Articles | Volume 19, issue 3
https://doi.org/10.5194/cp-19-555-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-555-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A 600 kyr reconstruction of deep Arctic seawater δ18O from benthic foraminiferal δ18O and ostracode Mg ∕ Ca paleothermometry
School for the Environment, University of Massachusetts Boston,
Boston, MA, USA
Max Planck Institute for Chemistry, Mainz, Germany
Department of Geosciences, Princeton University, Princeton, NJ, USA
Katherine J. Keller
Department of Earth and Planetary Sciences, Harvard University,
Cambridge, MA, USA
US Geological Survey, Florence Bascom Geoscience Center, Reston, VA, USA
Robert K. Poirier
US Geological Survey, Florence Bascom Geoscience Center, Reston, VA, USA
Gary S. Dwyer
Division of Earth and Climate Sciences, Nicholas School of
Environment, Duke University, Durham, NC, USA
Morgan F. Schaller
Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
Helen K. Coxall
Department of Geological Sciences, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Matt O'Regan
Department of Geological Sciences, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Thomas M. Cronin
US Geological Survey, Florence Bascom Geoscience Center, Reston, VA, USA
Related authors
Jennifer L. Middleton, Julia Gottschalk, Gisela Winckler, Jean Hanley, Carol Knudson, Jesse R. Farmer, Frank Lamy, Lorraine E. Lisiecki, and Expedition 383 Scientists
Geochronology, 6, 125–145, https://doi.org/10.5194/gchron-6-125-2024, https://doi.org/10.5194/gchron-6-125-2024, 2024
Short summary
Short summary
We present oxygen isotope data for a new sediment core from the South Pacific and assign ages to our record by aligning distinct patterns in observed oxygen isotope changes to independently dated target records with the same patterns. We examine the age uncertainties associated with this approach caused by human vs. automated alignment and the sensitivity of outcomes to the choice of alignment target. These efforts help us understand the timing of past climate changes.
Madeleine Santos, Lisa Bröder, Matt O'Regan, Iván Hernández-Almeida, Tommaso Tesi, Lukas Bigler, Negar Haghipour, Daniel B. Nelson, Michael Fritz, and Julie Lattaud
EGUsphere, https://doi.org/10.5194/egusphere-2025-3953, https://doi.org/10.5194/egusphere-2025-3953, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Our study examined how sea ice in the Beaufort Sea has changed over the past 13,000 years to better understand today’s rapid losses. By analyzing chemical tracers preserved in seafloor sediments, we found that the Early Holocene was largely ice-free, with warmer waters and lower salinity. Seasonal ice began forming about 7,000 years ago and expanded as the climate cooled. These long-term patterns show that continued warming could return the region to mostly ice-free conditions.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
Biogeosciences, 22, 2261–2286, https://doi.org/10.5194/bg-22-2261-2025, https://doi.org/10.5194/bg-22-2261-2025, 2025
Short summary
Short summary
We provide the first systematic survey of planktonic foraminifera in the high Arctic Ocean. Our results describe the abundance and species composition under summer sea ice. They indicate that the polar specialist N. pachyderma is the only species present, with subpolar species absent. The data set will be a valuable reference for continued monitoring of the state of planktonic foraminifera communities as they respond to the ongoing sea-ice decline and the “Atlantification” of the Arctic Ocean.
Jamie Barnett, Felicity Alice Holmes, Joshua Cuzzone, Henning Åkesson, Mathieu Morlighem, Matt O'Regan, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-653, https://doi.org/10.5194/egusphere-2025-653, 2025
Short summary
Short summary
Understanding how ice sheets have changed in the past can allow us to make better predictions for the future. By running a state-of-the-art model of Ryder Glacier, North Greenland, over the past 12,000 years we find that both a warming atmosphere and ocean play a key role in the evolution of the Glacier. Our conclusions stress that accurately quantifying the ice sheet’s interactions with the ocean are required to predict future changes and reliable sea level rise estimates.
Tirza Maria Weitkamp, Mohammad Javad Razmjooei, Paul Nicholas Pearson, and Helen Katherine Coxall
J. Micropalaeontol., 44, 1–78, https://doi.org/10.5194/jm-44-1-2025, https://doi.org/10.5194/jm-44-1-2025, 2025
Short summary
Short summary
Deep Sea Drilling Project Site 407, near Iceland, offers a valuable 25-million-year record of planktonic foraminifera evolution from the Late Cenozoic. Species counts and ranges, assemblage changes, and biostratigraphic zones were identified. Key findings include the shifts in species dominance and diversity. Challenges include sediment gaps and missing biozone markers. We aim to enhance the Neogene–Quaternary Middle Atlas and improve the North Atlantic palaeoceanography and biostratigraphy.
Allison P. Lepp, Lauren E. Miller, John B. Anderson, Matt O'Regan, Monica C. M. Winsborrow, James A. Smith, Claus-Dieter Hillenbrand, Julia S. Wellner, Lindsay O. Prothro, and Evgeny A. Podolskiy
The Cryosphere, 18, 2297–2319, https://doi.org/10.5194/tc-18-2297-2024, https://doi.org/10.5194/tc-18-2297-2024, 2024
Short summary
Short summary
Shape and surface texture of silt-sized grains are measured to connect marine sediment records with subglacial water flow. We find that grain shape alteration is greatest in glaciers where high-energy drainage events and abundant melting of surface ice are inferred and that the surfaces of silt-sized sediments preserve evidence of glacial transport. Our results suggest grain shape and texture may reveal whether glaciers previously experienced temperate conditions with more abundant meltwater.
