Articles | Volume 21, issue 3
https://doi.org/10.5194/cp-21-609-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-609-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-century mean summer temperature variations in the Southern Rhaetian Alps reconstructed from Larix decidua blue intensity data
Riccardo Cerrato
CORRESPONDING AUTHOR
Earth Sciences Department, University of Pisa, Pisa, 56124, Italy
Maria Cristina Salvatore
Earth Sciences Department, University of Pisa, Pisa, 56124, Italy
Geosciences and Earth Resources, National Research Council of Italy, Pisa, 56124, Italy
Michele Brunetti
Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Bologna, 40129, Italy
Andrea Somma
Earth Sciences Department, University of Pisa, Pisa, 56124, Italy
Carlo Baroni
Earth Sciences Department, University of Pisa, Pisa, 56124, Italy
Geosciences and Earth Resources, National Research Council of Italy, Pisa, 56124, Italy
Related authors
No articles found.
Francesco Cavalleri, Cristian Lussana, Francesca Viterbo, Michele Brunetti, Riccardo Bonanno, Veronica Manara, Matteo Lacavalla, and Maurizio Maugeri
EGUsphere, https://doi.org/10.5194/egusphere-2025-3455, https://doi.org/10.5194/egusphere-2025-3455, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study investigates changes in extreme hourly precipitation across Italy using a high-resolution reanalysis, a dataset that combines observations and weather models to reconstruct past atmospheric conditions. By analysing over 35 years of hourly data, the study identifies an increase in extreme precipitation events in Alpine areas during summer and southern coastal regions in autumn, providing insights into evolving precipitation patterns and supporting climate resilience planning.
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021, https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.
Cited articles
Anchukaitis, K. J., Wilson, R., Briffa, K. R., Büntgen, U., Cook, E. R., D'Arrigo, R. D., Davi, N., Esper, J., Frank, D. C., Gunnarson, B. E., Hegerl, G., Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V. S., Osborn, T. J., Zhang, P., Rydval, M., Schneider, L., Schurer, A., Wiles, G. C., and Zorita, E.: Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions, Quaternary Sci. Rev., 163, 1–22, https://doi.org/10.1016/j.quascirev.2017.02.020, 2017.
Andreis, C., Armiraglio, S., Caccianiga, M., Bortolas, D., and Broglia, A.: Pinus Cembra L. nel settore sud-Alpino Lombardo (Italia Settentrionale), Nat. Brescia. – Ann. Mus. Civ. Sc. Nat., Brescia, 34, 19–39, 2005.
Arbellay, E., Jarvis, I., Chavardès, R. D., Daniels, L. D., and Stoffel, M.: Tree-ring proxies of larch bud moth defoliation: Latewood width and blue intensity are more precise than tree-ring width, Tree Physiol., 38, 1237–1245, https://doi.org/10.1093/treephys/tpy057, 2018.
Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Matulla, C., Briffa, K. R., Jones, P., Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre, O., Moisselin, J.-M., Begert, M., Müller-Westermeier, G., Kveton, V., Bochnicek, O., Šťastný, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar, T., Dolinar, M., Gajic-Capka, M., Zaninović, K., Majstorović, Ž., and Nieplova, E.: HISTALP – historical instrumental climatological surface time series of the Greater Alpine Region, Int. J. Climatol., 27, 17–46, https://doi.org/10.1002/joc.1377, 2007.
Babst, F., Frank, D. C., Büntgen, U., Nievergelt, D., and Esper, J.: Effect of sample preparation and scanning resolution on the Blue Reflectance of Picea abies, TRACE–Tree Rings Archaeol. Climatol. Ecol., 7, 188–195, 2009.
Backmeroff, C. E.: Historical land-use and upper timberline dynamics determined by a thousand-year larch chronology made up of charcoal fragments from kilns and ancient trees, in: 2001. International Conference Tree rings and people, Davos, Switzerland, 22–26 September 2001, Abstracts, edited by: Kaennel Dobbertin, M. and Bräker, O. U., Birmensdorf, Swiss Federal Research Institute WSL, 1–2, 2001.
Baltensweiler, W. and Rubli, D.: Dispersal: an important driving force of the cyclic population dynamics of the larch bud moth, Zeiraphera diniana Gn., For. Snow Landsc. Res., 74, 3–153, 1999.
Beniston, M.: The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations, Geophys. Res. Lett., 31, L02202, https://doi.org/10.1029/2003GL018857, 2004.
Biondi, F. and Waikul, K.: DENDROCLIM2002: A C program for statistical calibration of climate signals in tree-ring chronologies, Comput. Geosci., 30, 303–311, https://doi.org/10.1016/j.cageo.2003.11.004, 2004.
Björklund, J., Gunnarson, B. E., Seftigen, K., Zhang, P., and Linderholm, H. W.: Using adjusted Blue Intensity data to attain high-quality summer temperature information: A case study from Central Scandinavia, Holocene, 25, 547–556, https://doi.org/10.1177/0959683614562434, 2015.
