Articles | Volume 19, issue 2
https://doi.org/10.5194/cp-19-439-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-439-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CHELSA-TraCE21k – high-resolution (1 km) downscaled transient temperature and precipitation data since the Last Glacial Maximum
Dirk Nikolaus Karger
CORRESPONDING AUTHOR
Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903
Birmensdorf, Switzerland
Michael P. Nobis
Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903
Birmensdorf, Switzerland
Signe Normand
Department of Biology, Aarhus University, Ny Munkegade 116, 8000 Aarhus, Denmark
Catherine H. Graham
Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903
Birmensdorf, Switzerland
Niklaus E. Zimmermann
Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903
Birmensdorf, Switzerland
Related authors
Joren Janzing, Niko Wanders, Marit van Tiel, Barry van Jaarsveld, Dirk Nikolaus Karger, and Manuela Irene Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3072, https://doi.org/10.5194/egusphere-2024-3072, 2024
Short summary
Short summary
Process representation in hyper-resolution large-scale hydrological models (LHM) limits model performance, particularly in mountain regions. Here, we update mountain process representation in an LHM and compare different meteorological forcing products. Structural and parametric changes in snow, glacier and soil processes improve discharge simulations, while meteorological forcing remains a major control on model performance. Our work can guide future development of LHMs.
Johanna Teresa Malle, Giulia Mazzotti, Dirk Nikolaus Karger, and Tobias Jonas
Earth Syst. Dynam., 15, 1073–1115, https://doi.org/10.5194/esd-15-1073-2024, https://doi.org/10.5194/esd-15-1073-2024, 2024
Short summary
Short summary
Land surface processes are crucial for the exchange of carbon, nitrogen, and energy in the Earth system. Using meteorological and land use data, we found that higher resolution improved not only the model representation of snow cover but also plant productivity and that water returned to the atmosphere. Only by combining high-resolution models with high-quality input data can we accurately represent complex spatially heterogeneous processes and improve our understanding of the Earth system.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Dirk Nikolaus Karger, Stefan Lange, Chantal Hari, Christopher P. O. Reyer, Olaf Conrad, Niklaus E. Zimmermann, and Katja Frieler
Earth Syst. Sci. Data, 15, 2445–2464, https://doi.org/10.5194/essd-15-2445-2023, https://doi.org/10.5194/essd-15-2445-2023, 2023
Short summary
Short summary
We present the first 1 km, daily, global climate dataset for climate impact studies. We show that the high-resolution data have a decreased bias and higher correlation with measurements from meteorological stations than coarser data. The dataset will be of value for a wide range of climate change impact studies both at global and regional level that benefit from using a consistent global dataset.
Tobias Siegfried, Aziz Ul Haq Mujahid, Beatrice Sabine Marti, Peter Molnar, Dirk Nikolaus Karger, and Andrey Yakovlev
EGUsphere, https://doi.org/10.5194/egusphere-2023-520, https://doi.org/10.5194/egusphere-2023-520, 2023
Preprint archived
Short summary
Short summary
Our study investigates climate change impacts on water resources in Central Asia's high-mountain regions. Using new data and a stochastic soil moisture model, we found increased precipitation and higher temperatures in the future, leading to higher water discharge despite decreasing glacier melt contributions. These findings are crucial for understanding and preparing for climate change effects on Central Asia's water resources, with further research needed on extreme weather event impacts.
Philipp Brun, Niklaus E. Zimmermann, Chantal Hari, Loïc Pellissier, and Dirk Nikolaus Karger
Earth Syst. Sci. Data, 14, 5573–5603, https://doi.org/10.5194/essd-14-5573-2022, https://doi.org/10.5194/essd-14-5573-2022, 2022
Short summary
Short summary
Using mechanistic downscaling, we developed CHELSA-BIOCLIM+, a set of 15 biologically relevant, climate-related variables at unprecedented resolution, as a basis for environmental analyses. It includes monthly time series for 38+ years and 30-year averages for three future periods and three emission scenarios. Estimates matched well with station measurements, but few biases existed. The data allow for detailed assessments of climate-change impact on ecosystems and their services to societies.