Jennifer L. Middleton, Julia Gottschalk, Gisela Winckler, Jean Hanley, Carol Knudson, Jesse R. Farmer, Frank Lamy, Lorraine E. Lisiecki, and Expedition 383 Scientists
Geochronology, 6, 125–145, https://doi.org/10.5194/gchron-6-125-2024, https://doi.org/10.5194/gchron-6-125-2024, 2024
Short summary
Short summary
We present oxygen isotope data for a new sediment core from the South Pacific and assign ages to our record by aligning distinct patterns in observed oxygen isotope changes to independently dated target records with the same patterns. We examine the age uncertainties associated with this approach caused by human vs. automated alignment and the sensitivity of outcomes to the choice of alignment target. These efforts help us understand the timing of past climate changes.
Lara F. Pérez, Paul C. Knutz, John R. Hopper, Marit-Solveig Seidenkrantz, Matt O'Regan, and Stephen Jones
Sci. Dril., 33, 33–46, https://doi.org/10.5194/sd-33-33-2024, https://doi.org/10.5194/sd-33-33-2024, 2024
Short summary
Short summary
The Greenland ice sheet is highly sensitive to global warming and a major contributor to sea level rise. In Northeast Greenland, ice–ocean–tectonic interactions are readily observable today, but geological records that illuminate long-term trends are lacking. NorthGreen aims to promote scientific drilling proposals to resolve key scientific questions on past changes in the Northeast Greenland margin that further affected the broader Earth system.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne
The Cryosphere, 17, 2455–2476, https://doi.org/10.5194/tc-17-2455-2023, https://doi.org/10.5194/tc-17-2455-2023, 2023
Short summary
Short summary
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The basal melt drives an exchange flow over the sill, but there is an upper flow limit set by the Atlantic Water features outside the fjord. If this limit is reached, the flow enters a new regime where the melt is suppressed and its sensitivity to the Atlantic Water temperature is reduced.
Gabriel West, Darrell S. Kaufman, Martin Jakobsson, and Matt O'Regan
Geochronology, 5, 285–299, https://doi.org/10.5194/gchron-5-285-2023, https://doi.org/10.5194/gchron-5-285-2023, 2023
Short summary
Short summary
We report aspartic and glutamic acid racemization analyses on Neogloboquadrina pachyderma and Cibicidoides wuellerstorfi from the Arctic Ocean (AO). The rates of racemization in the species are compared. Calibrating the rate of racemization in C. wuellerstorfi for the past 400 ka allows the estimation of sample ages from the central AO. Estimated ages are older than existing age assignments (as previously observed for N. pachyderma), confirming that differences are not due to taxonomic effects.
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
Raisa Alatarvas, Matt O'Regan, and Kari Strand
Clim. Past, 18, 1867–1881, https://doi.org/10.5194/cp-18-1867-2022, https://doi.org/10.5194/cp-18-1867-2022, 2022
Short summary
Short summary
This research contributes to efforts solving research questions related to the history of ice sheet decay in the Northern Hemisphere. The East Siberian continental margin sediments provide ideal material for identifying the mineralogical signature of ice sheet derived material. Heavy mineral analysis from marine glacial sediments from the De Long Trough and Lomonosov Ridge was used in interpreting the activity of the East Siberian Ice Sheet in the Arctic region.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Cited articles
Aagaard, K. and Carmack, E. C.: The role of sea ice and other fresh water in
the Arctic circulation, J. Geophys. Res.-Oceans, 94, 14485-=–14498, 1989.
Adkins, J. F., McIntyre, K., and Schrag, D. P.: The Salinity, Temperature,
and δ18O of the Glacial Deep Ocean, Science, 298, 1769–1773, 2002.
Ahn, S., Khider, D., Lisiecki, L. E., and Lawrence, C. E.: A probabilistic
Pliocene-Pleistocene stack of benthic δ18O using a profile
hidden Markov model, Dynam. Stat. Clim. Sys., 2, dzx002, https://doi.org/10.1093/climsys/dzx002, 2017.
Alexanderson, H., Backman, J., Cronin, T. M., Funder, S., Ingólfsson,
Ó., Jakobsson, M., Landvik, J. Y., Löwemark, L., Mangerud, J., März, C., Möller, P., O'Regan, M., and Spielhagen, R. F.: An Arctic
perspective on dating Mid-Late Pleistocene environmental history, Quaternary
Sci. Rev., 92, 9–31, 2014.
Anderson, L. G., Björk, G., Holby, O., Jones, E. P., Kattner, G.,
Koltermann, K. P., Liljebald, B., Lindegren, R., and Swift, J.: Water masses
and circulation in the Eurasian Basin: Results from the Oden 91 expedition, J. Geophys. Res.-Oceans, 99, 3273–3283, 1994.
Bauch, D. and Bauch, H. A.: Last glacial benthic δ18O anomalies in the polar North Atlantic: A modern analogue evaluation, J. Geophys. Res.-Oceans, 106, 9135–9143, 2001.
Bauch, D., Schlosser, P., and Fairbanks, R. G.: Freshwater balance and the
sources of deep and bottom waters in the Arctic Ocean inferred from the
distribution of , Prog. Oceanogr., 35, 53–80, 1995.