Björklund, J., von Arx, G., Nievergelt, D., Wilson, R., Van den Bulcke, J., Günther, B., Loader, N. J., Rydval, M., Fonti, P., Scharnweber, T., Andreu-Hayles, L., Büntgen, U., D'Arrigo, R., Davi, N., De Mil, T., Esper, J., Gärtner, H., Geary, J., Gunnarson, B. E., Hartl, C., Hevia, A., Song, H., Janecka, K., Kaczka, R. J., Kirdyanov, A. V., Kochbeck, M., Liu, Y., Meko, M., Mundo, I., Nicolussi, K., Oelkers, R., Pichler, T., Sánchez-Salguero, R., Schneider, L., Schweingruber, F., Timonen, M., Trouet, V., Van Acker, J., Verstege, A., Villalba, R., Wilmking, M., and Frank, D.: Scientific Merits and Analytical Challenges of Tree-Ring Densitometry, Rev. Geophys., 57, 1224–1264, https://doi.org/10.1029/2019RG000642, 2019.
Björklund, J., Seftigen, K., Fonti, P., Nievergelt, D., and von Arx, G.: Dendroclimatic potential of dendroanatomy in temperature-sensitive Pinus sylvestris, Dendrochronologia, 60, 125673, https://doi.org/10.1016/j.dendro.2020.125673, 2020.
Björklund, J., Fonti, M. V., Fonti, P., Van den Bulcke, J., and von Arx, G.: Cell wall dimensions reign supreme: cell wall composition is irrelevant for the temperature signal of latewood density/blue intensity in Scots pine, Dendrochronologia, 65, 125785, https://doi.org/10.1016/j.dendro.2020.125785, 2021.
Björklund, J., Seftigen, K., Kaczka, R. J., Rydval, M., and Wilson, R.: A definition and standardised terminology for Blue Intensity from Conifers, Dendrochronologia, 85, 126200, https://doi.org/10.1016/j.dendro.2024.126200, 2024.
Björklund, J. A., Gunnarson, B. E., Seftigen, K., Esper, J., and Linderholm, H. W.: Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information, Clim. Past, 10, 877–885, https://doi.org/10.5194/cp-10-877-2014, 2014.
Blake, S. A. P., Palmer, J. G., Björklund, J., Harper, J. B., and Turney, C. S. M.: Palaeoclimate potential of New Zealand Manoao colensoi (silver pine) tree rings using Blue-Intensity (BI), Dendrochronologia, 60, 125664, https://doi.org/10.1016/j.dendro.2020.125664, 2020.
Böhm, R., Auer, I., Brunetti, M., Maugeri, M., Nanni, T., and Schöner, W.: Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series, Int. J. Climatol., 21, 1779–1801, https://doi.org/10.1002/joc.689, 2001.
Brunetti, M., Maugeri, M., Monti, F., and Nanni, T.: Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series, Int. J. Climatol., 26, 345–381, https://doi.org/10.1002/joc.1251, 2006.
Brunetti, M., Lentini, G., Maugeri, M., Nanni, T., Auer, I., Böhm, R., and Schöner, W.: Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis, Int. J. Climatol., 29, 2197–2225, https://doi.org/10.1002/joc.1857, 2009.
Brunetti, M., Lentini, G., Maugeri, M., Nanni, T., Simolo, C., and Spinoni, J.: Projecting North Eastern Italy temperature and precipitation secular records onto a high-resolution grid, Phys. Chem. Earth, Parts A/B/C, 40–41, 9–22, https://doi.org/10.1016/j.pce.2009.12.005, 2012.
Brunetti, M., Maugeri, M., Nanni, T., Simolo, C., and Spinoni, J.: High-resolution temperature climatology for Italy: interpolation method intercomparison, Int. J. Climatol., 34, 1278–1296, https://doi.org/10.1002/joc.3764, 2014.
Buckley, B. M., Hansen, K. G., Griffin, K. L., Schmiege, S., Oelkers, R., D'Arrigo, R. D., Stahle, D. K., Davi, N., Nguyen, T. Q. T., Le, C. N., Wilson, R., and D'Arrigo, R. D.: Blue intensity from a tropical conifer's annual rings for climate reconstruction: An ecophysiological perspective, Dendrochronologia, 50, 10–22, https://doi.org/10.1016/j.dendro.2018.04.003, 2018.
Bunn, A. G.: A dendrochronology program library in R (dplR), Dendrochronologia, 26, 115–124, https://doi.org/10.1016/j.dendro.2008.01.002, 2008.
Bunn, A. G.: Statistical and visual crossdating in R using the dplR library, Dendrochronologia, 28, 251–258, https://doi.org/10.1016/j.dendro.2009.12.001, 2010.
Büntgen, U., Esper, J., Frank, D. C., Nicolussi, K., and Schmidhalter, M.: A 1052-year tree-ring proxy for Alpine summer temperatures, Clim. Dynam., 25, 141–153, https://doi.org/10.1007/s00382-005-0028-1, 2005.
