine ecosystems. To do so, we have developed and applied the first lacustrine temperature calibration in alpine lakes for algal compounds, called long-chain alkyl diols, which is a significant advance in biomarker paleothermometry.
Stef Vansteenberge, Niels J. de Winter, Matthias Sinnesael, Sophie Verheyden, Steven Goderis, Stijn J. M. Van Malderen, Frank Vanhaecke, and Philippe Claeys
Clim. Past, 16, 141–160, https://doi.org/10.5194/cp-16-141-2020, https://doi.org/10.5194/cp-16-141-2020, 2020
Short summary
Short summary
We measured the chemical composition (trace-element concentrations and stable-isotope ratios) of a Belgian speleothem that deposited annual layers. Our sub-annual resolution dataset allows us to investigate how the chemistry of this speleothem recorded changes in the environment and climate in northwestern Europe. We then use this information to reconstruct climate change during the 16th and 17th century on the seasonal scale and demonstrate that environmental change drives speleothem chemistry.
Alexander Land, Sabine Remmele, Jutta Hofmann, Daniel Reichle, Margaret Eppli, Christian Zang, Allan Buras, Sebastian Hein, and Reiner Zimmermann
Clim. Past, 15, 1677–1690, https://doi.org/10.5194/cp-15-1677-2019, https://doi.org/10.5194/cp-15-1677-2019, 2019
Short summary
Short summary
With the use of precipitation sensitive oak ring-width series from the Main River region (southern Germany) a 2000-year long hydroclimate reconstruction has been developed. The ring series are sensitive to the sum of rainfall from 26 February to 6 July. This region suffered from severe, long-lasting droughts in the past two millennia (e.g., AD 500/510s, 940s, 1170s, 1390s and 1160s). In the AD 550s, 1050s, 1310s and 1480s, multi-year periods with high rainfall hit the region.
Nils Weitzel, Andreas Hense, and Christian Ohlwein
Clim. Past, 15, 1275–1301, https://doi.org/10.5194/cp-15-1275-2019, https://doi.org/10.5194/cp-15-1275-2019, 2019
Short summary
Short summary
A new method for probabilistic spatial reconstructions of past climate states is presented, which combines pollen data with a multi-model ensemble of climate simulations in a Bayesian framework. The approach is applied to reconstruct summer and winter temperature in Europe during the mid-Holocene. Our reconstructions account for multiple sources of uncertainty and are well suited for quantitative statistical analyses of the climate under different forcing conditions.
Inken Heidke, Denis Scholz, and Thorsten Hoffmann
Clim. Past, 15, 1025–1037, https://doi.org/10.5194/cp-15-1025-2019, https://doi.org/10.5194/cp-15-1025-2019, 2019
Short summary
Short summary
This is the first quantitative study of lignin biomarkers in stalagmites and cave drip water. Lignin is only produced by higher plants; therefore, its analysis can be used to reconstruct the vegetation of the past. We compared our lignin results with stable isotope and trace element records from the same samples and found correlations or similarities with P, Ba, U and Mg concentrations as well as δ13C values. These results can help to better interpret other vegetation proxies.
Johannes Hepp, Lorenz Wüthrich, Tobias Bromm, Marcel Bliedtner, Imke Kathrin Schäfer, Bruno Glaser, Kazimierz Rozanski, Frank Sirocko, Roland Zech, and Michael Zech
Clim. Past, 15, 713–733, https://doi.org/10.5194/cp-15-713-2019, https://doi.org/10.5194/cp-15-713-2019, 2019
Olga V. Churakova (Sidorova), Marina V. Fonti, Matthias Saurer, Sébastien Guillet, Christophe Corona, Patrick Fonti, Vladimir S. Myglan, Alexander V. Kirdyanov, Oksana V. Naumova, Dmitriy V. Ovchinnikov, Alexander V. Shashkin, Irina P. Panyushkina, Ulf Büntgen, Malcolm K. Hughes, Eugene A. Vaganov, Rolf T. W. Siegwolf, and Markus Stoffel
Clim. Past, 15, 685–700, https://doi.org/10.5194/cp-15-685-2019, https://doi.org/10.5194/cp-15-685-2019, 2019
Short summary
Short summary
We present a unique dataset of multiple tree-ring and stable isotope parameters, representing temperature-sensitive Siberian ecotones, to assess climatic impacts after six large stratospheric volcanic eruptions at 535, 540, 1257, 1640, 1815, and 1991 CE. Besides the well-documented effects of temperature derived from tree-ring width and latewood density, stable carbon and oxygen isotopes in tree-ring cellulose provide information about moisture and sunshine duration changes after the events.
Monica Bini, Giovanni Zanchetta, Aurel Perşoiu, Rosine Cartier, Albert Català, Isabel Cacho, Jonathan R. Dean, Federico Di Rita, Russell N. Drysdale, Martin Finnè, Ilaria Isola, Bassem Jalali, Fabrizio Lirer, Donatella Magri, Alessia Masi, Leszek Marks, Anna Maria Mercuri, Odile Peyron, Laura Sadori, Marie-Alexandrine Sicre, Fabian Welc, Christoph Zielhofer, and Elodie Brisset
Clim. Past, 15, 555–577, https://doi.org/10.5194/cp-15-555-2019, https://doi.org/10.5194/cp-15-555-2019, 2019
Short summary
Short summary
The Mediterranean region has returned some of the clearest evidence of a climatically dry period occurring approximately 4200 years ago. We reviewed selected proxies to infer regional climate patterns between 4.3 and 3.8 ka. Temperature data suggest a cooling anomaly, even if this is not uniform, whereas winter was drier, along with dry summers. However, some exceptions to this prevail, where wetter condition seems to have persisted, suggesting regional heterogeneity.
Amy J. Dougherty, Jeong-Heon Choi, Chris S. M. Turney, and Anthony Dosseto
Clim. Past, 15, 389–404, https://doi.org/10.5194/cp-15-389-2019, https://doi.org/10.5194/cp-15-389-2019, 2019
Áslaug Geirsdóttir, Gifford H. Miller, John T. Andrews, David J. Harning, Leif S. Anderson, Christopher Florian, Darren J. Larsen, and Thor Thordarson
Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, https://doi.org/10.5194/cp-15-25-2019, 2019
Short summary
Short summary
Compositing climate proxies in sediment from seven Iceland lakes documents abrupt summer cooling between 4.5 and 4.0 ka, statistically indistinguishable from 4.2 ka. Although the decline in summer insolation was an important factor, a combination of superposed changes in ocean circulation and explosive Icelandic volcanism were likely responsible for the abrupt perturbation recorded by our proxies. Lake and catchment proxies recovered to a colder equilibrium state following the perturbation.
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Gayatri Kathayat, Ashish Sinha, R. Lawrence Edwards, and Liangcheng Tan
Clim. Past, 14, 1805–1817, https://doi.org/10.5194/cp-14-1805-2018, https://doi.org/10.5194/cp-14-1805-2018, 2018
Short summary
Short summary
The collapses of several Neolithic cultures in China are considered to have been associated with abrupt climate change during the 4.2 ka BP event; however, the hydroclimate of this event in China is still poorly known. Based on stalagmite records from monsoonal China, we found that north China was dry but south China was wet during this event. We propose that the rain belt remained longer at its southern position, giving rise to a pronounced humidity gradient between north and south China.
Alice Callegaro, Dario Battistel, Natalie M. Kehrwald, Felipe Matsubara Pereira, Torben Kirchgeorg, Maria del Carmen Villoslada Hidalgo, Broxton W. Bird, and Carlo Barbante
Clim. Past, 14, 1543–1563, https://doi.org/10.5194/cp-14-1543-2018, https://doi.org/10.5194/cp-14-1543-2018, 2018
Short summary
Short summary
Holocene fires and vegetation are reconstructed using different molecular markers with a single analytical method, applied for the first time to lake sediments from Tibet. The early Holocene shows oscillations between grasses and conifers, with smouldering fires represented by levoglucosan peaks, and high-temperature fires represented by PAHs. The lack of human FeSts excludes local human influence on fire and vegetation changes. Late Holocene displays an increase in local to regional combustion.