Ionuț Iosifescu Enescu, David Hanimann, Dominik Haas-Artho, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Rebecca Kurup Buchholz, Lucia de Espona, Niklaus E. Zimmermann, and Loïc Pellissier
Abstr. Int. Cartogr. Assoc., 3, 119, https://doi.org/10.5194/ica-abs-3-119-2021, https://doi.org/10.5194/ica-abs-3-119-2021, 2021
Ionuț Iosifescu Enescu, David Hanimann, Dominik Haas-Artho, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Rebecca Kurup Buchholz, Lucia de Espona, Niklaus E. Zimmermann, and Loïc Pellissier
Abstr. Int. Cartogr. Assoc., 3, 120, https://doi.org/10.5194/ica-abs-3-120-2021, https://doi.org/10.5194/ica-abs-3-120-2021, 2021
Joren Janzing, Niko Wanders, Marit van Tiel, Barry van Jaarsveld, Dirk Nikolaus Karger, and Manuela Irene Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3072, https://doi.org/10.5194/egusphere-2024-3072, 2024
Short summary
Short summary
Process representation in hyper-resolution large-scale hydrological models (LHM) limits model performance, particularly in mountain regions. Here, we update mountain process representation in an LHM and compare different meteorological forcing products. Structural and parametric changes in snow, glacier and soil processes improve discharge simulations, while meteorological forcing remains a major control on model performance. Our work can guide future development of LHMs.
Johanna Teresa Malle, Giulia Mazzotti, Dirk Nikolaus Karger, and Tobias Jonas
Earth Syst. Dynam., 15, 1073–1115, https://doi.org/10.5194/esd-15-1073-2024, https://doi.org/10.5194/esd-15-1073-2024, 2024
Short summary
Short summary
Land surface processes are crucial for the exchange of carbon, nitrogen, and energy in the Earth system. Using meteorological and land use data, we found that higher resolution improved not only the model representation of snow cover but also plant productivity and that water returned to the atmosphere. Only by combining high-resolution models with high-quality input data can we accurately represent complex spatially heterogeneous processes and improve our understanding of the Earth system.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Dirk Nikolaus Karger, Stefan Lange, Chantal Hari, Christopher P. O. Reyer, Olaf Conrad, Niklaus E. Zimmermann, and Katja Frieler
Earth Syst. Sci. Data, 15, 2445–2464, https://doi.org/10.5194/essd-15-2445-2023, https://doi.org/10.5194/essd-15-2445-2023, 2023
Short summary
Short summary
We present the first 1 km, daily, global climate dataset for climate impact studies. We show that the high-resolution data have a decreased bias and higher correlation with measurements from meteorological stations than coarser data. The dataset will be of value for a wide range of climate change impact studies both at global and regional level that benefit from using a consistent global dataset.
Tobias Siegfried, Aziz Ul Haq Mujahid, Beatrice Sabine Marti, Peter Molnar, Dirk Nikolaus Karger, and Andrey Yakovlev
EGUsphere, https://doi.org/10.5194/egusphere-2023-520, https://doi.org/10.5194/egusphere-2023-520, 2023
Preprint archived
Short summary
Short summary
Our study investigates climate change impacts on water resources in Central Asia's high-mountain regions. Using new data and a stochastic soil moisture model, we found increased precipitation and higher temperatures in the future, leading to higher water discharge despite decreasing glacier melt contributions. These findings are crucial for understanding and preparing for climate change effects on Central Asia's water resources, with further research needed on extreme weather event impacts.
Philipp Brun, Niklaus E. Zimmermann, Chantal Hari, Loïc Pellissier, and Dirk Nikolaus Karger
Earth Syst. Sci. Data, 14, 5573–5603, https://doi.org/10.5194/essd-14-5573-2022, https://doi.org/10.5194/essd-14-5573-2022, 2022
Short summary
Short summary
Using mechanistic downscaling, we developed CHELSA-BIOCLIM+, a set of 15 biologically relevant, climate-related variables at unprecedented resolution, as a basis for environmental analyses. It includes monthly time series for 38+ years and 30-year averages for three future periods and three emission scenarios. Estimates matched well with station measurements, but few biases existed. The data allow for detailed assessments of climate-change impact on ecosystems and their services to societies.
Jakob J. Assmann, Jesper E. Moeslund, Urs A. Treier, and Signe Normand
Earth Syst. Sci. Data, 14, 823–844, https://doi.org/10.5194/essd-14-823-2022, https://doi.org/10.5194/essd-14-823-2022, 2022
Short summary
Short summary
In 2014 and 2015, the Danish government scanned the whole of Denmark using laser scanners on planes. The information can help biologists learn more about Denmark's natural environment. To make it easier to access the outputs from the scan, we divided the country into 10 m x 10 m squares and summed up the information most relevant to biologists for each square. The result is a set of 70 maps describing the three-dimensional architecture of the Danish landscape and vegetation.