Büntgen, U., Frank, D. C., Nievergelt, D., and Esper, J.: Summer temperature variations in the European Alps, A.D. 755-2004, J. Climate, 19, 5606–5623, https://doi.org/10.1175/JCLI3917.1, 2006.
Büntgen, U., Frank, D. C., Wilson, R., Carrer, M., Urbinati, C., and Esper, J.: Testing for tree-ring divergence in the European Alps, Glob. Chang. Biol., 14, 2443–2453, https://doi.org/10.1111/j.1365-2486.2008.01640.x, 2008.
Büntgen, U., Frank, D. C., Liebhold, A. M., Johnson, D. M., Carrer, M., Urbinati, C., Grabner, M., Nicolussi, K., Levanič, T., and Esper, J.: Three centuries of insect outbreaks across the European Alps, New Phytol., 182, 929–941, https://doi.org/10.1111/j.1469-8137.2009.02825.x, 2009.
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D. C., Trouet, V., Kaplan, J. O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J., and Esper, J.: 2500 Years of European Climate Variability and Human Susceptibility, Science, 331, 578–582, https://doi.org/10.1126/science.1197175, 2011.
Buras, A., Zang, C., and Menzel, A.: Testing the stability of transfer functions, Dendrochronologia, 42, 56–62, https://doi.org/10.1016/j.dendro.2017.01.005, 2017.
Buras, A., Spyt, B., Janecka, K., and Kaczka, R. J.: Divergent growth of Norway spruce on Babia Góra Mountain in the western Carpathians, Dendrochronologia, 50, 33–43, https://doi.org/10.1016/j.dendro.2018.04.005, 2018.
Camiz, S. and Spada, F.: Checking the stability of correlation of chronologies over time: an example on Pinus pinea L. rings widths, Ann. Silvic. Res., 49, 13–23, https://doi.org/10.12899/asr-2455, 2023.
Camiz, S., Spada, F., Denimal, J. J., and Piraino, S.: Hierarchical factor classification of dendrochronological time-series, Ann. Silvic. Res., 45, 62–75, https://doi.org/10.12899/asr-1968, 2020.
Carrer, M. and Urbinati, C.: Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra, Ecology, 85, 730–740, https://doi.org/10.1890/02-0478, 2004.
Carrer, M., Dibona, R., Prendin, A. L., and Brunetti, M.: Recent waning snowpack in the Alps is unprecedented in the last six centuries, Nat. Clim. Chang., 13, 155–160, https://doi.org/10.1038/s41558-022-01575-3, 2023.
Carturan, L., Dalla Fontana, G., and Borga, M.: Estimation of winter precipitation in a high-altitude catchment of the Eastern Italian Alps: Validation by means of glacier mass balance observations, Geogr. Fis. e Din. Quat., 35, 37–48, https://doi.org/10.4461/GFDQ.2012.35.4, 2012.
Carturan, L., Baroni, C., Becker, M., Bellin, A., Cainelli, O., Carton, A., Casarotto, C., Dalla Fontana, G., Godio, A., Martinelli, T., Salvatore, M. C., and Seppi, R.: Decay of a long-term monitored glacier: Careser Glacier (Ortles-Cevedale, European Alps), The Cryosphere, 7, 1819–1838, https://doi.org/10.5194/tc-7-1819-2013, 2013.
Carturan, L., Baroni, C., Carton, A., Cazorzi, F., Dalla Fontana, G., Delpero, C., Salvatore, M. C., Seppi, R., and Zanoner, T.: Reconstructing fluctuations of La Mare glacier (Eastern Italian Alps) in the late Holocene: new evidence for a Little Ice Age maximum around 1600 AD, Geogr. Ann. Ser. A, Phys. Geogr., 96, 287–306, https://doi.org/10.1111/geoa.12048, 2014.
Cerrato, R. and Baroni, C.: NOAA/WDS Paleoclimatology – Cerrato – Bosco Antico – LADE – ITRDB ITAL050, ital050.rwl, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/hw52-rp85, 2018.
Cerrato, R., Salvatore, M. C., Brunetti, M., Coppola, A., and Baroni, C.: Dendroclimatic relevance of “Bosco Antico”, the most ancient living European larch wood in the Southern Rhaetian Alps (Italy), Geogr. Fis. e Din. Quat., 41, 35–49, https://doi.org/10.4461/GFDQ.2018.41.3, 2018.
Cerrato, R., Salvatore, M. C., Gunnarson, B. E., Linderholm, H. W., Carturan, L., Brunetti, M., De Blasi, F., and Baroni, C.: A Pinus cembra L. tree-ring record for late spring to late summer temperature in the Rhaetian Alps, Italy, Dendrochronologia, 53, 22–31, https://doi.org/10.1016/j.dendro.2018.10.010, 2019a.