Bauch, H. A., Erlenkeuser, H., Spielhagen, R. F., Struck, U., Matthiessen,
J., Thiede, J., and Heinemeier, J.: A multiproxy reconstruction of the
evolution of deep and surface waters in the subarctic Nordic seas over the
last 30,000 years, Quaternary Sci. Rev., 20, 659-678, 2001.
Billups, K. and Schrag, D. P.: Paleotemperatures and ice volume of the past
27 Myr revisited with paired and measurements on benthic foraminifera, Paleoceanography, 17, 1003, https://doi.org/10.1029/2000PA000567, 2002.
Bischof, J. F. and Darby, D. A.: Mid- to Late Pleistocene Ice Drift in the
Western Arctic Ocean: Evidence for a Different Circulation in the Past,
Science, 277, 74–78, 1997.
Blaauw, M. and Christen, J.A.: Flexible paleoclimate age-depth models using
an autoregressive gamma process, Bayes. Anal., 6, 457–474, 2011.
Boyle, E. A. and Keigwin, L. D.: Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: Changes in deep ocean circulation and chemical inventories, Earth Planet. Sc. Lett., 76, 135–150, 1985.
Cacho, I., Grimalt, J. O., Sierro, F. J., Shackleton, N., and Canals, M.:
Evidence for enhanced Mediterranean themohaline circulation during rapid
climatic coolings, Earth Planet. Sc. Lett., 183, 417–429: 2000.
Cronin, T. M., Holtz Jr., T. R., Stein, R., Spielhagen, R., Fütterer, D.,
and Wollenburg, J.: Late Quaternary paleoceanography of the Eurasian Basin,
Arctic Ocean, Paleoceanography, 10, 259–281, 1995.
Cronin, T. M., Dwyer, G. S., Farmer, J. R., Bauch, H. A., Spielhagen, R. F.,
Jakobsson, M., and Stepanova, A: Deep Arctic Ocean warming during the last
glacial cycle, Nat. Geosci., 5, 631–636, 2012.
Cronin, T. M., Polyak, L., Reed, D., Kandiano, E. S., Marzen, R. E., and Council, E. A.: A 600-ka Arctic sea-ice record from Mendeleev Ridge based on
ostracodes, Quaternary Sci. Rev., 79, 157–167, 2013.
Cronin, T. M., DeNinno, L. H., Polyak, L., Caverly, E. K., Poore, R. Z.,
Brenner, A., and Marzen, R. E.: Quaternary ostracode and foraminiferal
biostratigraphy and paleoceanography in the western Arctic Ocean, Mar.
Micropaleontol., 111, 118–133, https://doi.org/10.1016/j.marmicro.2014.05.001, 2014.
Cronin, T. M., Dwyer, G. S., Caverly, E. K., Farmer, J. R., DeNinno, L. H.,
Rodriguez-Lazaro, J., and Gemery, L.: Enhanced Arctic Amplification Began at
the Mid-Brunhes Event years ago, Sci. Rep., 7, 14475, https://doi.org/10.1038/s41598-017-13821-2, 2017.
Cronin, T. M., Keller, K. J., Farmer, J. R., Schaller, M. F., O'Regan, M.,
Poirier, R., Coxall, R., Dwyer, G. S., Bauch, H., Kindstedt, I. G., Jakobsson, M., Marzen, R., and Santin, E.: Integlacial Paleoclimate in the
Arctic, Paleoceanogr. Paleocl., 34, 1959–1979, https://doi.org/10.1029/2019PA003708, 2019.
Curry, W. B., Duplessy, J. C., Labeyrie, L. D., and Shackleton, N. J.:
Changes in the distribution of δ13C of deep water ΣCO2 between the last glaciation and the Holocene, Paleoceanography, 3, 317–341, 1988.
Darby, D. A., Bischof, J. F., and Jones, G. A.: Radiocarbon chronology of depositional regimes in the western Arctic Ocean, Deep-Sea Res. Pt. II, 44, 1745–1757, 1997.
Duplessy, J. C., Labeyrie, L., and Waelbroeck, C.: Constraints on the ocean
oxygen isotopic enrichment between the Last Glacial Maximum and the Holocene: Paleoceanographic implications, Quaternary Sci. Rev., 21, 315–330, 2002.
Dwyer, G. S., Cronin, T. M., Baker, P. A., Raymo, M. E., Buzas, J. S., and
Corrège, T.: North Atlantic deepwater temperature change during late
Pliocene and late Quaternary climatic cycles, Science, 270, 1347–1351, 1995.
Dwyer, G. S., Cronin, T. M., and Baker, P. A.: Trace elements in marine ostracodes, in: The Ostracoda: Applications in Quaternary Research, edited by: Chivas, J. A. and Holmes, A. R., American Geophysical Union, Washington DC, USA, 205–226, https://doi.org/10.1029/131GM11, 2002.
Elderfield, H., Yu, J., Anand, P., Kiefer, T., and Nyland, B.: Calibrations
for benthic foraminiferal paleothermometry and the carbonate ion hypothesis, Earth Planet. Sc. Lett., 250, 633–649,
https://doi.org/10.1016/j.epsl.2006.07.041, 2006.