Ionuț Iosifescu Enescu, David Hanimann, Dominik Haas-Artho, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Rebecca Kurup Buchholz, Lucia de Espona, Niklaus E. Zimmermann, and Loïc Pellissier
Abstr. Int. Cartogr. Assoc., 3, 119, https://doi.org/10.5194/ica-abs-3-119-2021, https://doi.org/10.5194/ica-abs-3-119-2021, 2021
Ionuț Iosifescu Enescu, David Hanimann, Dominik Haas-Artho, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Rebecca Kurup Buchholz, Lucia de Espona, Niklaus E. Zimmermann, and Loïc Pellissier
Abstr. Int. Cartogr. Assoc., 3, 120, https://doi.org/10.5194/ica-abs-3-120-2021, https://doi.org/10.5194/ica-abs-3-120-2021, 2021
Cited articles
Adams, J. M. and Faure, H.: Preliminary Vegetation Maps of the World since
the Last Glacial Maximum: An Aid to Archaeological Understanding, J.
Archaeol. Sci., 24, 623–647, https://doi.org/10.1006/jasc.1996.0146, 1997.
Allouche, O., Tsoar, A., and Kadmon, R.: Assessing the accuracy of species
distribution models: prevalence, kappa and the true skill statistic (TSS),
J. Appl. Ecol., 43, 1223–1232,
https://doi.org/10.1111/j.1365-2664.2006.01214.x, 2006.
Alsos, I. G., Ehrich, D., Thuiller, W., Eidesen, P. B., Tribsch, A.,
Schönswetter, P., Lagaye, C., Taberlet, P., and Brochmann, C.: Genetic
consequences of climate change for northern plants, P. R. Soc. B, 279, 2042–2051, https://doi.org/10.1098/rspb.2011.2363, 2012.
Alsos, I. G., Rijal, D. P., Ehrich, D., Karger, D. N., Yoccoz, N. G.,
Heintzman, P. D., Brown, A. G., Lammers, Y., Pellissier, L., Alm, T.,
Bråthen, K. A., Coissac, E., Merkel, M. K. F., Alberti, A., Denoeud, F.,
Bakke, J., and PHYLONORWAY CONSORTIUM: Postglacial species arrival and
diversity buildup of northern ecosystems took millennia, Sci. Adv., 8,
eabo7434, https://doi.org/10.1126/sciadv.abo7434, 2022.
Argus, D. F., Peltier, W. R., Drummond, R., and Moore, A. W.: The Antarctica
component of postglacial rebound model ICE-6G_C (VM5a) based
on GPS positioning, exposure age dating of ice thicknesses, and relative sea
level histories, Geophys. J. Int., 198, 537–563,
https://doi.org/10.1093/gji/ggu140, 2014.
Basist, A., Bell, G. D., and Meentemeyer, V.: Statistical Relationships
between Topography and Precipitation Patterns, J. Climate, 7, 1305–1315,
https://doi.org/10.1175/1520-0442(1994)007<1305:SRBTAP>2.0.CO;2, 1994.
Berrisford, P., Dee, D., Fielding, K., Fuentes, M., Kallberg, P., Kobayashi,
S., and Uppala, S.: The ERA-interim archive, ERA Rep. Ser., 1, 1–16, 2009.
Binney, H., Edwards, M., Macias-Fauria, M., Lozhkin, A., Anderson, P.,
Kaplan, J. O., Andreev, A., Bezrukova, E., Blyakharchuk, T., Jankovska, V.,
Khazina, I., Krivonogov, S., Kremenetski, K., Nield, J., Novenko, E.,
Ryabogina, N., Solovieva, N., Willis, K., and Zernitskaya, V.: Vegetation of
Eurasia from the last glacial maximum to present: Key biogeographic
patterns, Quaternary Sci. Rev., 157, 80–97,
https://doi.org/10.1016/j.quascirev.2016.11.022, 2017.
Böhner, J.: General climatic controls and topoclimatic variations in
Central and High Asia, Boreas, 35, 279–295,
https://doi.org/10.1111/j.1502-3885.2006.tb01158.x, 2006.
Böhner, J. and Antonic, O.:
Land-Surface Parameters Specific to Topo-Climatology, in: GEOMORPHOMETRY: CONCEPTS, SOFTWARE, APPLICATIONS,
edited by: Hengl, T. and Reuter, H. I.,
Geomorphometry: Concepts, Software, Applications, Elsevier Science,
195–226, https://doi.org/10.1016/S0166-2481(08)00008-1, 2009.
Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C., and Haywood, A.
M.: PaleoClim, high spatial resolution paleoclimate surfaces for global land
areas, Sci. Data, 5, 1–9, https://doi.org/10.1038/sdata.2018.254, 2018.
Buizert, C., Gkinis, V., Severinghaus, J. P., He, F., Lecavalier, B. S.,
Kindler, P., Leuenberger, M., Carlson, A. E., Vinther, B., Masson-Delmotte,
V., White, J. W. C., Liu, Z., Otto-Bliesner, B., and Brook, E. J.: Greenland
temperature response to climate forcing during the last deglaciation,
Science, 345, 1177–1180, https://doi.org/10.1126/science.1254961, 2014.
Buizert, C., Keisling, B. A., Box, J. E., He, F., Carlson, A. E., Sinclair,
G., and DeConto, R. M.: Greenland-Wide Seasonal Temperatures During the Last
Deglaciation, Geophys. Res. Lett., 45, 1905–1914,
https://doi.org/10.1002/2017GL075601, 2018.
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes?, J. Climate, 28, 6938–6959, https://doi.org/10.1175/JCLI-D-14-00754.1, 2015.
Carlson, A. E., Ullman, D. J., Anslow, F. S., He, F., Clark, P. U., Liu, Z.,
and Otto-Bliesner, B. L.: Modeling the surface mass-balance response of the
Laurentide Ice Sheet to Bølling warming and its contribution to Meltwater
Pulse 1A, Earth Planet. Sc. Lett., 315–316, 24–29,
https://doi.org/10.1016/j.epsl.2011.07.008, 2012.
Cerezer, F. O., Machac, A., Rangel, T. F., and Dambros, C. S.: Exceptions to
the rule: Relative roles of time, diversification rates and regional energy
in shaping the inverse latitudinal diversity gradient, Glob. Ecol.
Biogeogr., 31, 1794–1809, https://doi.org/10.1111/geb.13559, 2022.
Conrad, O. and Wichmann, V.: SAGA GIS, https://sourceforge.net/projects/saga-gis/ (last access: 16 September 2018), 2015.
Daly, C., Neilson, R. P., and Phillips, D. L.: A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain, J. Appl. Meteorol., 33, 140–158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2, 1994.
Daly, C., Taylor, G. H., and Gibson, W. P.: The PRISM approach to mapping
precipitation and temperature, Proc. 10th AMS Conf Appl. Climatol., 20–23, https://prism.oregonstate.edu/documents/pubs/1997appclim_PRISMapproach_daly.pdf (last access: 29 August 2018),
1997.
Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation data 2010 (GMTED2010): U.S. Geo-logical Survey Open-File Report 2011–1073, 26 pp.,
https://pubs.usgs.gov/of/2011/1073/pdf/of2011-1073.pdf
(last access: 29 August 2018), 2011.
Dering, M., Latałowa, M., Boratyńska, K., Kosiński, P., and Boratyński, A.: Could clonality contribute to the northern survival of grey alder [Alnus incana (L.) Moench] during the Last Glacial Maximum?, Acta Soc. Bot. Pol., 86, 1–14, https://doi.org/10.5586/asbp.3523, 2016.
Dyke, A. S.: An outline of North American deglaciation with emphasis on
central and northern Canada, in: Developments in Quaternary Sciences, vol. 2, edited by: Ehlers, J. and Gibbard, P. L., Elsevier, 373–424,
https://doi.org/10.1016/S1571-0866(04)80209-4, 2004.
Ehlers, J., Gibbard, P. L., and Hughes, P. D.: Quaternary Glaciations –
Extent and Chronology, Volume 15, 1st Edition, ISBN 9780444534477, 2011.
Engler, R. and Guisan, A.: MigClim: Predicting plant distribution and
dispersal in a changing climate, Divers. Distrib., 15, 590–601,
https://doi.org/10.1111/j.1472-4642.2009.00566.x, 2009.
Erb, M. P., Jackson, C. S., Broccoli, A. J., Lea, D. W., Valdes, P. J.,
Crucifix, M., and DiNezio, P. N.: Model evidence for a seasonal bias in
Antarctic ice cores, Nat. Commun., 9, 1361,
https://doi.org/10.1038/s41467-018-03800-0, 2018.
Frei, C. and Schär, C.: A precipitation climatology of the Alps from
high-resolution rain-gauge observations, Int. J. Climatol., 18, 873–900,
https://doi.org/10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9, 1998.
Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., Geiger, T., Halladay, K., Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R., Stevanovic, M., Suzuki, T., Volkholz, J., Burke, E., Ciais, P., Ebi, K., Eddy, T. D., Elliott, J., Galbraith, E., Gosling, S. N., Hattermann, F., Hickler, T., Hinkel, J., Hof, C., Huber, V., Jägermeyr, J., Krysanova, V., Marcé, R., Müller Schmied, H., Mouratiadou, I., Pierson, D., Tittensor, D. P., Vautard, R., van Vliet, M., Biber, M. F., Betts, R. A., Bodirsky, B. L., Deryng, D., Frolking, S., Jones, C. D., Lotze, H. K., Lotze-Campen, H., Sahajpal, R., Thonicke, K., Tian, H., and Yamagata, Y.: Assessing the impacts of 1.5 ∘C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, 2017.
Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X., Leutwyler, D., Lüthi, D., Osuna, C., Schär, C., Schulthess, T. C., and Vogt, H.: Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0, Geosci. Model Dev., 11, 1665–1681, https://doi.org/10.5194/gmd-11-1665-2018, 2018.
Gao, X., Xu, Y., Zhao, Z., Pal, J. S., and Giorgi, F.: On the role of
resolution and topography in the simulation of East Asia precipitation,
Theor. Appl. Climatol., 86, 173–185,
https://doi.org/10.1007/s00704-005-0214-4, 2006.
Garcés-Pastor, S., Coissac, E., Lavergne, S., Schwörer, C., Theurillat, J.-P., Heintzman, P. D., Wangensteen, O. S., Tinner, W., Rey, F., Heer, M., Rutzer, A., Walsh, K., Lammers, Y., Brown, A. G., Goslar, T., Rijal, D. P., Karger, D. N., Pellissier, L., Heiri, O., and Alsos, I. G.: High resolution ancient sedimentary DNA shows that alpine plant diversity is associated with human land use and climate change, Nat. Commun., 13, 6559, https://doi.org/10.1038/s41467-022-34010-4, 2022.
Gherghel, I. and Martin, R. A.: Postglacial recolonization of North America
by spadefoot toads: integrating niche and corridor modeling to study
species' range dynamics over geologic time, Ecography, 43, 1499–1509,
https://doi.org/10.1111/ecog.04942, 2020.
greenmind1980: greenmind1980/CHELSA_TraCE21k: Version 1.0 (V1.0), Zenodo [code], https://doi.org/10.5281/zenodo.4545753, 2021.
Guisan, A. and Thuiller, W.: Predicting species distribution: offering more
than simple habitat models, Ecol. Lett., 8, 993–1009, 2005.
Guisan, A. and Zimmermann, N. E.: Predictive habitat distribution models in
ecology, Ecol. Model., 135, 147–186, 2000.
Hampe, A. and Jump, A. S.: Climate Relicts: Past, Present, Future, Annu.
Rev. Ecol. Evol. S., 42, 313–333,
https://doi.org/10.1146/annurev-ecolsys-102710-145015, 2011.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Sci. Data,
7, 1–18, https://doi.org/10.1038/s41597-020-0453-3, 2020.
He, F.: Simulating Transient Climate Evolution of the Last Deglaciation with
CCSM3, PhD Thesis, University of Wisconsin Madison, Madison, WC, USA, 171 pp., https://www.aos.wisc.edu/aosjournal/Volume15/He_PhD_Thesis.pdf (last access: 2 February 2017), 2011.
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013.
Hewitt, G. M.: Post-glacial re-colonization of European biota, Biol. J.
Linn. Soc., 68, 87–112, https://doi.org/10.1111/j.1095-8312.1999.tb01160.x,
1999.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.:
Very high resolution interpolated climate surfaces for global land areas,
Int. J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005.
Hunter, R. D. and Meentemeyer, R. K.: Climatologically Aided Mapping of
Daily Precipitation and Temperature, J. Appl. Meteorol., 44, 1501–1510,
https://doi.org/10.1175/JAM2295.1, 2005.
Hutchinson, G. E.: Population Studies: Animal Ecology and Demography – Concluding Remarks, Cold Spring Harb. Sym., 22, 415–427,
https://doi.org/10.1101/SQB.1957.022.01.039, 1957.
Jalas, J. and Suominen, J. (Eds.): Atlas Florae Europaeae. Distribution of Vascular Plants in Europe. 3. Salicaceae to Balanophoraceae. – The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, Helsinki, 128 pp., ISBN 951-9108-02-5, 1976.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H.,
Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.:
Climatologies at high resolution for the earth's land surface areas, Sci.