Cerrato, R., Cherubini, P., Büntgen, U., Coppola, A., Salvatore, M. C., and Baroni, C.: Tree-ring-based reconstruction of larch budmoth outbreaks in the Central Italian Alps since 1774 CE, iForest – Biogeosciences For., 12, 289–296, https://doi.org/10.3832/ifor2533-012, 2019b.
Cerrato, R., Salvatore, M. C., Gunnarson, B. E., Linderholm, H. W., Carturan, L., Brunetti, M., and Baroni, C.: Pinus cembra L. tree-ring data as a proxy for summer mass-balance variability of the Careser Glacier (Italian Rhaetian Alps), J. Glaciol., 66, 714–726, https://doi.org/10.1017/jog.2020.40, 2020.
Cerrato, R., Salvatore, M. C., Carrer, M., Brunetti, M., and Baroni, C.: Blue intensity of Swiss stone pine as a high-frequency temperature proxy in the Alps, Eur. J. For. Res., 142, 933–948, https://doi.org/10.1007/s10342-023-01566-9, 2023.
Cerrato, R., Salvatore, M. C., Somma, A., and Baroni, C.: NOAA/WDS Paleoclimatology – Cerrato – Bosco Antico Update – LADE – ITRDB ITA072, ita072bl25.rwl, ita072be100.rwl, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/868n-2d38, 2025a.
Cerrato, R., Salvatore, M. C., and Baroni, C.: NOAA/WDS Paleoclimatology – Cerrato – Val di Barco – LADE – ITRDB ITA073, ita073.rwl, ita073bl25.rwl, ita073be100.rwl, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/j2vd-tn67, 2025b.
Cerrato, R., Salvatore, M. C., and Baroni, C.: NOAA/WDS Paleoclimatology – Cerrato – Pradach di Val Palù – LADE – ITRDB ITA074, ita074.rwl, ita074be100.rwl, ita074bl25.rwl, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/a4kb-dq50, 2025c.
Cook, E. R. and Holmes, R. L.: Users Manual for Program ARSTAN, Tucson, Arizona, 13 pp., https://sheppard.ltrr.arizona.edu/DISC2019/arstan.txt (last access: 28 Febuary 2025), 1999.
Cook, E. R., Briffa, K. R., and Jones, P. D.: Spatial regression methods in dendroclimatology: A review and comparison of two techniques, Int. J. Climatol., 14, 379–402, https://doi.org/10.1002/joc.3370140404, 1994.
Coppola, A., Leonelli, G., Salvatore, M. C., Pelfini, M., and Baroni, C.: Weakening climatic signal since mid-20th century in European larch tree-ring chronologies at different altitudes from the Adamello-Presanella Massif (Italian Alps), Quaternary Res., 77, 344–354, https://doi.org/10.1016/j.yqres.2012.01.004, 2012.
Coppola, A., Leonelli, G., Salvatore, M. C., Pelfini, M., and Baroni, C.: Tree-ring–based summer mean temperature variations in the Adamello–Presanella Group (Italian Central Alps), 1610–2008 AD, Clim. Past, 9, 211–221, https://doi.org/10.5194/cp-9-211-2013, 2013.
Corona, C., Guiot, J., Edouard, J. L., Chalié, F., Büntgen, U., Nola, P., and Urbinati, C.: Millennium-long summer temperature variations in the European Alps as reconstructed from tree rings, Clim. Past, 6, 379–400, https://doi.org/10.5194/cp-6-379-2010, 2010.
Crespi, A., Brunetti, M., Lentini, G., and Maugeri, M.: 1961–1990 high-resolution monthly precipitation climatologies for Italy, Int. J. Climatol., 38, 878–895, https://doi.org/10.1002/joc.5217, 2018.
Crespi, A., Brunetti, M., Ranzi, R., Tomirotti, M., and Maugeri, M.: A multi-century meteo-hydrological analysis for the Adda river basin (Central Alps). Part I: Gridded monthly precipitation (1800–2016) records, Int. J. Climatol., 41, 162–180, https://doi.org/10.1002/joc.6614, 2021.
Dannenberg, M. P. and Wise, E. K.: Seasonal climate signals from multiple tree ring metrics: A case study of Pinus ponderosa in the upper Columbia River Basin, J. Geophys. Res.-Biogeosci., 121, 1178–1189, https://doi.org/10.1002/2015JG003155, 2016.
D'Arrigo, R. D., Wilson, R., Liepert, B., and Cherubini, P.: On the “Divergence Problem” in Northern Forests: A review of the tree-ring evidence and possible causes, Glob. Planet. Change, 60, 289–305, https://doi.org/10.1016/j.gloplacha.2007.03.004, 2008.
Dixon, P. M.: Bootstrap Resampling, in: Encyclopedia of Environmetrics, Wiley, https://doi.org/10.1002/9780470057339.vab028, 2001.
Dolgova, E.: June-September temperature reconstruction in the Northern Caucasus based on blue intensity data, Dendrochronologia, 39, 17–23, https://doi.org/10.1016/j.dendro.2016.03.002, 2016.