Elderfield, H., Greaves, M., Barker, S., Hall, I. R., Tripati, A., Ferretti,
P., Crowhurst, S., Booth, L., and Daunt, C.: A record of bottom water
temperature and seawater δ18O for the Southern Ocean over the
past 440 kyr based on of benthic foraminiferal Uvigerina spp., Quaternary Sci. Rev., 29, 160–169, 2010.
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N.,
Hodell, D. A., and Piotrowski, A. M.: Evolution of ocean temperature and ice
volume through the mid-Pleistocene climate transition, Science, 337, 704–709, 2012.
Elmore, A. C., Sosdian, S., Rosenthal, Y., and Wright, J. D.: A global
evaluation of temperature and carbonate ion control on ratios of ostracoda genus Krithe, Geochem. Geophy. Geosy., 13,
Q09003, https://doi.org/10.1029/2012GC004073, 2012.
Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C.: Revised
carbonate-water isotopic temperature scale, Geol. Soc. Am. Bull., 64, 1315–1326, 1953.
Farmer, J. R., Cronin, T. M., and Dwyer, G. S.: Ostracode paleothermometry in the North Atlantic and Arctic oceans: Evaluation of a carbonate ion effect, Paleoceanography, 27, PA2212, https://doi.org/10.1029/2012PA002305, 2012.
Farmer, J. R., Sigman, D. M., Granger, J., Underwood, O. M., Fripiat, F.,
Cronin, T. M., Martínez-García, A., and Haug, G. H.: Arctic Ocean
stratification set by sea level and freshwater inputs since the last ice
age, Nat. Geosci., 14, 684–689, 2021.
Farmer, J. R., Pico, T., Underwood, O. M., Cleveland-Stout, R., Granger, J.,
Cronin, T. M., Fripiat, F., Martínez-García, A., Haug, G. H., and
Sigman, D. M.: The Bering Strait was flooded 10,000 years before the Last
Glacial Maximum, P. Natl. Acad. Sci. USA, 120, 1–7, https://doi.org/10.1073/pnas.2206742119, 2023.
Ford, H. L. and Raymo, M. E.: Regional and global signals in seawater δ18O records across the mid-Pleistocene transition, Geology, 48, 113–117, 2020.
Gasson, G. W., DeConto, R. M., Pollard, D., and Clark, C. D.: Numerical
simulations of a kilometer-thick Arctic ice shelf consistent with ice
grounding observations, Nat. Commun., 9, 1510, https://doi.org/10.1038/s41467-018-03707-w, 2018.
Geibert, W., Matthiessen, J., Stimac, I., Wollenburg, J., and Stein, R.:
Glacial episodes of a freshwater Arctic Ocean covered by a thick ice shelf,
Nature, 590, 97–102, 2021.
Geibert, W., Matthiessen, J., Wollenburg, J., and Stein, R.: Reply to
`Challenging the hypothesis of an Arctic Ocean lake during recent glacial
episodes' by Hillaire-Marcel, et al., J. Quatern. Sci., 37, 568–571, 2022a.
Geibert, W., Matthiessen, J., Wollenburg, J., and Stein, R.: Reply to: No
freshwater-filled glacial Arctic Ocean, Nature, 602, E4–E6, 2022b.
Graham, D. W., Corliss, B. H., Bender, M. L., and Keigwin, L. D.: Carbon and
oxygen isotopic disequilibria of recent deep-sea benthic foraminifera, Mar. Micropaleontol., 6, 483–497, 1981.
Gray, W. R., Holmes, J., and Shevenell, A.: Evaluation of foraminiferal trace element cleaning protocols on the of marine ostracod genus Krithe, Chem. Geol., 382, 14–23, https://doi.org/10.1016/j.chemgeo.2014.05.022, 2014.
Greco, M., Jonkers, L., Kretschmer, K., Bijma, J., and Kucera, M.: Depth habitat of the planktonic foraminifera Neogloboquadrina pachyderma in the northern high latitudes explained by sea-ice and chlorophyll concentrations, Biogeosciences, 16, 3425–3437, https://doi.org/10.5194/bg-16-3425-2019, 2019.
Guo, L., Semiletov, I., Gustafsson, Ö., Ingri, J., Andersson, P., Dudarev, O., and White, D.: Characterization of Siberian Arctic coastal sediments: Implications for terrestrial organic carbon export, Global
Biogeochem. Cy., 18, GB1036, https://doi.org/10.1029/2003GB002087, 2004.
Haley, B. A., Frank, M., Spielhagen, R. F., and Eisenhauer, A.: Influence of
brine formation on Arctic Ocean circulation over the past 15 million years, Nat. Geosci., 1, 68–72, https://doi.org/10.1038/ngeo.2007.5, 2008.
Hanslik, D., Jakobsson, M., Backman, J., Björck, S., Sellén, E.,
O'Regan, M., Fornaciari, E., and Skog, G.: Quaternary Arctic Ocean sea ice
variations and radiocarbon reservoir age corrections, Quaternary Sci. Rev., 29, 3430–3441, 2010.
Hanslik, D., Löwemark, L., and Jakobsson, M.: Biogenic and detrital-rich intervals in central Arctic Ocean cores identified using x-ray fluorescence scanning, Polar Res., 32, 18386, https://doi.org/10.3402/polar.v32i0.18386, 2013.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner, L. C.: Marine20 – The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP), Radiocarbon, 62, 779–820, 2020.