Kees Nooren, Wim Z. Hoek, Brian J. Dermody, Didier Galop, Sarah Metcalfe, Gerald Islebe, and Hans Middelkoop
Clim. Past, 14, 1253–1273, https://doi.org/10.5194/cp-14-1253-2018, https://doi.org/10.5194/cp-14-1253-2018, 2018
Short summary
Short summary
We present two new palaeoclimatic records for the central Maya lowlands, adding valuable new insights to the impact of climate change on the development of Maya civilisation. Lake Tuspan's diatom record is indicative of precipitation changes at a local scale, while a beach ridge elevation record from the world's largest late Holocene beach ridge plain provides a regional picture.
Markus Czymzik, Raimund Muscheler, Florian Adolphi, Florian Mekhaldi, Nadine Dräger, Florian Ott, Michał Słowinski, Mirosław Błaszkiewicz, Ala Aldahan, Göran Possnert, and Achim Brauer
Clim. Past, 14, 687–696, https://doi.org/10.5194/cp-14-687-2018, https://doi.org/10.5194/cp-14-687-2018, 2018
Short summary
Short summary
Our results provide a proof of concept for facilitating 10Be in varved lake sediments as a novel synchronization tool required for investigating leads and lags of proxy responses to climate variability. They also point to some limitations of 10Be in these archives mainly connected to in-lake sediment resuspension processes.
Darrell S. Kaufman and PAGES 2k special-issue editorial team
Clim. Past, 14, 593–600, https://doi.org/10.5194/cp-14-593-2018, https://doi.org/10.5194/cp-14-593-2018, 2018
Short summary
Short summary
We explain the procedure used to attain a high and consistent level of data stewardship across a special issue of the journal Climate of the Past. We discuss the challenges related to (1) determining which data are essential for public archival, (2) using data generated by others, and (3) understanding data citations. We anticipate that open-data sharing in paleo sciences will accelerate as the advantages become more evident and as practices that reduce data loss become the accepted convention.
Haipeng Wang, Jianhui Chen, Shengda Zhang, David D. Zhang, Zongli Wang, Qinghai Xu, Shengqian Chen, Shijin Wang, Shichang Kang, and Fahu Chen
Clim. Past, 14, 383–396, https://doi.org/10.5194/cp-14-383-2018, https://doi.org/10.5194/cp-14-383-2018, 2018
Short summary
Short summary
The chironomid-inferred temperature record from Gonghai Lake exhibits a stepwise decreasing trend since 4 ka. A cold event in the Era of Disunity, the Sui-Tang Warm Period, the Medieval Warm Period and the Little Ice Age can all be recognized in our record, as well as in many other temperature reconstructions in China. Local wars in Shanxi Province, documented in the historical literature during the past 2700 years, are statistically significantly correlated with changes in temperature.
Hansi K. A. Singh, Gregory J. Hakim, Robert Tardif, Julien Emile-Geay, and David C. Noone
Clim. Past, 14, 157–174, https://doi.org/10.5194/cp-14-157-2018, https://doi.org/10.5194/cp-14-157-2018, 2018
Short summary
Short summary
The Atlantic Multidecadal Oscillation (AMO) is prominent in the climate system. We study the AMO over the last 2000 years using a novel proxy framework, the Last Millennium Reanalysis. We find that the AMO is linked to continental warming, Arctic sea ice retreat, and an Atlantic precipitation shift. Low clouds decrease globally. We find no distinct multidecadal spectral peak in the AMO over the last 2 millennia, suggesting that human activities may have enhanced the AMO in the modern era.
Ny Riavo Gilbertinie Voarintsoa, Loren Bruce Railsback, George Albert Brook, Lixin Wang, Gayatri Kathayat, Hai Cheng, Xianglei Li, Richard Lawrence Edwards, Amos Fety Michel Rakotondrazafy, and Marie Olga Madison Razanatseheno
Clim. Past, 13, 1771–1790, https://doi.org/10.5194/cp-13-1771-2017, https://doi.org/10.5194/cp-13-1771-2017, 2017
Short summary
Short summary
This research has been an investigation of two stalagmites from two caves in NW Madagascar to reconstruct the region's paleoenvironmental changes, and to understand the linkage of such changes to the dynamics of the ITCZ. Stable isotopes, mineralogy, and petrography suggest wetter climate conditions than today during the early and late Holocene, when the mean ITCZ was south, and drier during the mid-Holocene when the ITCZ was north.
Wei Ding, Qinghai Xu, and Pavel E. Tarasov
Clim. Past, 13, 1285–1300, https://doi.org/10.5194/cp-13-1285-2017, https://doi.org/10.5194/cp-13-1285-2017, 2017
Short summary
Short summary
Pollen-based past climate reconstruction for regions with long-term human occupation is always controversial. We examined the bias induced by the human impact on vegetation in a climate reconstruction for temperate eastern China by comparing the deviations in the reconstructed results for a fossil record based on two pollen–climate calibration sets. Climatic signals in pollen assemblages are indeed obscured by human impact; however, the extent of the bias could be assessed.
Oliver Rach, Ansgar Kahmen, Achim Brauer, and Dirk Sachse
Clim. Past, 13, 741–757, https://doi.org/10.5194/cp-13-741-2017, https://doi.org/10.5194/cp-13-741-2017, 2017
Short summary
Short summary
Currently, reconstructions of past changes in the hydrological cycle are usually qualitative, which is a major drawback for testing the accuracy of models in predicting future responses. Here we present a proof of concept of a novel approach to deriving quantitative paleohydrological data, i.e. changes in relative humidity, from lacustrine sediment archives, employing a combination of organic geochemical methods and plant physiological modeling.
Juan José Gómez-Navarro, Eduardo Zorita, Christoph C. Raible, and Raphael Neukom
Clim. Past, 13, 629–648, https://doi.org/10.5194/cp-13-629-2017, https://doi.org/10.5194/cp-13-629-2017, 2017
Short summary
Short summary
This contribution aims at assessing to what extent the analogue method, a classic technique used in other branches of meteorology and climatology, can be used to perform gridded reconstructions of annual temperature based on the limited information from available but un-calibrated proxies spread across different locations of the world. We conclude that it is indeed possible, albeit with certain limitations that render the method comparable to more classic techniques.
Atsushi Okazaki and Kei Yoshimura
Clim. Past, 13, 379–393, https://doi.org/10.5194/cp-13-379-2017, https://doi.org/10.5194/cp-13-379-2017, 2017
Short summary
Short summary
Data assimilation has been successfully applied in the field of paleoclimatology to reconstruct past climate. However, data reconstructed from proxies have been assimilated, as opposed to the actual proxy values, which prevented full utilization of the information recorded in the proxies. This study propose a new data assimilation system in which actual proxy data are directly assimilated.
Enlou Zhang, Jie Chang, Yanmin Cao, Hongqu Tang, Pete Langdon, James Shulmeister, Rong Wang, Xiangdong Yang, and Ji Shen
Clim. Past, 13, 185–199, https://doi.org/10.5194/cp-13-185-2017, https://doi.org/10.5194/cp-13-185-2017, 2017
Short summary
Short summary
This paper reports the first development of sub-fossil chironomid-based mean July temperature transfer functions from China. The transfer functions yield reliable reconstructions that are comparable to the instrumental record. The application of this new tool will provide long-term quantitative palaeoclimate estimates from south-western China which is a critical region for understanding the dynamic and evolution of the Indian Ocean south-west Monsoon system.
Kira Rehfeld, Mathias Trachsel, Richard J. Telford, and Thomas Laepple
Clim. Past, 12, 2255–2270, https://doi.org/10.5194/cp-12-2255-2016, https://doi.org/10.5194/cp-12-2255-2016, 2016
Short summary
Short summary
Indirect evidence on past climate comes from the former composition of ecological communities such as plants, preserved as pollen grains in sediments of lakes. Transfer functions convert relative counts of species to a climatologically meaningful scale (e.g. annual mean temperature in degrees C). We show that the fundamental assumptions in the algorithms impact the reconstruction results in he idealized model world, in particular if the reconstructed variables were not ecologically relevant.