Esper, J., Cook, E. R., and Schweingruber, F. H.: Low-Frequency Signals in Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability, Science, 295, 2250–2253, https://doi.org/10.1126/science.1066208, 2002.
Esper, J., Frank, D. C., Wilson, R., and Briffa, K. R.: Effect of scaling and regression on reconstructed temperature amplitude for the past millennium, Geophys. Res. Lett., 32, L07711, https://doi.org/10.1029/2004GL021236, 2005.
Esper, J., George, S. S., Anchukaitis, K., D'Arrigo, R., Ljungqvist, F. C., Luterbacher, J., Schneider, L., Stoffel, M., Wilson, R., and Büntgen, U.: Large-scale, millennial-length temperature reconstructions from tree-rings, Dendrochronologia, 50, 81–90, https://doi.org/10.1016/j.dendro.2018.06.001, 2018.
Eyring, V., Gillett, N. P., Rao, K. M. A., Barimalala, R., Barreiro Parrillo, M., Bellouin, N., Cassou, C., Durack, P. J., Kosaka, Y., McGregor, S., Min, S., Morgenstern, O., and Sun, Y.: Human Influence on the Climate System, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 423–552, https://doi.org/10.1017/9781009157896.005, 2023.
Fink, A. H., Brücher, T., Krüger, A., Leckebusch, G. C., Pinto, J. G., and Ulbrich, U.: The 2003 European summer heatwaves and drought -synoptic diagnosis and impacts, Weather, 59, 209–216, https://doi.org/10.1256/wea.73.04, 2004.
Frank, D. C. and Esper, J.: Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps, Dendrochronologia, 22, 107–121, https://doi.org/10.1016/j.dendro.2005.02.004, 2005.
Frank, T. and Nicolussi, K.: Testing different Earlywood/Latewood delimitations for the establishment of Blue Intensity data: A case study based on Alpine Picea abies samples, Dendrochronologia, 64, 125775, https://doi.org/10.1016/j.dendro.2020.125775, 2020.
Fritts, H. C. (Ed.): Tree Rings and Climate, Elsevier, London, 582 pp., https://doi.org/10.1016/B978-0-12-268450-0.X5001-0, 1976.
Fuentes, M., Salo, R., Björklund, J., Seftigen, K., Zhang, P., Gunnarson, B. E., Aravena, J. C., and Linderholm, H. W.: A 970-year-long summer temperature reconstruction from Rogen, west-central Sweden, based on blue intensity from tree rings, Holocene, 28, 254–266, https://doi.org/10.1177/0959683617721322, 2018.
Galvan, P., Ponge, J.-F., Chersich, S., and Zanella, A.: Humus Components and Soil Biogenic Structures in Norway Spruce Ecosystems, Soil Sci. Soc. Am. J., 72, 548, https://doi.org/10.2136/sssaj2006.0317, 2008.
Gentili, R., Armiraglio, S., Sgorbati, S., and Baroni, C.: Geomorphological disturbance affects ecological driving forces and plant turnover along an altitudinal stress gradient on alpine slopes, Plant Ecol., 214, 571–586, https://doi.org/10.1007/s11258-013-0190-1, 2013.
Gentili, R., Baroni, C., Panigada, C., Rossini, M., Tagliabue, G., Armiraglio, S., Citterio, S., Carton, A., and Salvatore, M. C.: Glacier shrinkage and slope processes create habitat at high elevation and microrefugia across treeline for alpine plants during warm stages, CATENA, 193, 104626, https://doi.org/10.1016/j.catena.2020.104626, 2020.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Heeter, K. J., Harley, G. L., Maxwell, J. T., McGee, J. H., and Matheus, T. J.: Late summer temperature variability for the Southern Rocky Mountains (USA) since 1735 CE: applying blue light intensity to low-latitude Picea engelmannii Parry ex Engelm, Clim. Change, 162, 965–988, https://doi.org/10.1007/s10584-020-02772-9, 2020.
Helama, S., Melvin, T. M., and Briffa, K. R.: Regional curve standardization: State of the art, Holocene, 27, 172–177, https://doi.org/10.1177/0959683616652709, 2017.
IPCC: Summary for policymakers, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, US, 1–28, https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_SPM_FINAL.pdf (last access: 28 February 2025), 2013.
IPCC: Summary for Policymakers, in: Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., World Meteorological Organization, Geneva, Switzerland, 32, https://doi.org/10.1017/9781009157940, 2018.
IPCC: Summary for Policymakers, in: The Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 3–35, https://doi.org/10.1017/9781009157964.001, 2019.
IPCC: Summary for Policymakers, in: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Buendia Calvo, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1–36, https://doi.org/10.1017/9781009157988.001, 2022.
IPCC: Summary for Policymakers, in: Climate Change 2022 – Impacts, Adaptation and Vulnerability, edited by: Pörtner, H.-O., Roberts, D. C., Poloczanska, E. S., Mintenbeck, K., Tignor, M., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., and Okem, A., Cambridge University Press, Cambridge, UK and New York, NY, USA, 3–34, https://doi.org/10.1017/9781009325844.001, 2023.