Hibbert, F. D., Rohling, E. J., Dutton, A., Williams, F. H., Chutcharavan, P. M., Zhao, C., and Tamisiea, M. E.: Coral indicators of past sea-level change: A global repository of U-series dated benchmarks, Quaternary Sci. Rev., 145, 1–56, https://doi.org/10.1016/j.quascirev.2016.04.019, 2016.
Hillaire-Marcel, C. and de Vernal, A.: Stable isotope clue to episodic sea
ice formation in the glacial North Atlantic, Earth Planet. Sc. Lett., 268, 143–150, 2008.
Hillaire-Marcel, C., Ghaleb, B., de Vernal, A., Maccali, J., Cuny, K.,
Jacobel, A., Le Duc, C., and McManus, J.: A New Chronology of Late Quaternary Sequences From the Central Arctic Ocean Based on “Extinction Ages” of Their Excesses in 231Pa and 230Th, Geochem. Geophy. Geosy., 18, 4573–4585, 2017.
Hillaire-Marcel, C., Myers, P. G., Marshall, S., Tarasov, L., Purcell, K.,
Not, C., and de Vernal, A.: Challenging the hypothesis of an Arctic Ocean
lake during recent glacial episodes, J. Quatern. Sci., 37, 559–567, https://doi.org/10.1002/jqs.3421, 2022.
Hoogakker, B., Elderfield, H., Oliver, K., and Crowhurst, S.: Benthic
foraminiferal oxygen isotope offsets over the last glacial-interglacial cycle, Paleoceanography, 25, PA4229, https://doi.org/10.1029/2009PA001870, 2010.
Jakobsson, M., Løvlie, R., Arnold, E. M., Backman, J., Polyak, L., Knutsen, J.-O., and Musatov, E.: Pleistocene stratigraphy and paleoenvironmental variation from Lomonosov Ridge sediments, central Arctic Ocean, Global Planet. Change, 31, 1–22, https://doi.org/10.1016/S0921-8181(01)00110-2, 2001.
Jakobsson, M., Backman, J., Murray, A., and Løvlie, R.: Optically stimulated luminescence dating supports central Arctic Ocean cm-scale sedimentation rates, Geochem. Geophy. Geosy., 4, 1016, https://doi.org/10.1029/2002GC000423, 2003.
Jakobsson, M., Nilsson, J., O'Regan, M., Backman, J., Löwemark, L.,
Dowdeswell, J. A., Mayer, L., Polyak, L., Colleoni, F., Anderson, L. G.,
Björk, G., Darby, D., Eriksson, B., Hanslik, D., Hell, B., Marcussen, C., Sellén, E., and Wallin, A.: An Arctic Ocean ice shelf during MIS 6 constrained by new geophysical and geological data, Quaternary Sci. Rev., 29, 3505–3517, 2010.
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G. and Weatherall, P.: The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophys. Res. Lett., 39, L12609, https://doi.org/10.1029/2012GL052219, 2012.
Jakobsson, M., Nilsson, J., Anderson, L., Backman, J., Björk, G., Cronin, T. M., Kirchner, N., Koshurnikov, A., Mayer, L., Noormets, R., O'Regan, M., Stranne, C., Ananiev, R., Barrientos Macho, N., Cherniykh, D., Coxall, H., Erikkson, B., Flodén T., Gemery, L., Gustafsson, Ö., Jerram, K., Johansson, C., Khortov, A., Mohammad, R., and Semiletov, I.: Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation, Nat. Commun., 7, 10365, https://doi.org/10.1038/ncomms10365, 2016.
Jones, E. P.: Circulation in the Arctic Ocean, Polar Res., 20, 139–146, 2001.
Katz, M. E., Katz, D. R., Wright, J. D., Miller, K. G., Pak, D. K.,
Shackleton, N. J., and Thomas, E.: Early Cenozoic benthic foraminiferal
isotopes: species reliability and interspecies correction factors,
Paleoceanography, 18, 1024, https://doi.org/10.1029/2002PA000798, 2003.
Keigwin, L. D., Klotsko, S., Zhao, N., Reilly, B., Glosan, L., and Driscoll,
N. W.: Deglacial floods in the Beaufort Sea preceded Younger Dryas cooling,
Nat. Geosci., 11, 599–604, https://doi.org/10.1038/s41561-018-0169-6, 2018.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475, 1997.
Lazar, K. B. and Polyak, L.: Pleistocene benthic foraminifers in the Arctic
Ocean: Implications for sea-ice and circulation history, Mar. Micropaleontol., 126, 19–30, 2016.
Lear, C. H., Elderfield, H., and Wilson, P.A.: Cenozoic deep-sea temperatures and global ice volumes from in benthic foraminiferal calcite, Science, 287, 269–272, 2000.
LeGrande, A. N. and Schmidt, G. A.: Global gridded data set of the oxygen
isotopic composition in seawater, Geophys. Res. Lett., 33, L12604, https://doi.org/10.1029/2006GL026011, 2006.
Lehmann, M. and Siegenthaler, U.: Equilibrium oxygen- and hydrogen-isotope
fractionation between ice and water, J. Glaciol., 37, 23–26,
https://doi.org/10.3189/S0022143000042751, 1991.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally
distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lisiecki, L. E. and Stern, J. V.: Regional and global benthic δ18O stacks for the last glacial cycle, Paleoceanogr. Paleocl., 31, 1368–1394, 2016.