Qing Yang, Xiaoqiang Li, Xinying Zhou, Keliang Zhao, and Nan Sun
Clim. Past, 12, 2229–2240, https://doi.org/10.5194/cp-12-2229-2016, https://doi.org/10.5194/cp-12-2229-2016, 2016
Short summary
Short summary
The fossilized seeds of common millet are suited to the production of quantitative Holocene precipitation reconstructions. Our reconstructed results showed that summer precipitation from 7.7–3.4 ka BP was ~ 50 mm, or 17 % higher than present levels. Maximal mean summer precipitation peaked at 414 mm during 6.1–5.5 ka BP, ~ 109 mm, or 36 % higher than today, indicating the EASM peaked at this time. This work can provide a new proxy for further research into continuous paleoprecipitation sequences.
Michael Deininger, Martin Werner, and Frank McDermott
Clim. Past, 12, 2127–2143, https://doi.org/10.5194/cp-12-2127-2016, https://doi.org/10.5194/cp-12-2127-2016, 2016
Short summary
Short summary
This study investigates the NAO (Northern Atlantic Oscillation)-related mechanisms that control winter precipitation stable oxygen and hydrogen isotope gradients across Europe. The results show that past longitudinal stable oxygen and hydrogen isotope gradients in European rainfall stored in palaeoclimate archives (e.g. speleothems) can be used to infer the past winter NAO modes from its variations.
Liangjun Zhu, Yuandong Zhang, Zongshan Li, Binde Guo, and Xiaochun Wang
Clim. Past, 12, 1485–1498, https://doi.org/10.5194/cp-12-1485-2016, https://doi.org/10.5194/cp-12-1485-2016, 2016
Short summary
Short summary
We present a 368-year late summer maximum temperature reconstruction based on spruce tree rings. It touches on the critical topic of climate reconstruction in the eastern edge of Tibetan Plateau and represents an extension and enhancement of climate records for this area. The Little Ice Age was well represented and 20th century warming was not obvious in this reconstruction. This temperature variation may be affected by global land–sea atmospheric circulation as well as solar and volcanic forcing.
Frazer Matthews-Bird, Stephen J. Brooks, Philip B. Holden, Encarni Montoya, and William D. Gosling
Clim. Past, 12, 1263–1280, https://doi.org/10.5194/cp-12-1263-2016, https://doi.org/10.5194/cp-12-1263-2016, 2016
Short summary
Short summary
Chironomidae are a family of two-winged aquatic fly of the order Diptera. The family is species rich (> 5000 described species) and extremely sensitive to environmental change, particualy temperature. Across the Northern Hemisphere, chironomids have been widely used as paleotemperature proxies as the chitinous remains of the insect are readily preserved in lake sediments. This is the first study using chironomids as paleotemperature proxies in tropical South America.
Karsten Schittek, Sebastian T. Kock, Andreas Lücke, Jonathan Hense, Christian Ohlendorf, Julio J. Kulemeyer, Liliana C. Lupo, and Frank Schäbitz
Clim. Past, 12, 1165–1180, https://doi.org/10.5194/cp-12-1165-2016, https://doi.org/10.5194/cp-12-1165-2016, 2016
Short summary
Short summary
Cushion peatlands are versatile climate archives for the study of past environmental changes. We present the environmental history for the last 2100 years of Cerro Tuzgle peatland, which is located in the NW Argentine Puna. The results reflect prominent late Holocene climate anomalies and provide evidence that Northern Hemisphere climate oscillations were extensive. Volcanic forcing at the beginning of the 19th century seems to have had an impact on climatic settings in the Central Andes
Nicholas P. McKay and Julien Emile-Geay
Clim. Past, 12, 1093–1100, https://doi.org/10.5194/cp-12-1093-2016, https://doi.org/10.5194/cp-12-1093-2016, 2016
Short summary
Short summary
The lack of accepted data formats and data standards in paleoclimatology is a growing problem that slows progress in the field. Here, we propose a preliminary data standard for paleoclimate data, general enough to accommodate all the proxy and measurement types encountered in a large international collaboration (PAGES 2k). We also introduce a data format for such structured data (Linked Paleo Data, or LiPD), leveraging recent advances in knowledge representation (Linked Open Data).
Cited articles
Abbott, P. M. and Davies, S. M.: Volcanism and the Greenland ice-cores: the tephra record, Earth-Sci. Rev., 115, 173–191, https://doi.org/10.1016/j.earscirev.2012.09.001, 2012.
Alberte, R. S., Friedman, A. L., Gustafson, D. L., Rudnick, M. S., and Lyman, H.: Light-harvesting systems of brown algae and diatoms. Isolation and characterization of chlorophyll a c and chlorophyll a fucoxanthin pigment-protein complexes, BBA-Bioenergetics, 635, 304–316, https://doi.org/10.1016/0005-2728(81)90029-3, 1981.
Alley, R. and Ágústsdóttir, A.: The 8k event: Cause and consequences of a major Holocene abrupt climate change, Quaternary Sci. Rev., 24, 1123–1149, https://doi.org/10.1016/j.quascirev.2004.12.004, 2005.
Alsos, I. G., Lammers, Y., Kjellman, S. E., Merkel, M. K. F., Bender, E. M., Rouillard, A., Erlendsson, E., Guðmundsdóttir, E. R., Benediktsson, I. Ö., Farnsworth, W. F., Brynjólfsson, S., Gísladóttir, G., Eddudóttir, S. D., and Schomacker A.: Ancient sedimentary DNA shows rapid post-glacial colonisation of Iceland followed by relatively stable vegetation until the Norse settlement (Landnám) AD 870, Quaternary Sci. Rev., 259, 106903, https://doi.org/10.1016/j.quascirev.2021.106903, 2021.
Anderson, L. S., Flowers, G. E., Jarosch, A. H., Aðalgeirsdóttir, G. Th., Geirsdóttir, Á., Miller, G. H., Harning, D. J., Thorsteinsson, T., Magnússon, E., and Pálsson, F.: Holocene glacier and climate variations in Vestfirðir, Iceland, from the modeling of Drangajökull ice cap, Quaternary Sci. Rev., 190, 39–56, https://doi.org/10.1016/j.quascirev.2018.04.024, 2018.
Anderson, L. S., Geirsdóttir, Á., Flowers, G. E., Wickert, A. D., Aðalgeirsdóttir, G. Th., and Thorsteinsson, T.: Controls on the lifespans of Icelandic ice caps, Earth Planet. Sc. Lett., 527, 115780, https://doi.org/10.1016/j.epsl.2019.115780, 2019.
Ardenghi, N., Harning, D. J., Raberg, J. H., Holman, B. R., Thordarson, T., Geirsdóttir, Á., Miller, G. H., and Sepúlveda, J.: A Holocene history of climate, fire, landscape evolution, and human activity in northeastern Iceland, Clim. Past, 20, 1087–1123, https://doi.org/10.5194/cp-20-1087-2024, 2024.
Arnalds, A.: Ecosystem disturbance in Iceland, Arctic Alpine Res., 19, 508–513, https://doi.org/10.2307/1551417, 1987.
Arnalds, O.: The Soils of Iceland, Springer, https://doi.org/10.1007/978-94-017-9621-7, 2015.
Arnalds, O. and Gretarsson, E.: Soil map of Iceland, Agricultural Research Institute, Reykjavík, 2021.
Axford, Y., Miller, G. H., Geirsdóttir, Á., and Langdon, P.: Holocene temperature history of northern Iceland inferred from subfossil midges, Quaternary Sci. Rev., 26, 3344–3358, https://doi.org/10.1016/j.quascirev.2007.09.003, 2007.