Data, 4, 170122, https://doi.org/10.1038/sdata.2017.122, 2017a.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H.,
Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.:
Climatologies at high resolution for the earth's land surface areas, Dryad
Digital Repository [data set], https://doi.org/10.5061/dryad.kd1d4, 2017b.
Karger, D. N., Schmatz, D. R., Dettling, G., and Zimmermann, N. E.: High
resolution monthly precipitation and temperature timeseries for the period
2006–2100, Sci. Data, 7, 248, https://doi.org/10.1038/s41597-020-00587-y, 2020.
Karger, D. N., Nobis, M., Normand, S., Graham, C. H., and Zimmermann, N. E.:
CHELSA-TraCE21k: Downscaled transient temperature and precipitation data
since the last glacial maximum – EnviDat, envidat [data set],
https://doi.org/10.16904/envidat.211, 2021a.
Karger, D. N., Wilson, A. M., Mahony, C., Zimmermann, N. E., and Jetz, W.:
Global daily 1 km land surface precipitation based on cloud cover-informed
downscaling, Sci. Data, 8, 307, https://doi.org/10.1038/s41597-021-01084-6,
2021b.
Kobashi, T., Severinghaus, J. P., Brook, E. J., Barnola, J.-M., and Grachev,
A. M.: Precise timing and characterization of abrupt climate change 8200
years ago from air trapped in polar ice, Quaternary Sci. Rev., 26, 1212–1222,
https://doi.org/10.1016/j.quascirev.2007.01.009, 2007.
Körner, C.: The use of “altitude” in ecological research, Trends Ecol.
Evol., 22, 569–574, https://doi.org/10.1016/j.tree.2007.09.006, 2007.
Lawrence, M. G.: The Relationship between Relative Humidity and the Dewpoint
Temperature in Moist Air: A Simple Conversion and Applications, B. Am.
Meteorol. Soc., 86, 225–234, https://doi.org/10.1175/BAMS-86-2-225, 2005.
Lawrimore, J. H., Menne, M. J., Gleason, B. E., Williams, C. N., Wuertz, D.
B., Vose, R. S., and Rennie, J.: An overview of the Global Historical
Climatology Network monthly mean temperature data set, version 3, J.
Geophys. Res.-Atmos., 116, D19121,
https://doi.org/10.1029/2011jd016187, 2011.
Leugger, F., Broquet, T., Karger, D. N., Rioux, D., Buzan, E., Corlatti, L.,
Crestanello, B., Curt-Grand-Gaudin, N., Hauffe, H. C., Rolečková,
B., Šprem, N., Tissot, N., Tissot, S., Valterová, R., Yannic, G.,
and Pellissier, L.: Dispersal and habitat dynamics shape the genetic
structure of the Northern chamois in the Alps, J. Biogeogr., 49, 1848–1861,
https://doi.org/10.1111/jbi.14363, 2022.
Liu, M., Bárdossy, A., and Zehe, E.: Interaction of valleys and circulation patterns (CPs) on spatial precipitation patterns in southern Germany, Hydrol. Earth Syst. Sci., 17, 4685–4699, https://doi.org/10.5194/hess-17-4685-2013, 2013.
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P.
U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D.,
Jacob, R., Kutzbach, J., and Cheng, J.: Transient Simulation of Last
Deglaciation with a New Mechanism for Bølling-Allerød Warming,
Science, 325, 310–314, https://doi.org/10.1126/science.1171041, 2009.
Maraun, D.: Bias correction, quantile mapping, and downscaling: Revisiting
the inflation issue, J. Climate, 26, 2137–2143, 2013.
Maraun, D.: Bias Correcting Climate Change Simulations – a Critical Review,
Curr. Clim. Change Rep., 2, 211–220,
https://doi.org/10.1007/s40641-016-0050-x, 2016.
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J.,
Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema,
V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and
Thiele-Eich, I.: Precipitation downscaling under climate change: Recent
developments to bridge the gap between dynamical models and the end user,
Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010.
Marcott, S. A., Clark, P. U., Padman, L., Klinkhammer, G. P., Springer, S.
R., Liu, Z., Otto-Bliesner, B. L., Carlson, A. E., Ungerer, A., Padman, J.,
He, F., Cheng, J., and Schmittner, A.: Ice-shelf collapse from subsurface
warming as a trigger for Heinrich events, P. Natl. Acad. Sci. USA, 108,
13415–13419, https://doi.org/10.1073/pnas.1104772108, 2011.