Löwemark, L., März, C., O'Regan, M., and Gyllencreutz, R.: Arctic
Ocean Mn-stratigraphy: genesis, synthesis and inter-basin correlation, Quaternary Sci. Rev., 92, 97–111, 2014.
Mackensen, A. and Nam, S.-I.: Taxon-specific epibenthic foraminiferal
δ18O in the Arctic Ocean: Relationship to water masses, deep
circulation, and brine release, Mar. Micropaleontol., 113, 34–43,
https://doi.org/10.1016/j.marmicro.2014.09.002, 2014.
Marchitto, T. M., Curry, W. B., Lynch-Stieglitz, J., Bryan, S. P., Cobb, K.
M., and Lund, D. C.: Improved oxygen isotope temperature calibrations for
cosmopolitan benthic foraminifera, Geochim. Cosmochim. Ac., 130, 1–11, 2014.
Marzen, R. E., DeNinno, L. H., and Cronin, T. M.: Calcareous microfossil-based orbital cyclostratigraphy in the Arctic Ocean, Quaternary
Sci. Rev., 149, 109–121, 2016.
Masson-Delmotte, V., Dreyfus, G., Braconnot, P., Johnsen, S., Jouzel, J., Kageyama, M., Landais, A., Loutre, M.-F., Nouet, J., Parrenin, F., Raynaud, D., Stenni, B., and Tuenter, E.: Past temperature reconstructions from deep ice cores: relevance for future climate change, Clim. Past, 2, 145–165, https://doi.org/10.5194/cp-2-145-2006, 2006.
Matsumoto, K. and Lynch-Stieglitz, J.: Similar glacial and Holocene deep water circulation inferred from southeast Pacific benthic foraminiferal carbon isotope composition, Paleoceanography, 14, 149–163, 1999.
Meland, M. Y., Dokken, T. M., Jansen, E., and Hevrøy, K.: Water mass
properties and exchange between the Nordic seas and the northern North
Atlantic during the period 23–6 ka: Benthic oxygen isotopic evidence,
Paleoceanography, 23, PA1210, https://doi.org/10.1029/2007PA001416, 2008.
Mercer, J. H.: A former ice sheet in the Arctic Ocean?, Palaeogeogr.
Palaeoclimatol. Palaeoecol., 8, 19–27, 1970.
Miller, G. H., Alley, R. B., Brigham-Grette, J., Fitzpatrick, J. J., Polyak,
L., Serreze, M. C., and White, J. W.: Arctic amplification: can the past
constrain the future?, Quaternary Sci. Rev., 29, 1779–1790, 2010.
Niessen, F., Hong, J. K., Hegewald, A., Matthiessen, J., Stein, R., Kim, H.,
Kim, S., Jensen, L., Jokat, W., Nam, S.-I., and Kang, S. H.: Repeated
Pleistocene glaciation of the East Siberian continental margin, Nat. Geosci., 6, 842–846, https://doi.org/10.1038/ngeo1904, 2013.
Nilsson, J. and Walin, G.: Salinity-dominated thermohaline circulation in sill basins: Can two stable equilibria exist?, Tellus A, 62, 123–133, 2010.
Nilsson, J., Jakobsson, M., Borstad, C., Kirchner, N., Björk, G., Pierrehumbert, R. T., and Stranne, C.: Ice-shelf damming in the glacial Arctic Ocean: dynamical regimes of a basin-covering kilometre-thick ice shelf, The Cryosphere, 11, 1745–1765, https://doi.org/10.5194/tc-11-1745-2017, 2017.
Nørgaard-Pedersen, N., Spielhagen, R. F., Thiede, J., and Kassens, R.:
Central Arctic surface ocean environment during the past 80,000 years,
Paleoceanography, 13, 193–204, 1998.
Not, C. and Hillaire-Marcel, C.: Time constraints from 230Th and 231Pa data in late Quaternary, low sedimentation rate sequences from the Arctic Ocean: an example from the northern Mendeleev Ridge, Quaternary Sci. Rev., 29, 3665–3675, 2010.
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Bittig, H. C., Kozyr, A., Álvarez, M., Azetsu-Scott, K., Becker, S., Brown, P. J., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jutterström, S., Landa, C. S., Lauvset, S. K., Michaelis, P., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Velo, A., Wanninkhof, R., and Woosley, R. J.: An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2020, Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, 2020.
O'Regan, M., King, J., Backman, J., Jakobsson, M., Pälike, H., Moran, K., Heil, C., Sakamoto, T., Cronin, T. M., and Jordan, R. W.: Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge, Paleoceanography, 23, PA1S19, https://doi.org/10.1029/2007PA001551, 2008.
O'Regan, M., Backman, J., Fornaciari, E., Jakobsson, M., and West, G.:
Calcareous nannofossils anchor chronologies for Arctic Ocean sediments back to 500 ka, Geology, 48, 1115–1119, https://doi.org/10.1130/G47479.1, 2020.
Osterman, L. E., Poore, R. Z., and Foley, K. M.: Distribution of benthic
Foraminifers (>125 µm) in the Surface Sediments of the Arctic Ocean, US Geological Survey Bulletin 2164, US Department of the Interior, 35 pp., https://pubs.usgs.gov/bul/b2164/b2164.pdf (last access: 1 December 2022), 1999.
Pemberton, P. and Nilsson, J.: The response of the central Arctic Ocean stratification to freshwater perturbations, J. Geophys. Res.-Oceans, 121, 792–817, https://doi.org/10.1002/2015JC011003, 2016.