Axford, Y., Geirsdóttir, Á., Miller, G. H., and Langdon, P.: Climate of the Little Ice Age and the past 2000 years in northeast Iceland inferred from chironomids and other lake sediment proxies, J. Paleolimnol., 41, 7–24, https://doi.org/10.1007/s10933-008-9251-1, 2009.
Barber, D. C., Dyke, A., Hillaire-Marcel, C., Jennings, A. E., Andrews, J. T., Kerwin, M. W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M. D., and Gagnon, J. M.: Forcing of the cold event of 8200 years ago by catastrophic drainage of Laurentide lakes, Nature, 400, 344–348, https://doi.org/10.1038/22504, 1999.
Bates, R., Erlendsson, E., Eddudóttir, S. D., Möckel, S. C., Tinganelli, L., and Gísladóttir, G.: Landnám, land use and landscape change in Kagaðarhóll in Northwest Iceland, Environ. Archaeol., 27, 211–227, https://doi.org/10.1080/14614103.2021.1949680, 2021.
Bender, E. M.: Late Quaternary tephra stratigraphy and paleoenvironmental reconstruction based on lake sediments from North and Northeast Iceland, MS thesis, UiT The Arctic University of Norway, 2020.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last 10 million years, Quaternary Sci. Rev., 10, 297–317, https://doi.org/10.1016/0277-3791(91)90033-Q, 1991.
Bergman, J., Wastegård, S., Hammarlund, D., Wohlfarth, B., and Roberts, S. J.: Holocene tephra horizons at Klocka Bog, west-central Sweden: aspects of reproducibility in subarctic peat deposits, J. Quaternary Sci., 19, 241–249, https://doi.org/10.1002/jqs.833, 2004.
Bianchi, T. S., Dibb, J. E., and Findlay, S.: Early diagenesis of plant pigments in Hudson River sediments, Estuar. Coast. Shelf Sci., 36, 517–527, https://doi.org/10.1006/ecss.1993.1031, 1993.
Birks, H. H., Gulliksen, S., Haflidason, H., Mangerud, J., and Possnert, G.: New radio-carbon dates from the Vedde ash and Saksunarvatn ash western Norway, Quaternary Res., 127, 119–127, https://doi.org/10.1006/qres.1996.0014, 1996.
Björck, S., Ingólfsson, Ó., Haflidason, H., Hallsdóttir, M., and Anderson, N. J.: Lake Torfadalsvatn: a high resolution record of the North Atlantic ash zone I and the last glacial-interglacial environmental changes in Iceland, Boreas, 21, 15–22, https://doi.org/10.1111/j.1502-3885.1992.tb00009.x, 1992.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/11-BA618, 2011.
Blaauw, M., Christen, J. A., Bennett, K. D., and Reimer, P. J.: Double the dates and go for Bayes – Impacts of model choice, dating density and quality on chronologies, Quaternary Sci. Rev., 188, 58–66, https://doi.org/10.1016/j.quascirev.2018.03.032, 2018.
Blair, C. L., Geirsdóttir, Á., and Miller, G. H.: A high-resolution multi-proxy lake record of Holocene environmental change in southern Iceland, J. Quaternary Sci., 30, 281–292, https://doi.org/10.1002/jqs.2780, 2015.
Boygle, J.: Variability of tephra in lake and catchment sediments, Svínavatn, Iceland, Global Planet. Change, 21, 129–149, https://doi.org/10.1016/S0921-8181(99)00011-9, 1999.
Bradley, L.-A. and Stafford, T. W.: Comparison of manual and automated pretreatment methods for AMS radiocarbon dating of plant fossils, Radiocarbon, 36, 399–405, https://doi.org/10.1017/S0033822200014570, 1994.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51, 337–360, https://doi.org/10.1017/S0033822200033865, 2009.
Cabedo-Sanz, P., Belt, S. T., Jennings, A. E., Andrews, J. T., and Geirsdóttir, Á.: Variability in drift ice export from the Arctic Ocean to the North Icelandic Shelf over the last 8000 years: A multi-proxy evaluation, Quaternary Sci. Rev., 146, 99–115, https://doi.org/10.1016/j.quascirev.2016.06.012, 2016.
Caseldine, C., Geirsdóttir, Á., and Langdon, P. G.: Efstadalsvatn – a multi-proxy study of a Holocene lacustrine sequence from NW Iceland, J. Paleolimnol., 30, 55–73, https://doi.org/10.1023/A:1024781918181, 2003.
Caseldine, C., Langdon, P., and Holmes, N.: Early Holocene climate variability and the timing and extent of the Holocene thermal maximum (HTM) in northern Iceland, Quaternary Sci. Rev., 25, 2314–2331, https://doi.org/10.1016/j.quascirev.2006.02.003, 2006.
Conley D. J. and Schelske, C. L.: Biogenic Silica, Track Environmental Change Using Lake Sediments, 3, 281–293, 2001.
Curtin, L., D'Andrea, W. J., Balascio, N. L., Shirazi, S., Shapiro, B., de Wet, G. A., and Bradley, R. S., and Bakke, J.: Sedimentary DNA and molecular evidence for early human occupation of the Faroe Islands, Communications Earth & Environment, 2, 253, https://doi.org/10.1038/s43247-021-00318-0, 2021.
D'Anjou, R. M., Bradley, R. S., Balascio, N. L., and Finkelstein, D. B.: Climate impacts on human settlement and agricultural activities in northern Norway revealed through sediment biogeochemistry, P. Natl. Acad. Sci. USA, 109, 20332–20337, https://doi.org/10.1073/pnas.1212730109, 2012.
Davies, S. M., Albert, P. G., Bourne, A. J., Owen, S., Svensson, A., Bolton, M. S. M., Cook, E., Jensen, B. J. L., Jones, G., Ponomareva, V. V., and Suzuki, T.: Exploiting the Greenland volcanic ash repository to date caldera-forming eruptions and widespread isochrons during the Holocene, Quaternary Sci. Rev., 334, 108707, https://doi.org/10.1016/j.quascirev.2024.108707, 2024.
De Senerpont Domis, L. N., Mooij, W. M., and Huisman, J.: Climate-induced shifts in an experimental phytoplankton community: A mechanistic approach, Hydrobiologia, 584, 403–413, https://doi.org/10.1007/s10750-007-0609-6, 2007.
DI (Diplomatarium Islandicum): Íslenzkt Fornbréfasafn III. Íslenzka Bókmenntafélagið, Kaupmannahöfn (Copenhagen), 1857–1986.
Dugmore, A. J. and Buckland, P. C.: Tephrochronology and late Holocene soil erosion in south Iceland, in: Environmental Change in Iceland Past and Present, edited by: Maizels, J. K. and Caseldine, C., Kluwer, Dordrecht, the Netherlands, 147–161, https://doi.org/10.1007/978-94-011-3150-6_10, 1991.
Dugmore, A. J. and Erskine, C. C.: Local and regional patterns of soil erosion in southern Iceland, Münchener Geographische Abhandlungen, 2, 63–79, 1994.
Dugmore, A. J., Cook, G. T., Shore, J. S., Newton, A. J., Edwards, K. J., and Larsen, G.: Radiocarbon dating tephra layers from Britain and Iceland, Radiocarbon, 37, 379–388, https://doi.org/10.1017/S003382220003085X, 1995.
Eddudóttir, S. D., Erlendsson, E., and Gísladóttir, G.: Life on the periphery is tough: Vegetation in Northwest Iceland and its responses to early-Holocene warmth and later climate fluctuations, Holocene, 25, 1437–1453, https://doi.org/10.1177/0959683615585839, 2015.
Eddudóttir, S. D., Erlendsson, E., Tinganelli, L., and Gísladóttir, G.: Climate change and human impact in a sensitive ecosystem: the Holocene environment of the Northwest Icelandic highland margin, Boreas, 45, 715–728, https://doi.org/10.1111/bor.12184, 2016.
Eddudóttir, S. D., Erlendsson, E., and Gísladóttir, G.: Effects of the Hekla 4 tephra on vegetation in northwest Iceland, Veg. Hist. Archaeobot., 26, 389–402, https://doi.org/10.1007/s00334-017-0603-5, 2017.