McMaster, G. S. and Wilhelm, W. W.: Growing degree-days: one equation, two interpretations, Agr. Forest Meteorol., 87, 291–300, https://doi.org/10.1016/S0168-1923(97)00027-0, 1997.
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A.
T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper,
S. C. B., Watterson, I. G., Weaver, A. J., and Zhao, Z.-C.: Global climate
projections, in: Climate Change 2007: The Physical Science Basis.
Contribution of Working Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, UK, ISBN 978 0521 88009-1, 2007.
Meyer-Christoffer, A., Becker, A., Finger, P., Rudolf, B., Schneider, U.,
and Ziese, M.: GPCC Climatology Version 2015 at 0.25∘: Monthly
Land-Surface Precipitation Climatology for Every Month and the Total Year
from Rain-Gauges built on GTS-based and Historic Data., Glob. Precip.
Climatol. Cent. GPCC, https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2015_025, 2015.
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G.
S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and
Pekar, S. F.: The Phanerozoic Record of Global Sea-Level Change, Science,
310, 1293–1298, https://doi.org/10.1126/science.1116412, 2005.
Nelder, J. A. and Wedderburn, R. W. M.: Generalized Linear Models, J. R.
Stat. Soc. Ser. A-Gen., 135, 370–384, https://doi.org/10.2307/2344614, 1972.
Neumann, P., Düben, P., Adamidis, P., Bauer, P., Brück, M.,
Kornblueh, L., Klocke, D., Stevens, B., Wedi, N., and Biercamp, J.:
Assessing the scales in numerical weather and climate predictions: will
exascale be the rescue?, Philos. T. R. Soc. A, 377,
20180148, https://doi.org/10.1098/rsta.2018.0148, 2019.
Nobis, M. P. and Normand, S.: KISSMig – a simple model for R to account for
limited migration in analyses of species distributions, Ecography, 37,
1282–1287, https://doi.org/10.1111/ecog.00930, 2014.
Normand, S., Ricklefs, R. E., Skov, F., Bladt, J., Tackenberg, O., and
Svenning, J.-C.: Postglacial migration supplements climate in determining
plant species ranges in Europe, Philos. T. R. Soc. B,
278, 3644–3653, https://doi.org/10.1098/rspb.2010.2769, 2011.
Oke, T. R.: Boundary layer climates, Routledge, 464 pp., ISBN 9780415043199, 2002.
Otto-Bliesner, B. L., Brady, E. C., Clauzet, G., Tomas, R., Levis, S., and
Kothavala, Z.: Last Glacial Maximum and Holocene Climate in CCSM3, J. Climate,
19, 2526–2544, https://doi.org/10.1175/JCLI3748.1, 2006.
Parducci, L., Jørgensen, T., Tollefsrud, M. M., Elverland, E., Alm, T., Fontana, S. L., Bennett, K. D., Haile, J., Matetovici, I., Suyama, Y., Edwards, M. E., Andersen, K., Rasmussen, M., Boessenkool, S., Coissac, E., Brochmann, C., Taberlet, P., Houmark-Nielsen, M., Larsen, N. K., Orlando, L., Gilbert, M. T. P., Kjær, K. H., Alsos, I. G., and Willerslev, E.: Glacial Survival of Boreal Trees in Northern Scandinavia, Science, 335, 1083–1086, https://doi.org/10.1126/science.1216043, 2012.
Pellissier, L., Eidesen, P. B., Ehrich, D., Descombes, P., Schönswetter,
P., Tribsch, A., Westergaard, K. B., Alvarez, N., Guisan, A., Zimmermann, N.
E., Normand, S., Vittoz, P., Luoto, M., Damgaard, C., Brochmann, C., Wisz,
M. S., and Alsos, I. G.: Past climate-driven range shifts and population
genetic diversity in arctic plants, J. Biogeogr., 43, 461–470,
https://doi.org/10.1111/jbi.12657, 2015.
Peltier, W. R.: Global glacial isostasy and the surface of the ice-age
earth: The ICE-5G (CM2) Model and GRACE, Annu. Rev. Earth Pl. Sc., 32,
111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice
age terminal deglaciation: The global ICE-6G_C (VM5a) model,
J. Geophys. Res.-Sol. Ea., 120, 450–487,
https://doi.org/10.1002/2014JB011176, 2015.
Prentice, I. C., Bartlein, P. J., and Webb, T.: Vegetation and Climate
Change in Eastern North America Since the Last Glacial Maximum, Ecology, 72,
2038–2056, https://doi.org/10.2307/1941558, 1991.