Isotta, F. A., Frei, C., Weilguni, V., Perčec Tadić, M., Lassègues, P., Rudolf, B., Pavan, V., Cacciamani, C., Antolini, G., Ratto, S. M., Munari, M., Micheletti, S., Bonati, V., Lussana, C., Ronchi, C., Panettieri, E., Marigo, G., and Vertačnik, G.: The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data, Int. J. Climatol., 34, 1657–1675, https://doi.org/10.1002/joc.3794, 2014.
IUSS Working Group: WRB: World Reference Base for Soil Resources, International soil classification system for naming soils and creating legends for soil maps, 4th edn., International Union of Soil Sciences (IUSS), Vienna, Austria, 132 pp., https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf (last access: 28 February 2025), 2022.
Kaczka, R. J., Spyt, B., Janecka, K., Beil, I., Büntgen, U., Scharnweber, T., Nievergelt, D., and Wilmking, M.: Different maximum latewood density and blue intensity measurements techniques reveal similar results, Dendrochronologia, 49, 94–101, https://doi.org/10.1016/j.dendro.2018.03.005, 2018.
Lê, S., Josse, J., and Husson, F.: FactoMineR: An R Package for Multivariate Analysis, J. Stat. Softw., 25, 253–258, https://doi.org/10.18637/jss.v025.i01, 2008.
Leavitt, S. W. and Roden, J.: Stable Isotopes in Tree Rings, edited by: Siegwolf, R. T. W., Brooks, J. R., Roden, J., and Saurer, M., Springer International Publishing, Cham, 3–20 pp., https://doi.org/10.1007/978-3-030-92698-4, 2022.
Leonelli, G., Pelfini, M., D'Arrigo, R. D., Haeberli, W., and Cherubini, P.: Non-stationary Responses of Tree-Ring Chronologies and Glacier Mass Balance to Climate in the European Alps, Arctic, Antarct. Alp. Res., 43, 56–65, https://doi.org/10.1657/1938-4246-43.1.56, 2011.
Leonelli, G., Coppola, A., Baroni, C., Salvatore, M. C., Maugeri, M., Brunetti, M., and Pelfini, M.: Multispecies dendroclimatic reconstructions of summer temperature in the European Alps enhanced by trees highly sensitive to temperature, Clim. Change, 137, 275–291, https://doi.org/10.1007/s10584-016-1658-5, 2016.
Ljungqvist, F. C., Thejll, P., Björklund, J., Gunnarson, B. E., Piermattei, A., Rydval, M., Seftigen, K., Støve, B., and Büntgen, U.: Assessing non-linearity in European temperature-sensitive tree-ring data, Dendrochronologia, 59, 125652, https://doi.org/10.1016/j.dendro.2019.125652, 2020.
Marazzi, S.: Atlante orografico delle Alpi: SOIUSA: suddivisione orografica internazionale unificata del sistema alpino, Priuli & Verlucca, 416 pp., 2005.
McCarroll, D., Pettigrew, E., and Luckman, A.: Blue Reflectance Provides a Surrogate for Latewood Density of High-Latitude Pine Tree Rings Reflectance Provides a Surrogate for Latewood of High-latitude Density Pine Tree Rings, Arctic, Antarct. Alp. Res., 34, 450–453, 2002.
McPartland, M. Y., St. George, S., Pederson, G. T., and Anchukaitis, K. J.: Does signal-free detrending increase chronology coherence in large tree-ring networks?, Dendrochronologia, 63, 125755, https://doi.org/10.1016/j.dendro.2020.125755, 2020.
Melvin, T. M.: Historical Growth Rates and Changing Climatic Sensitivity of Boreal Conifers, PhD dissertation, University of East Anglia, 271 pp., https://ueaeprints.uea.ac.uk/id/eprint/42398/1/melvin-2004-thesis.pdf (last access: 28 February 2025), 2004.
Melvin, T. M. and Briffa, K. R.: A “signal-free” approach to dendroclimatic standardisation, Dendrochronologia, 26, 71–86, https://doi.org/10.1016/j.dendro.2007.12.001, 2008.
Mitchell, T. D. and Jones, P. D.: An improved method of constructing a database of monthly climate observations and associated high-resolution grids, Int. J. Climatol., 25, 693–712, https://doi.org/10.1002/joc.1181, 2005.
New, M., Hulme, M., and Jones, P. D.: Representing Twentieth-Century Space–Time Climate Variability. Part II: Development of 1901–96 Monthly Grids of Terrestrial Surface Climate, J. Climate, 13, 2217–2238, https://doi.org/10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2, 2000.
Nicolussi, K., Österreicher, A., Weber, G., Leuenberger, M., Bauer, A., and Vogeleit, T.: Blue intensity analyses on spruce, larch and cembran pine cores of living trees from the Alps, in: EuroDendro 2015, 18–23 October 2015, Antalya, Turkey, Book of Abstracts, edited by: Akkemik, Ü., 139–140, 2015.