Eddudóttir, S. D., Erlendsson, E., and Gísladóttir, G.: An Icelandic terrestrial record of North Atlantic cooling c. 8800–8100 cal. yr BP, Quaternary Sci. Rev., 197, 246–256, https://doi.org/10.1016/j.quascirev.2018.07.017, 2018.
Egan, J., Allott, T. E. H., and Blackford, J. J.: Diatom-inferred aquatic impacts of the mid-Holocene eruption of Mount Mazama, Oregon, USA, Quaternary Res., 91, 163–178, https://doi.org/10.1017/qua.2018.73, 2019.
Finkel, Z. V., Matheson, K. A., Regan, K. S., and Irwin, A. J.: Genotypic and phenotypic variation in diatom silicification under paleo-oceanographic conditions, Geobiology, 8, 433–445, https://doi.org/10.1111/j.1472-4669.2010.00250.x, 2010.
Fisher, R. V. and Schmincke, H.-U.: Pyroclastic Rocks. Springer Verlag, Berlin-Heidelberg, 472 pp., https://doi.org/10.1007/978-3-642-74864-6, 1984.
Florian, C. R.: Multi-proxy Reconstructions of Holocene Environmental Change and Catchment Biogeochemistry Using Algal Pigments and Stable Isotopes Preserved in Lake Sediment from Baffin Island and Iceland. PhD thesis, University of Colorado Boulder and University of Iceland, 2016.
Flowers, G. E., Björnsson, H., Geirsdóttir, Á., Miller, G. H., Black, J. L., and Clarke, G. K. C.: Holocene climate conditions and glacier variation in central Iceland from physical modelling and empirical evidence, Quaternary Sci. Rev., 27, 797–813, https://doi.org/10.1016/j.quascirev.2007.12.004, 2008.
Gathorne-Hardy, F. J., Erlendsson, E., Langdon, P. G., and Edwards, K. J.: Lake sediment evidence for late Holocene climate change and landscape erosion in western Iceland, J. Paleolimnol., 42, 413–426, https://doi.org/10.1007/s10933-008-9285-4, 2009.
Geirsdóttir, Á., Miller, G. H., Thordarson, T., and Ólafsdóttir, K. B.: A 2000 year record of climate variations reconstructed from Haukadalsvatn, West Iceland, J. Paleolimnol., 41, 95–115, https://doi.org/10.1007/s10933-008-9253-z, 2009.
Geirsdóttir, Á., Miller, G. H., Larsen, D. J., and Ólafsdóttir, S.: Abrupt Holocene climate transitions in the northern North Atlantic recorded by synchronized lacustrine records in Iceland, Quaternary Sci. Rev., 70, 48–62, https://doi.org/10.1016/j.quascirev.2013.03.010, 2013.
Geirsdóttir, Á., Miller, G. H., Andrews, J. T., Harning, D. J., Anderson, L. S., Florian, C., Larsen, D. J., and Thordarson, T.: The onset of neoglaciation in Iceland and the 4.2 ka event, Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, 2019.
Geirsdóttir, Á., Harning, D. J., Miller, G. H., Andrews, J. T., Zhong, Y., and Caseldine, C.: Holocene history of landscape instability in Iceland: Can we deconvolve the impacts of climate, volcanism and human activity?, Quaternary Sci. Rev., 249, 106633, https://doi.org/10.1016/j.quascirev.2020.106633, 2020.
Geirsdóttir, Á., Miller, G. H., Harning, D. J., Hannesdóttir, H., Thordarson, T., and Jónsdóttir, I.: Evidence for recurrent outburst floods and active volcanism in Icelandic lacustrine settings during dynamic Younger Dryas-Early Holocene deglaciation, J. Quaternary Res., 37, 1006–1023, https://doi.org/10.1002/jqs.3344, 2022.
Gerrard, J.: An assessment of some of the factors involved in recent landscape change in Iceland, in: Environmental Change in Iceland Past and Present, edited by: Maizels, J. K. and Caseldine, C., Kluwer, Dordrecht, the Netherlands, 237–253, https://doi.org/10.1007/978-94-011-3150-6_16, 1991.
Grönvold, K., Óksarsson, N., Johnsen, S. J., Clausen, H. B., Hammer, C. U., Bond, C., and Bard, E.: Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments, Earth Planet. Sc. Lett., 135, 149–155, https://doi.org/10.1016/0012-821X(95)00145-3, 1995.
Gudmundsdóttir, E. R., Larsen, G., and Eiríksson, J.: Two new Icelandic tephra markers: the Hekla Ö tephra layer, 6060 cal. yr BP, and Hekla DH tephra layer, ∼ 6650 cal. yr BP. Land-sea correlation of mid-Holocene tephra markers, Holocene, 21, 629–639, https://doi.org/10.1177/0959683610391313, 2011.
Gudmundsdóttir, E. R., Larsen, G., Björck, S., Ingólfsson, Ó., and Striberger, J.: A new high-resolution Holocene tephra stratigraphy in eastern Iceland: improving the Icelandic and North Atlantic tephrochronology, Quaternary Sci. Rev., 150, 234–249, https://doi.org/10.1016/j.quascirev.2016.08.011, 2016.
Gudmundsdóttir, E. R., Schomacker, A., Brynjólfsson, S., Ingólfsson, Ó., and Larsen, N. K.: Holocene tephrostratigraphy in Vestfirðir, NW, Iceland, J. Quaternary Sci., 33, 827–839, https://doi.org/10.1002/jqs.3063, 2018.
Hagstofa Íslands: Talnagrunnur, https://px.hagstofa.is/pxen/pxweb/en/ (last access: 1 March 2024), 2024.
Hallsdóttir, M.: Pollen analytical studies of human influence on vegetation in relation to the Landnam tephra layer in southwest Iceland, Lundqua Thesis 18, 45 pp., 1987.
Hallsdóttir, M.: On the pre-settlement history of Icelandic vegetation, Iceland. Agr. Sci., 9, 17–29, 1995.
Hallsdóttir, M. and Caseldine, C. J.: The Holocene vegetation history of Iceland, state-of- the-art and future, in: Iceland-Modern Processes and Past Environments, edited by: Caseldine, C., Russell, A., Hardardóttir, J., and Knudsen, O., 5, 319, https://doi.org/10.1016/S1571-0866(05)80016-8, 2005.
Hanna, E., Jónsson, T., and Box, J. E.: An analysis of Icelandic climate since the nineteenth century, Int. J. Climatol., 24, 1193–1210, https://doi.org/10.1002/joc.1051, 2004.
Hannesdóttir, H., Björnsson, H., Pálsson, F., Aðalgeirsdóttir, G., and Guðmundsson, S.: Variations of southeast Vatnajökull ice cap (Iceland) 1650–1900 and reconstruction of the glacier surface geometry at the Little Ice Age maximum, Geogr. Ann. A, 97, 237–264, https://doi.org/10.1111/geoa.12064, 2015.
Hannesdóttir, H., Sigurðsson, O., Þrastarson, R. H., Guðmundsson, S., Belart, J. M. C., Pálsson, F., Magnússon, E., Víkingsson, S., Kaldal, I., and Jóhannesson, T.: A national inventory and variations in glacier extent in Iceland from the Little Ice Age maximum to 2019, Jökull, 70, 1–34, https://doi.org/10.33799/jokull2020.70.001, 2020.
Harðarson, B. S., Fitton, J. G., and Hjartarson, Á.: Tertiary volcanism in Iceland, Jökull, 58, 161–178, https://doi.org/10.33799/jokull2008.58.161, 2008.
Harning, D. J., Geirsdóttir, Á., Miller, G. H., and Anderson, L. S.: Episodic expansion of Drangajökull, Vestfirðir, Iceland over the last 3 ka culminating in its maximum dimension during the Little Ice Age, Quaternary Sci. Rev., 152, 118–131, https://doi.org/10.1016/j.quascirev.2016.10.001, 2016a.