Phillips, R. L. and Grantz, A.: Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for
the configuration of late Quaternary oceanic and atmospheric circulation in
the Arctic, Mar. Geol., 172, 91–115, 2001.
Poirier, R. K., Cronin, T. M., Briggs Jr., W. M., and Lockwood, R.: Central
Arctic paleoceanography for the last 50 kyr based on ostracode faunal
assemblages, Mar. Micropaleontol., 88–89, 65–76,
https://doi.org/10.1016/j.marmicro.2012.03.004, 2012.
Poirier, R. K., Gaetano, M. Q., Acevedo, K., Schaller, M. F., Raymo, M. E.,
and Kozdon, R.: Quantifying diagenesis, contributing factors, and resulting
isotopic bias in benthic foraminifera using the foraminiferal preservation
index: Implications for geochemical proxy records, Paleoceanogr. Paleocl., 36, e2020PA004110, https://doi.org/10.1029/2020PA004110, 2021.
Polyak, L., Edwards, M. H., Coakley, B. J., and Jakobsson, M.: Ice shelves
in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms, Nature, 410, 453–457, https://doi.org/10.1038/35068536, 2001.
Polyak, L., Curry, W. B., Darby, D. A., Bischof, J., and Cronin, T. M.:
Contrasting glacial/interglacial regimes in the western Arctic Ocean as
exemplified by a sedimentary record from the Mendeleev Ridge, Palaeogeogr. Palaeocl. Palaeoecol., 203, 73–93, 2004.
Polyak, L., Bischof, J., Ortiz, J. D., Darby, D. A., Channell, J. E., Xuan,
C., Kaufman, D. S., Løvlie, R., Schneider, D. A., Eberl, D. D., Adler, R.
E., and Council, E. A.: Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean, Global Planet. Change, 68, 5–17, 2009.
Polyak, L., Best, K. M., Crawford, K. A., Council, E. A., and St-Onge, G.:
Quaternary history of sea ice in the western Arctic Ocean based on foraminifera, Quaternary Sci. Rev., 79, 145–156,
https://doi.org/10.1016/j.quascirev.2012.12.018, 2013.
Poore, R. Z., Phillips, R. L., and Rieck, H. J.: Paleoclimate record for
Northwind Ridge, western Arctic Ocean, Paleoceanography, 8, 149–159, 1993.
Poore, R. Z., Ostermann, D. R., and McGeehin, J.: Stable Isotope Data and AMS
14C Dates from Arctic Ocean Section 1994 Surface Sediment Transect and Box Core Samples from the Mendeleyev Ridge Area, US Geological Survey
Open-File Report 99-48, US Department of the Interior, 17 pp., https://doi.org/10.3133/ofr9948, 1999a.
Poore, R. Z., Osterman, L., Curry, W. B., and Phillips, R. L.: Late Pleistocene and Holocene meltwater events in the western Arctic Ocean,
Geology, 27, 759–762, 1999b.
Purcell, K., Hillaire-Marcel, C., de Vernal, A., Ghaleb, B., and Stein, R.: Potential and limitation of 230Th-excess as a chronostratigraphic tool for late Quaternary Arctic Ocean sediment studies: An example from the Southern Lomonosov Ridge, Mar. Geol., 448, 106802, https://doi.org/10.1016/j.margeo.2022.106802, 2022.
Rainville, L., Lee, C. M., and Woodgate, R. A.: Impact of Wind-Driven Mixing
in the Arctic Ocean, Oceanography, 24, 136–145, 2011.
Ravelo, A. C. and Hillaire-Marcel, C.: Chapter Eighteen: The use of oxygen
and carbon isotopes of foraminifera in Paleoceanography, Dev. Mar. Geol., 1, 735–764, 2007.
Rogge, A., Janout, M., Loginova, N., Trudnowska, E., Hörstmann, C., Wekerle, C., Oziel, L., Schourup-Kristensen, V., Ruiz-Castillo, E., Schulz,
K., Povazhnyy, V. V., Iverson, M. H., and Waite, A. M.: Carbon dioxide sink
in the Arctic Ocean from cross-shelf transport of dense Barents Sea water,
Nat. Geosci., 16, 82–88, 2023.
Rudels, B., Eriksson, P., Grönvall, H., Hietala, R., and Launiainen, J.:
Hydrographic observations in Denmark Strait in fall 1997, and their implications for the entrainment into the overflow plume, Geophys. Res. Lett., 26, 1325–1328, 1999.
Rudels, B., Jones, E. P., Schauer, U., and Eriksson, P.: Atlantic sources of
the Arctic Ocean surface and halocline waters, Polar Res., 23, 181–208, 2004.
Rudels, B., Korhonen, M., Schauer, U., Pisarev, S., Rabe, B., and Wisotzki,
A.: Circulation and transformation of Atlantic water in the Eurasian Basin and the contribution of the Fram Strait inflow branch to the Arctic Ocean heat budget, Prog. Oceanogr., 132, 128–152, 2015.
Sagawa, T., Nagahashi, Y., Satoguchi, Y., Holbourn, A., Itaki, T., Gallagher, S. J., Saavedra-Pellitero, M., Ikehara, K., Irino, T., and Tada, R.: Integrated tepherostratigraphy and stable isotope stratigraphy in the Japan Sea and East China Sea using IODP Sites U1426, U1427, and U1429, Expedition 346 Asian Monsoon, Prog. Earth Planet. Sci., 5, 18, https://doi.org/10.1186/s40645-018-0168-7, 2018.