Ols, C., Klesse, S., Girardin, M. P., Evans, M. E. K., DeRose, R. J., and Trouet, V.: Detrending climate data prior to climate–growth analyses in dendroecology: A common best practice?, Dendrochronologia, 79, 126094, https://doi.org/10.1016/j.dendro.2023.126094, 2023.
Österreicher, A., Weber, G., Leuenberger, M., and Nicolussi, K.: Exploring blue intensity – comparison of blue intensity and MXD data from Alpine spruce trees, Sci. Tech. Rep., 56–61, https://doi.org/10.2312/GFZ.b103-15069, 2014.
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., Williamson, S. N., and Yang, D. Q.: Elevation-dependent warming in mountain regions of the world, Nat. Clim. Chang., 5, 424–430, https://doi.org/10.1038/nclimate2563, 2015.
R Core Team: R: A Language and Environment for Statistical Computing, https://www.r-project.org/ (last access: 28 February 2025), 2024.
Reid, E. and Wilson, R.: Delta blue intensity vs. maximum density: A case study using Pinus uncinata in the Pyrenees, Dendrochronologia, 61, 125706, https://doi.org/10.1016/j.dendro.2020.125706, 2020.
Rydval, M., Larsson, L. Å., McGlynn, L., Gunnarson, B. E., Loader, N. J., Young, G. H. F., and Wilson, R.: Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland, Dendrochronologia, 32, 191–204, https://doi.org/10.1016/j.dendro.2014.04.003, 2014.
Rydval, M., Gunnarson, B. E., Loader, N. J., Cook, E. R., Druckenbrod, D. L., and Wilson, R.: Spatial reconstruction of Scottish summer temperatures from tree rings, Int. J. Climatol., 37, 1540–1556, https://doi.org/10.1002/joc.4796, 2016.
Salvatore, M. C., Zanoner, T., Baroni, C., Carton, A., Banchieri, F. A., Viani, C., Giardino, M., and Perotti, L.: The state of Italian glaciers: A snapshot of the 2006-2007 hydrological period, Geogr. Fis. e Din. Quat., 38, 175–198, https://doi.org/10.4461/GFDQ.2015.38.16, 2015.
Saulnier, M., Corona, C., Stoffel, M., Guibal, F., and Edouard, J.-L.: Climate-growth relationships in a Larix decidua Mill. network in the French Alps, Sci. Total Environ., 664, 554–566, https://doi.org/10.1016/j.scitotenv.2019.01.404, 2019.
Schwab, N., Kaczka, R. J., Janecka, K., Böhner, J., Chaudhary, R., Scholten, T., and Schickhoff, U.: Climate Change-Induced Shift of Tree Growth Sensitivity at a Central Himalayan Treeline Ecotone, Forests, 9, 267, https://doi.org/10.3390/f9050267, 2018.
Schweingruber, F. H.: Tree Rings Basic and Applications of Dendrochronology, Springer Netherlands, Dordrecht, 276 pp., https://doi.org/10.1007/978-94-009-1273-1, 1988.
Seftigen, K., Fuentes, M., Ljungqvist, F. C., and Björklund, J.: Using Blue Intensity from drought-sensitive Pinus sylvestris in Fennoscandia to improve reconstruction of past hydroclimate variability, Clim. Dynam., 55, 579–594, https://doi.org/10.1007/s00382-020-05287-2, 2020.
Seftigen, K., Fonti, M. V., Luckman, B., Rydval, M., Stridbeck, P., von Arx, G., Wilson, R., and Björklund, J.: Prospects for dendroanatomy in paleoclimatology – a case study on Picea engelmannii from the Canadian Rockies, Clim. Past, 18, 1151–1168, https://doi.org/10.5194/cp-18-1151-2022, 2022.
Sheppard, P. R. and Wiedenhoeft, A.: An advancement in removing extraneous color from wood for low-magnification reflected-light image analysis of conifer tree rings, Wood Fiber Sci., 39, 173–183, 2007.
Solomina, O. N., Bushueva, I., Dolgova, E., Jomelli, V., Alexandrin, M., Mikhalenko, V., and Matskovsky, V. V.: Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium, Glob. Planet. Change, 140, 28–58, https://doi.org/10.1016/j.gloplacha.2016.02.008, 2016.
Trachsel, M., Kamenik, C., Grosjean, M., McCarroll, D., Moberg, A., Brázdil, R., Büntgen, U., Dobrovolný, P., Esper, J., Frank, D. C., Friedrich, M., Glaser, R., Larocque-Tobler, I., Nicolussi, K., and Riemann, D.: Multi-archive summer temperature reconstruction for the European Alps, AD 1053–1996, Quaternary Sci. Rev., 46, 66–79, https://doi.org/10.1016/j.quascirev.2012.04.021, 2012.
Tsvetanov, N., Dolgova, E., and Panayotov, M.: First measurements of Blue intensity from Pinus peuce and Pinus heldreichii tree rings and potential for climate reconstructions, Dendrochronologia, 60, 125681, https://doi.org/10.1016/j.dendro.2020.125681, 2020.