Harning, D. J., Geirsdóttir, Á., Miller, G. H., and Zalzal, K.: Early Holocene deglaciation of Drangajökull, Vestfirðir, Iceland, Quaternary Sci. Rev., 153, 192–198, https://doi.org/10.1016/j.quascirev.2016.09.030, 2016b.
Harning, D. J., Geirsdóttir, Á., and Miller, G. H.: Punctuated Holocene climate of Vestfirðir, Iceland, linked to internal/external variables and oceanographic conditions, Quaternary Sci. Rev., 189, 31–42, https://doi.org/10.1016/j.quascirev.2018.04.009, 2018a.
Harning, D. J., Thordarson, T., Geirsdóttir, Á., and Zalzal, K.: Provenance, stratigraphy and chronology of Holocene tephra from Vestfirðir, Iceland, Quat. Geochronol., 46, 59–76, https://doi.org/10.1016/j.quageo.2018.03.007, 2018b.
Harning, D. J., Thordarson, T., Geirsdóttir, Á., Miller, G. H., and Ólafsdóttir, S.: Marker tephra in Haukadalsvatn lake sediment: A key to the Holocene tephra stratigraphy of Northwest Iceland, Quaternary Sci. Rev., 219, 154–170, https://doi.org/10.1016/j.quascirev.2019.07.019, 2019.
Harning, D. J., Curtin, L., Geirsdóttir, Á., D'Andrea, W. J., Miller, G. H., and Sepúlveda, J.: Lipid biomarkers quantify Holocene summer temperature and ice cap sensitivity in Icelandic lakes, Geophys. Res. Lett., 47, e2019GL085728, https://doi.org/10.1029/2019GL085728, 2020.
Harning, D. J., Jennings, A. E., Köseoğlu, D., Belt, S. T., Geirsdóttir, Á., and Sepúlveda, J.: Response of biological productivity to North Atlantic marine front migration during the Holocene, Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, 2021.
Harning, D. J., Sacco, S., Anamthawat-Jónsson, K., Ardenghi, N., Thordarson, T., Raberg, R. H., Sepúlveda, J., Geirsdóttir, Á., Shapiro, B., and Miller, G. H.: Delayed postglacial colonization of Betula in Iceland and the circum North Atlantic, eLife, 12, 1–23, https://doi.org/10.7554/eLife.87749.3, 2023.
Harning, D. J., Florian, C. R., Geirsdóttir, Á., Thordarson, T., Miller, G. H., Axford, Y., and Ólafsdóttir, S.: NOAA/WDS Paleoclimatology – Torfdalsvatn, Iceland Geochemistry and Magnetic Susceptibility Data during the Holocene, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/nhdj-bp74, 2024a.
Harning, D. J., Thordarson, T., Geirsdóttir, Á., Miller, G. H., and Florian, C. R.: Repeated Early Holocene eruptions of Katla, Iceland, limit the temporal resolution of the Vedde Ash, B. Volcanol., 86, 2, https://doi.org/10.1007/s00445-023-01690-9, 2024b.
Holmes, N., Langdon, P. G., Caseldine, C. J., Wastegård, S., Leng, M. J., Croudace, I. W., and Davies, S. M.: Climatic variability during the last millennium in Western Iceland from lake sediment records, Holocene, 26, 756–771, https://doi.org/10.1177/0959683615618260, 2016.
Jennings, A. E., Thordarson, T., Zalzal, K., Stoner, J., Hayward, C., Geirsdóttir, Á., and Miller, G. H.: Holocene tephra from Iceland and Alaska in SE Greenland Shelf Sediments, in: Marine Tephrochronology, edited by: Austin, W. E. N., Abbott, P. M., Davies, S. M., Pearce, N. J. G., and Wastegård, S., Geological Society, London, Special Publications, 398, https://doi.org/10.1144/SP398.6, 2014.
Jennings, A. E., Andrews, J. T., Pearce, C., Wilson, L., and Ólafsdóttir, S.: Detrital carbonate peaks on the Labrador shelf, a 13–7 ka template for freshwater forcing from the Hudson Strait outlet of the Laurentide Ice Sheet into the subpolar gyre, Quaternary Sci. Rev., 107, 62–80, https://doi.org/10.1016/j.quascirev.2014.10.022, 2015.
Kluger, M. O., Lowe, D. J., Moon, V. G., Chaneva, J., Johnston, R., Villamor, P., Ilanko, T., Melchert, R. A., Orense, R. P., Loame, R. C., and Ross, N.: Seismically-induced down-saggin structures in tephra layers (tephra-seismites) preserved in lakes since 17.5 cal ka, Hamilton lowlands, New Zealand, Sediment. Geol., 445, 106327, https://doi.org/10.1016/j.sedgeo.2022.106327, 2023.
Kristjánsdóttir, G. B., Stoner, J. S., Jennings, A. E., Andrews, J. T., and Grönvold, K.: Geochemistry of Holocene cryptotephras from the North Iceland Shelf (MD99-2269): intercalibration with radiocarbon and palaeomagnetic chronostratigraphies, Holocene 17, 155–176, https://doi.org/10.1177/0959683607075829, 2007.
Kristjánsdóttir, G. B., Moros, M., Andrews, J. T., and Jennings, A. E.: Holocene Mg/Ca, alkenones, and light stable isotope measurements on the outer North Iceland shelf (MD99–2269): A comparison with other multi-proxy data and sub-division of the Holocene, Holocene, 26, 55–62, https://doi.org/10.1177/0959683616652703, 2017.
Lacasse, C.: Influence of climate variability on the atmospheric transport of Icelandic tephra in the subpolar North Atlantic, Global Planet. Change, 29, 31–55, https://doi.org/10.1016/S0921-8181(01)00099-6, 2001.
Langdon, P. G. and Barber, K. E.: New Holocene tephras and a proxy climate record from a blanket mire in northern Skye, Scotland, J. Quaternary Sci., 16, 753–759, https://doi.org/10.1002/jqs.655, 2001.
Langdon, P. G., Leng, M. J., Holmes, N., and Caseldine, C. J.: Lacustrine evidence of early-Holocene environmental change in northern Iceland: a multiproxy palaeoecology and stable isotope study, Holocene, 20, 205–214, https://doi.org/10.1177/0959683609354301, 2010.
Larsen, D. J., Miller, G. H., Geirsdóttir, Á., and Thordarson, T.: A 3000-year varved recoed of glacier activity and climate change form the proglacial lake Hvítárvatn, Iceland, Quaternary Sci. Rev., 30, 2715–2731, https://doi.org/10.1016/j.quascirev.2011.05.026, 2011.
Larsen, D. J., Miller, G. H., Geirsdóttir, Á., and Ólafsdóttir, S.: Non-linear Holocene climate evolution in the North Atlantic: a high-resolution, multi-proxy record of glacier activity and environmental change from Hvítárvatn, central Iceland, Quaternary Sci. Rev., 39, 14–25, https://doi.org/10.1016/j.quascirev.2012.02.006, 2012.
Larsen, G. and Eiríksson, J.: Holocene tephra archives and tephrochronology in Iceland – a brief overview, Jökull, 58, 229–250, https://doi.org/10.33799/jokull2008.58.229, 2008.
Larsen, G., Eiríksson, J., Knudsen, K. L., and Heinemeier, J.: Correlation of late Holocene terrestrial and marine tephra markers, north Iceland: implications for reservoir age changes, Polar Res., 21, 283–290, https://doi.org/10.3402/polar.v21i2.6489, 2002.
Lavaud, J., Rousseau, B., van Gorkom, H. J., and Etienne, A.-L: Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum, Plant Physiol., 129, 1398–1406, https://doi.org/10.1104/pp.002014, 2002.
Lawson, I. T., Gathorne-Hardy, F. J., Church, M. J., Newton, A. J., Edwards, K. J., Dugmore, A. J., and Einarsson, Á.: Environmental impacts of the Norse settlement: Palaeoenvironmental data from Mývatnssveit, northern Iceland, Boreas, 36, 1–19, https://doi.org/10.1111/j.1502-3885.2007.tb01176.x, 2007.