Schlitzer, R.: Ocean Data View, https://odv.awi.de, last access: 1 December 2022.
Scott, D. B., Schell, T., Rochon, A., and Blasco, S.: Modern benthic
foraminifera in the surface sediments of the Beaufort Shelf, Slope and
Mackenzie Trough, Beaufort Sea, Canada: Taxonomy and summary of surficial
distributions, J. Foraminifer. Res., 38, 228–250, 2008.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research synthesis, Global Planet. Change, 77, 85–96, 2011.
Shackleton, N. J.: Oxygen isotope analyses and Pleistocene temperatures
re-assessed, Nature, 215, 15–17, https://doi.org/10.1038/215015a0, 1967.
Shackleton, N. J.: Attainment of isotopic equilibrium between ocean water
and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial, Méthodes quantitatives d'étude des variations du climat au cours du Pléistocène, 219, 203–209, 1974.
Spielhagen, R. F., Bonani, G., Eisenhauer, A., Frank, M., Frederichs, T.,
Kassens, H., Kubik, P. W., Nørgaard-Pedersen, N., Nowaczyk, N. R., Mangini, A., Schäper, S., Stein, R., Thiede, J., Tiedemann, R., and Wahsner, M.: Arctic Ocean evidence for Late Quaternary initiation of northern Eurasian ice sheets, Geology, 25, 783–786, 1997.
Spielhagen, R. F., Baumann, K.-H., Erlenkeuser, H., Nowaczyk, N. R.,
Nørgaard-Pedersen, N., Vogt, C., and Weiel, D.: Arctic Ocean deep-sea
record of northern Eurasian ice sheet history, Quaternary Sci. Rev., 23, 1455–1483, 2004.
Spielhagen, R. F., Scholten, J. C., Bauch, H. A., and Eisenhauer, A.: No
freshwater-filled glacial Arctic Ocean, Nature, 602, E1–E3, 2022.
Stanford, J. D., Rohling, E. J., Bacon, S., Roberts, A. P., Grousset, F. E.,
and Bolshaw, M.: A new concept for the paleoceanographic evolution of Heinrich event 1 in the North Atlantic, Quaternary Sci. Rev., 30, 1047–1066, 2011.
Thirumalai, K., Quinn, T. M., and Marino, G.: Constraining past seawater δ18O and temperature records developed from foraminiferal geochemistry, Paleoceanography, 31, 1409–1422, https://doi.org/10.1002/2016PA002970, 2016.
Timmermans, M. L. and Garrett, C.: Evolution of the deep water in the Canadian Basin in the Arctic Ocean, J. Phys. Oceanogr., 36, 866–874, 2006.
Vergnaud-Grazzini, C., Ryan, W. B. F., and Cita, M. B.: Stable isotope
fractionation, climate change and episodic stagnation in the eastern
Mediterranean during the late Quaternary, Marine Micropaleontology, 2,
353-370, 1977.
Vermassen, F., O'Regan, M., West, G., Cronin, T. M., and Coxall, H. K.:
Testing the stratigraphic consistency of Pleistocene microfossil bioevents
identified on the Alpha and Lomonosov Ridges, Arctic Ocean, Arct. Antarct. Alp. Res., 53, 309–323, 2021.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F.,
Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records, Quaternary Sci. Rev., 21, 295–305, 2002.
Wang, R., Polyak, L., Xiao, W., Wu, L., Zhang, T., Sun, Y., and Xu, X.:
Late-Middle Quaternary lithostratigraphy and sedimentation patterns on the
Alpha Ridge, central Arctic Ocean: Implications for Arctic climate variability on orbital time scales, Quaternary Sci. Rev., 181, 93–108, 2018.
West, G., Alexanderson, H., Jakobsson, M., and O'Regan, M.: Optically stimulated luminescence dating supports pre-Eemian age for glacial ice on
the Lomonosov Ridge off the East Siberian continental shelf, Quaternary Sci. Rev., 267, 107082, https://doi.org/10.1016/j.quascirev.2021.107082, 2021.
Wollenburg, J. E. and Kuhnt, W.: The response of benthic foraminifers to
carbon flux and primary production in the Arctic Ocean, Mar. Micropaleontol., 40, 189–231, 2000.
Wollenburg, J. E. and Mackensen, A.: On the vertical distribution of living
(Rose Bengal stained) benthic foraminifers in the Arctic Ocean, J. Foraminifer. Res., 28, 268–285, 1998.
Wollenburg, J. E., Knies, J., and Mackensen, A.: High-resolution paleoproductivity fluctuations during the past 24 kyr as indicated by
benthic foraminifera in the marginal Arctic Ocean, Palaeogeogr. Palaeocl. Palaeoecol., 204, 209–238, 2004.
Yasuhara, M., Stepanova, A., Okahashi, H., Cronin, T. M., and Brouwers, E. M.: Taxonomic revision of deep-sea Ostracoda from the Arctic Ocean,
Micropaleontology, 60, 399–444, 2014.
Zeebe, R. E.: Kinetic fractionation of carbon and oxygen isotopes during
hydration of carbon dioxide, Geochim. Cosmochim. Ac., 139, 540–552, 2014.
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over...