Turchin, P., Wood, S. N., Ellner, S. P., Kendall, B. E., Murdoch, W. W., Fischlin, A., Casas, J., McCauley, E., and Briggs, C. J.: Dynamical effects of plant quality and parasitism on population cycles of larch budmoth, Ecology, 84, 1207–1214, https://doi.org/10.1890/0012-9658(2003)084[1207:DEOPQA]2.0.CO;2, 2003.
Unterholzner, L., Castagneri, D., Cerrato, R., Ştirbu, M., Roibu, C.-C., and Carrer, M.: Climate response of a glacial relict conifer across its distribution range is invariant in space but not in time, Sci. Total Environ., 906, 167512, https://doi.org/10.1016/j.scitotenv.2023.167512, 2024.
Wilmking, M., van der Maaten-Theunissen, M., van der Maaten, E., Scharnweber, T., Buras, A., Biermann, C., Gurskaya, M., Hallinger, M., Lange, J., Shetti, R., Smiljanic, M., and Trouillier, M.: Global assessment of relationships between climate and tree growth, Glob. Chang. Biol., 26, 3212–3220, https://doi.org/10.1111/gcb.15057, 2020.
Wilson, R., Rao, R., Rydval, M., Wood, C. V., Larsson, L. Å., and Luckman, B. H.: Blue Intensity for dendroclimatology: The BC blues: A case study from British Columbia, Canada, Holocene, 24, 1428–1438, https://doi.org/10.1177/0959683614544051, 2014.
Wilson, R., Anchukaitis, K. J., Briffa, K. R., Büntgen, U., Cook, E. R., D'Arrigo, R. D., Davi, N., Esper, J., Frank, D. C., Gunnarson, B. E., Hegerl, G., Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V. S., Osborn, T. J., Rydval, M., Schneider, L., Schurer, A., Wiles, G. C., Zhang, P., and Zorita, E.: Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context, Quaternary Sci. Rev., 134, 1–18, https://doi.org/10.1016/j.quascirev.2015.12.005, 2016.
Wilson, R., D'Arrigo, R., Andreu-Hayles, L., Oelkers, R., Wiles, G., Anchukaitis, K., and Davi, N.: Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska, Clim. Past, 13, 1007–1022, https://doi.org/10.5194/cp-13-1007-2017, 2017a.
Wilson, R., Wilson, D., Rydval, M., Crone, A., Büntgen, U., Clark, S., Ehmer, J., Forbes, E., Fuentes, M., Gunnarson, B. E., Linderholm, H. W., Nicolussi, K., Wood, C. V., and Mills, C.: Facilitating tree-ring dating of historic conifer timbers using Blue Intensity, J. Archaeol. Sci., 78, 99–111, https://doi.org/10.1016/j.jas.2016.11.011, 2017b.
Wilson, R., Anchukaitis, K. J., Andreu-Hayles, L., Cook, E. R., D'Arrigo, R. D., Davi, N., Haberbauer, L., Krusic, P. J., Luckman, B., Morimoto, D., Oelkers, R., Wiles, G., and Wood, C. V.: Improved dendroclimatic calibration using blue intensity in the southern Yukon, The Holocene, 29, 1817–1830, https://doi.org/10.1177/0959683619862037, 2019.
Wilson, R., Allen, K., Baker, P., Boswijk, G., Buckley, B., Cook, E., D'Arrigo, R., Druckenbrod, D., Fowler, A., Grandjean, M., Krusic, P., and Palmer, J.: Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand, Biogeosciences, 18, 6393–6421, https://doi.org/10.5194/bg-18-6393-2021, 2021.
Zang, C. and Biondi, F.: treeclim: an R package for the numerical calibration of proxy-climate relationships, Ecography (Cop.)., 38, 431–436, https://doi.org/10.1111/ecog.01335, 2015.
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B. M., Bajracharya, S., Baroni, C., Braun, L. N., Cáceres, B. E., Casassa, G., Cobos, G., Dávila, L. R., Delgado Granados, H., Demuth, M. N., Espizua, L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Ove Hagen, J., Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V., Portocarrero, C. A., Prinz, R., Sangewar, C. V., Severskiy, I., Sigurđsson, O., Soruco, A., Usubaliev, R., and Vincent, C.: Historically unprecedented global glacier decline in the early 21st century, J. Glaciol., 61, 745–762, https://doi.org/10.3189/2015JoG15J017, 2015.
Short summary
Understanding past climates requires data extending beyond modern instrumental records. This study shows that blue intensity (BI) measurements from European larch trees in the Southern Rhaetian Alps provide a stronger proxy for reconstructing past summer temperatures than traditional tree-ring-width data. BI processing enables regional-scale reconstructions and helps extend these reconstructions to the Mediterranean Basin and northern Europe, with excellent correlations to existing data.
Understanding past climates requires data extending beyond modern instrumental records. This...