Lawson, I. T., Swindles, G. T., Plunkett, G., and Greenberg, D.: The spatial distribution of Holocene cryptotephras in north-west Europe since 7 ka: implications for understanding ash fall events from Icelandic eruptions, Quaternary Sci. Rev., 41, 57–66, https://doi.org/10.1016/j.quascirev.2012.02.018, 2012.
Leavitt, P. R. and Hodgson, D. A.: Sedimentary pigments, in: Tracking Environmental Change using Lake Sediments, Smol, J. P., Birks, H. J. B., and Last, W. M., Volume 3: Terrestrial, Algal and Siliceous Indicators, Kluwer Academic Publishers, Dordrecht, the Netherlands, 295–325, https://doi.org/10.1007/0-306-47668-1_15, 2001.
Mangerud, J., Lie, S. E., Furnes, H., Kristiansen, I. L., and Lømo, L.: A Younger Dryas Ash bed in Western Norway, and its possible correlations with tephra in cores from the Norwegian Sea and the North Atlantic, Quaternary Res., 21, 85–104, https://doi.org/10.1016/0033-5894(84)90092-9, 1984.
Mangerud, J., Furnes, H., and Jóhansen, J.: A 9000-year-old ash bed on the Faroe Islands, Quaternary Res., 26, 262–265, https://doi.org/10.1016/0033-5894(86)90109-2, 1986.
Marshall, J., Kushnir, Y., Battisti, D., Chang, P., Czaja, A., Dickson, R., Hurrell, J., McCartney, M., Saravanan, R., and Visbeck, M.: North Atlantic climate variability: phenomena, impacts and mechanisms, Int. J. Climatol., 21, 1863–1898, https://doi.org/10.1002/joc.693, 2001.
McMurdie, P. J. and Holmes, S.: phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data, PLoS ONE, 8, e61217, https://doi.org/10.1371/journal.pone.0061217, 2013.
Moossen, H., Bendle, J., Seki, O., Quillmann, U., and Kawamura, K.: North Atlantic Holocene climate evolution recorded by high-resolution terrestrial and marine biomarker records, Quaternary Sci. Rev., 129, 111–127, https://doi.org/10.1016/j.quascirev.2015.10.013, 2015.
Óladóttir, B. A., Larsen, G., Thordarson, T., and Sigmarsson, O: The Katla volcano S-Iceland: Holocene tephra stratigraphy and eruption frequency, Jökull, 55, 53–74, https://doi.org/10.33799/jokull2005.55.053, 2005.
Óladóttir, B. A., Thordarson, T., Larsen, G., and Sigmarsson, O.: Survival of the Mýrdalsjökull ice cap through the Holocene thermal maximum: evidence from sulfur contents in Katla tephra layers (Iceland) from the last ∼ 8400 years, Ann. Glaciol., 45, 183–188, https://doi.org/10.3189/172756407782282516, 2007.
Óladóttir, B. A., Larsen, G., and Sigmarsson, O.: Holocene volcanic activity at Grímsvötn, Bárdarbunga and Kverkfjöll subglacial centres beneath Vatnajökull, Iceland, B. Volcanol., 73, 1187–1208, https://doi.org/10.1007/s00445-011-0461-4, 2011.
Ólafsdóttir, S., Geirsdóttir, Á., Miller, G. H., Stoner, J. S., and Channell, J. E. T.: Synchronizing Holocene lacustrine and marine sediment records using paleomagnetic secular variation, Geology, 41, 535–538, https://doi.org/10.1130/G33946.1, 2013.
Paerl, H. W. and Paul, V. J.: Climate change: Links to global expansion of harmful cyanobacteria, Water Res., 46, 1349–1363, https://doi.org/10.1016/j.watres.2011.08.002, 2012.
Pilcher, J. R., Hall, V. A., and McCormac, F. G.: Dates of Holocene Icelandic volcanic eruptions from tephra layers in Irish peats, Holocene, 5, 103–110, https://doi.org/10.1177/095968369500500111, 1995.
Pilcher, J. R., Hall, V. A., and McCormac, F. G.: An outline tephrochronology for the Holocene of the north of Ireland, J. Quaternary Sci., 11, 485–494, https://doi.org/10.1002/(SICI)1099-1417(199611/12)11:6<485::AID-JQS266>3.0.CO;2-T, 1996.
Quillmann, U., Marchitto, T. M., Jennings, A. E., Andrews, J. T., and Friestad, B. F.: Cooling and freshening at 8.2 ka on the NW Iceland Shelf recorded in paired δ18O and Mg/Ca measurements of the benthic foraminifer Cibicides lobatulus, Quaternary Res., 78, 528–539, https://doi.org/10.1016/j.yqres.2012.08.003, 2012.
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M.-L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M. E., and Ruth, U.: A new Greenland ice core chronology for the last glacial termination, J. Geophys. Res., 111, 1–16, https://doi.org/10.1029/2005JD006079, 2006.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 1 March 2024), 2021.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Richter, N., Russell, J. M., Garfinkel, J., and Huang, Y.: Winter–spring warming in the North Atlantic during the last 2000 years: evidence from southwest Iceland, Clim. Past, 17, 1363–1383, https://doi.org/10.5194/cp-17-1363-2021, 2021.
Rohling, E. J. and Pälike, H.: Centennial-scale climate cooling with a sudden cold event around 8200 years ago, Nature, 434, 975–979, https://doi.org/10.1038/nature03421, 2005.
Rousseau, V., Leynaert, A., Daoud, N., and Lancelot, C.: Diatom succession, silicification and silicic acid availability in Belgian coastal waters (Southern North Sea), Mar. Ecol. Prog. Ser., 236, 61–73, https://doi.org/10.3354/meps236061, 2002.
Rundgren, M.: Biostratigraphic evidence of the Allerød-Younger Dryas-Preboreal Oscillation in Northern Iceland, Quaternary Res., 44, 405–416, https://doi.org/10.1006/qres.1995.1085, 1995.
Rundgren, M.: Early Holocene vegetation of northern Iceland: pollen and plant macrofossil evidence from the Skagi peninsula, Holocene, 5, 553–564, https://doi.org/10.1191/095968398669995117, 1998.
Rundgren, M. and Ingólfsson, Ó.: Plant survival in Iceland during periods of glaciation?, J. Biogeogr., 26, 387–396, https://doi.org/10.1046/j.1365-2699.1999.00296.x, 1999.
Simkin, A. J., Kapoor, L., Doss, C. G. P., Hofmann, T. A., Lawson, T., and Ramamoorthy, S.: The role of photosynthesis related pigments in light harvesting, photoprotection and enhancment of photosynthetic yield in planta, Photosynth. Res., 152, 23–42, https://doi.org/10.1007/s11120-021-00892-6, 2022.
Skrzypek, G., Paul, D., and Wojtun, B.: Stable isotope composition of plants and peat from Arctic mire and geothermal area in Iceland, Polar Res., 29, 365–376, 2008.
Smith, K. P.: Landnam: The settlement of Iceland in archaeological and historical perspective, World Archaeol., 26, 319–347, https://doi.org/10.1080/00438243.1995.9980280, 1995.
Smith, V. H.: Nutrient dependence of primary productivity in lakes, Limnol. Oceanogr., 24, 1051–1064, https://doi.org/10.4319/lo.1979.24.6.1051, 1979.
Smol, J. P. and Cumming, B. F.: Tracking long-term changes in climate using algal indicators in lake sediments, J. Phycol., 1011, 986–1011, https://doi.org/10.1046/j.1529-8817.2000.00049.x, 2000.
Stoner, J. S., Jennings, A., Kristjánsdóttir, G. B., Dunhill, G., Andrews, J. T., and Hardardóttir, J.: A paleomagnetic approach toward refining Holocene radiocarbon-based chronologies: Paleoceanographic records from the north Iceland (MD99-2269) and east Greenland (MD99-2322) margins, Paleoceanography, 22, 1–23, https://doi.org/10.1029/2006PA001285, 2007.
