Articles | Volume 20, issue 1
https://doi.org/10.5194/cp-20-151-2024
https://doi.org/10.5194/cp-20-151-2024
Research article
 | Highlight paper
 | 
18 Jan 2024
Research article | Highlight paper |  | 18 Jan 2024

Toward generalized Milankovitch theory (GMT)

Andrey Ganopolski

Related authors

Surface buoyancy control of millennial-scale variations of the Atlantic meridional ocean circulation
Matteo Willeit, Andrey Ganopolski, Neil R. Edwards, and Stefan Rahmstorf
EGUsphere, https://doi.org/10.5194/egusphere-2024-819,https://doi.org/10.5194/egusphere-2024-819, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Glacial inception through rapid ice area increase driven by albedo and vegetation feedbacks
Matteo Willeit, Reinhard Calov, Stefanie Talento, Ralf Greve, Jorjo Bernales, Volker Klemann, Meike Bagge, and Andrey Ganopolski
Clim. Past, 20, 597–623, https://doi.org/10.5194/cp-20-597-2024,https://doi.org/10.5194/cp-20-597-2024, 2024
Short summary
A transient coupled general circulation model (CGCM) simulation of the past 3 million years
Kyung-Sook Yun, Axel Timmermann, Sun-Seon Lee, Matteo Willeit, Andrey Ganopolski, and Jyoti Jadhav
Clim. Past, 19, 1951–1974, https://doi.org/10.5194/cp-19-1951-2023,https://doi.org/10.5194/cp-19-1951-2023, 2023
Short summary
New estimation of critical insolation – CO2 relationship for triggering glacial inception
Stefanie Talento, Matteo Willeit, and Andrey Ganopolski
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-81,https://doi.org/10.5194/cp-2023-81, 2023
Revised manuscript accepted for CP
Short summary
Deep-future climate change scenarios for site selection of nuclear waste disposal in Germany
Christine Kaufhold and Andrey Ganopolski
Saf. Nucl. Waste Disposal, 2, 89–90, https://doi.org/10.5194/sand-2-89-2023,https://doi.org/10.5194/sand-2-89-2023, 2023
Short summary

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Milankovitch
Unraveling the complexities of the Last Glacial Maximum climate: the role of individual boundary conditions and forcings
Xiaoxu Shi, Martin Werner, Hu Yang, Roberta D'Agostino, Jiping Liu, Chaoyuan Yang, and Gerrit Lohmann
Clim. Past, 19, 2157–2175, https://doi.org/10.5194/cp-19-2157-2023,https://doi.org/10.5194/cp-19-2157-2023, 2023
Short summary
New estimation of critical insolation – CO2 relationship for triggering glacial inception
Stefanie Talento, Matteo Willeit, and Andrey Ganopolski
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-81,https://doi.org/10.5194/cp-2023-81, 2023
Revised manuscript accepted for CP
Short summary
Large ensemble simulations of the North American and Greenland ice sheets at the Last Glacial Maximum with a coupled atmospheric general circulation-ice sheet model
Sam Sherriff-Tadano, Ruza Ivanovic, Lauren Gregoire, Charlotte Lang, Niall Gandy, Jonathan Gregory, Tamsin L. Edwards, Oliver Pollard, and Robin S. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2023-2082,https://doi.org/10.5194/egusphere-2023-2082, 2023
Short summary
Do phenomenological dynamical paleoclimate models have physical similarity with Nature? Seemingly, not all of them do
Mikhail Y. Verbitsky and Michel Crucifix
Clim. Past, 19, 1793–1803, https://doi.org/10.5194/cp-19-1793-2023,https://doi.org/10.5194/cp-19-1793-2023, 2023
Short summary
Deglacial climate changes as forced by different ice sheet reconstructions
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023,https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary

Cited articles

Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K., and Blatter, H.: Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume, Nature, 500, 190–194, https://doi.org/10.1038/nature12374, 2013. 
Adhémar, J. A.: Revolutions de la Mer: Deluges Periodiques, Carilian-Goeury et V. Dalmont, Paris, 1842. 
Albani, S., Balkanski, Y., Mahowald, N., Winckler, G., Maggi, V., and Delmonte, B.: Aerosol-climate interactions during the Last Glacial Maximum, Curr. Clim. Change Rep., 4, 99–114, https://doi.org/10.1007/s40641-018-0100-7, 2018. 
Andrews, J. T.: The Wisconsin Laurentide ice sheet: dispersal centers, problems of rates of retreat, and climatic implications, Arct. Alp. Res., 5, 185–199, https://doi.org/10.1080/00040851.1973.12003700, 1973. 
Archer, D. and Ganopolski, A.: A movable trigger: Fossil fuel CO2 and the onset of the next glaciation, Geochem. Geophy. Geosy., 6, 1–7, https://doi.org/10.1029/2004gc000891, 2005. 
Co-editor-in-chief
The Generalized Milankovitch Theory (GMT) presented and discussed in this paper provides a new view on the long-standing problem raised by the Milankovitch theory of glacial-interglacial cycles. The GMT is based on a deep insight into theory, data, and numerical modeling. It condensates the profound knowledge into a fascinatingly elegant dynamic systems theory.
Short summary
Despite significant progress in modelling Quaternary climate dynamics, a comprehensive theory of glacial cycles is still lacking. Here, using the results of model simulations and data analysis, I present a framework of the generalized Milankovitch theory (GMT), which further advances the concept proposed by Milutin Milankovitch over a century ago. The theory explains a number of facts which were not known during Milankovitch time's, such as the 100 kyr periodicity of the late Quaternary.