Stoner, J. S., Channell, J. E. T., Mazaud, A., Strano, S. E., and Xuan, C.: The influence of high-latitude flux lobes on the Holocene paleomagnetic record of IODP Site U1305 and the northern North Atlantic, Geochem. Geophy. Geosy., 14, 4623–4646, https://doi.org/10.1002/ggge.20272, 2013.
Storm, G.: Annales Reseniani. Islandske Annaler: indtil 1578, Norsk historisk kildeskriftfond, Kristjanía, 27 pp., 1977a.
Storm, G.: Flatbøgens Annaler Islandske Annaler: indtil 1578, Norsk historisk kildeskriftfond, Kristjanía, 534 pp., 1977b.
Storm, G.: Skálholts-Annaler Islandske Annaler: indtil 1578, Norsk historisk kildeskriftfond, Kristjanía, 193 pp., 1977c.
Stramski, D., Sciandra, A., and Claustre, H.: Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana, Limnol. Oceanogr., 47, 392–403, https://doi.org/10.4319/lo.2002.47.2.0392, 2002.
Streeter, R., Dugmore, A. J., Lawson, I. T., Erlendsson, E., and Edwards, K. J.: The onset of the palaeoanthropocene in Iceland: changes in complex natural systems, Holocene, 25, 1662–1675, https://doi.org/10.1177/0959683615594468, 2015.
Striberger, J., Björck, S., Holmgren, S., and Hamerlík, L.: The sediments of Lake Lögurinn e a unique proxy record of Holocene glacial meltwater variability in eastern Iceland, Quaternary Sci. Rev., 38, 76–88, https://doi.org/10.1016/j.quascirev.2012.02.001, 2012.
Telford, R. J., Barker, P., Metcalfe, S., and Newton, A.: Lacustrine responses to tephra deposition: examples from Mexico, Quaternary Sci. Rev., 23, 23–24, https://doi.org/10.1016/j.quascirev.2004.03.014, 2004.
Thórarinsson, S.: Tefrokronoliska studier pa Island (Tephrochronological studies in Iceland), Geogr. Ann., 26, 1–217, 1944.
Thordarson, T. and Höskuldsson, Á.: Postglacial volcanism in Iceland, Jökull, 58, 197–228, https://doi.org/10.33799/jokull2008.58.197, 2008.
Thordarson, T. and Larsen, G.: Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history, J. Geodynam., 43, 118–152, https://doi.org/10.1016/j.jog.2006.09.005, 2007.
Thordarson, T., Self, S., Óskarsson, N., and Hulsebosch, T.: Sulphur, chlorine, and fluorine degassing and atmospheric loading by the 1783–1784 AD Laki (Skaftár Fires) eruption in Iceland, B. Volcanol., 58, 205–225, https://doi.org/10.1007/s004450050136, 1996.
Tierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng, R., Ford, H. L., Hönisch, B., Inglis, G. N., Petersen, S. V., Sagoo, N., Tabor, C. R., Thirumalai, K., Zhu, J., Burls, N. J., Foster, G. L., Goddéris, Y., Huber, B. T., Ivany, L. C., Turner, S. K., Lunt, D. J., McElwain, J. C., Mills, B. J. W., Otto-Bliesner, B. L., Ridgwell, A., and Zhang, Y. G.: Past climates inform our future, Science, 370, eaay3701, https://doi.org/10.1126/science.aay3701, 2020.
Timms, R. G. O., Matthews, I. P., Palmer, A. P., Candy, I., and Abel, L.: A high-resolution tephrostratigraphy from Quoyloo Meadow, Orkney, Scotland: Implications for the tephrostratigraphy of NW Europe during the Last Glacial-Interglacial Transition, Quat. Geochronol., 40, 67–81, https://doi.org/10.1016/j.quageo.2016.06.004, 2017.
Timms, R. G. O., Matthews, I. P., Palmer, A. P., and Candy, I.: Toward a tephrostratigraphic framework for the British Isles: A Last Glacial to Interglacial Transition (LGIT c. 16–8 ka) case study from Crudale Meadow, Orkney, Quat. Geochronol., 46, 28–44, https://doi.org/10.1016/j.quageo.2018.03.008, 2018.
Tinganelli, L., Erlendsson, E., Eddudóttir, S. D., and Gísladóttir, G.: Impacts of climate, tephra, and land use upon Holocene landscape stability in Northwest Iceland, Geomorphology, 322, 117–131, https://doi.org/10.1016/j.geomorph.2018.08.025, 2018.
van den Bogaard, C., Dorfler, W., Sandgren, P., and Schmincke, H.-U.: Correlating the Holocene records: Icelandic Tephra found in Schleswig-Holstein (Northern Germany), Naturwissenschaften, 81, 554–556, https://doi.org/10.1007/BF01140005, 1994.
van den Bogaard, C., Dorfler, W., Glos, R., Nadeau, M.-J., Grootes, P. M., and Erlenkeuser, H.: Two tephra layers bracketing late Holocene paleoecological changes in northern Germany, Quaternary Res., 57, 314–324, https://doi.org/10.1006/qres.2002.2325, 2002.
Vésteinsson, O. and McGovern, T.: The peopling of Iceland, Nor. Archaeol. Rev., 45, 206–218, https://doi.org/10.1080/00293652.2012.721792, 2012.
Vogel, H., Rósen, P., Wagner, B., Melles, M., and Persson, P.: Fourier transform infrared spectroscopy, a new cost-effective tool for quantitative analysis of biogeochemical properties in long sediment records, J. Paleolimnol., 40, 689–702, https://doi.org/10.1007/s10933-008-9193-7, 2008.
Walker, G. P. L. and Croasdale, R.: Characteristics of some basaltic pyroclasts, B. Volcanol., 35, 303–317, https://doi.org/10.1007/BF02596957, 1972.
Wang, Y. and Wooller, M.: The stable isotopic (C and N) composition of modern plants and lichens from northern Iceland: with ecological and paleoenvironmental implications, Jökull, 56, 27–38, https://doi.org/10.33799/jokull2006.56.027, 2006.
Wastegård, S., Björck, S., Grauert, M., and Hannon, G. E.: The Mjáuvøtn tephra and other Holocene tephra horizons from the Faroe Islands: a link between the Icelandic source region, the Nordic Seas, and the European continent, Holocene, 11, 101–109, https://doi.org/10.1191/095968301668079904, 2001.
Wunsch, C.: Meridional heat flux of the north Atlantic Ocean, P. Natl. Acad. Sci. USA, 77, 5043–5047, https://doi.org/10.1073/pnas.77.9.5043, 1980.
Xiao, X., Zhao, M., Knudsen, K.L., Sha, L., Eiríksson, J., Gudmundsdóttir, E., Jiang, H., and Guo, Z.: Deglacial and Holocene sea-ice variability north of Iceland and response to ocean circulation changes, Earth Planet. Sc. Lett., 472, 14–24, https://doi.org/10.1016/j.epsl.2017.05.006, 2017.
Co-editor-in-chief
This manuscript deserves to be highlighted as it presents an incredible dataset, analysed using state-of-the-art techniques and summarised in a clear and readable form. As the reviewers pointed out, the content could easily have resulted in two articles (or even more...) - a practice that is sometimes done to increase ‘academic output’. However, the authors have chosen to provide a comprehensive overview and interpretation of the results. In addition, the site studied is of great importance for Icelandic studies of Holocene climate change.
This manuscript deserves to be highlighted as it presents an incredible dataset, analysed using...
Short summary
Questions remain about the past climate in Iceland, including the relative impacts of natural and human factors on vegetation change and soil erosion. We present a sub-centennial-scale record of landscape and algal productivity from a lake in north Iceland. Along with a high-resolution tephra age constraint that covers the last ∼ 12 000 years, our record provides an environmental template for the region and novel insight into the sensitivity of the Icelandic ecosystem to natural and human impacts.
Questions remain about the past climate in Iceland, including the relative impacts of natural...