Raup, B., Racoviteanu, A., Khalsa, S. J. S., Helm, C., Armstrong, R., and
Arnaud, Y.: The GLIMS geospatial glacier database: A new tool for studying
glacier change, Global Planet. Change, 56, 101–110,
https://doi.org/10.1016/j.gloplacha.2006.07.018, 2007.
Rotunno, R. and Houze, R. A.: Lessons on orographic precipitation from the
Mesoscale Alpine Programme, Q. J. R. Meteor. Soc., 133, 811–830,
https://doi.org/10.1002/qj.67, 2007.
Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Di
Girolamo, S., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D.,
Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L.,
Schulthess, T., Sprenger, M., Ubbiali, S., and Wernli, H.: Kilometer-scale
climate models: Prospects and challenges, B. Am. Meteorol. Soc., 101,
https://doi.org/10.1175/BAMS-D-18-0167.1, 2019.
Schmidli, J., Frei, C., and Vidale, P. L.: Downscaling from GCM
precipitation: a benchmark for dynamical and statistical downscaling
methods, Int. J. Climatol., 26, 679–689, https://doi.org/10.1002/joc.1287,
2006.
Schulthess, T. C., Bauer, P., Wedi, N., Fuhrer, O., Hoefler, T., and
Schär, C.: Reflecting on the goal and baseline for exascale computing: a
roadmap based on weather and climate simulations, Comput. Sci. Eng., 21,
30–41, 2018.
Scotese, C. R.: Atlas of earth history, PALEOMAP project, http://www.scotese.com/earth.htm (last access: 16 September 2018), 2001.
Seo, C., Thorne, J. H., Hannah, L., and Thuiller, W.: Scale effects in
species distribution models: implications for conservation planning under
climate change, Biol. Lett., 5, 39–43,
https://doi.org/10.1098/rsbl.2008.0476, 2009.
Sepulchre, P., Caubel, A., Ladant, J.-B., Bopp, L., Boucher, O., Braconnot, P., Brockmann, P., Cozic, A., Donnadieu, Y., Dufresne, J.-L., Estella-Perez, V., Ethé, C., Fluteau, F., Foujols, M.-A., Gastineau, G., Ghattas, J., Hauglustaine, D., Hourdin, F., Kageyama, M., Khodri, M., Marti, O., Meurdesoif, Y., Mignot, J., Sarr, A.-C., Servonnat, J., Swingedouw, D., Szopa, S., and Tardif, D.: IPSL-CM5A2 – an Earth system model designed for multi-millennial climate simulations, Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, 2020.
Sevruk, B.: Regional Dependency of Precipitation-Altitude Relationship in
the Swiss Alps, in: Climatic Change at High Elevation Sites, edited by:
Diaz, H. F., Beniston, M., and Bradley, R. S., Springer, the Netherlands,
123–137, https://doi.org/10.1007/978-94-015-8905-5_7, 1997.
Skamarock, C., Klemp, B., Dudhia, J., Gill, O., Liu, Z., Berner, J., Wang, W., Powers, G., Duda, G., Barker, D., and Huang, X.: A Description of the Advanced Research WRF Model Version 4.3, No. NCAR/TN-556+STR, https://doi.org/10.5065/1dfh-6p97, 2021.
Soria-Auza, R. W., Kessler, M., Bach, K., Barajas-Barbosa, P. M., Lehnert,
M., Herzog, S. K., and Bohner, J.: Impact of the quality of climate models
for modelling species occurrences in countries with poor climatic
documentation: a case study from Bolivia, Ecol. Model., 221, 1221–1229,
2010.
Spreen, W. C.: A determination of the effect of topography upon
precipitation, Eos T. Am. Geophys. Un., 28, 285–290,
https://doi.org/10.1029/TR028i002p00285, 1947.
Staples, T. L., Kiessling, W., and Pandolfi, J. M.: Emergence patterns of
locally novel plant communities driven by past climate change and modern
anthropogenic impacts, Ecol. Lett., 25, 1497–1509,
https://doi.org/10.1111/ele.14016, 2022.
Stroeven, A. P., Hättestrand, C., Kleman, J., Heyman, J., Fabel, D.,
Fredin, O., Goodfellow, B. W., Harbor, J. M., Jansen, J. D., Olsen, L.,
Caffee, M. W., Fink, D., Lundqvist, J., Rosqvist, G. C., Strömberg, B.,
and Jansson, K. N.: Deglaciation of Fennoscandia, Quaternary Sci. Rev., 147,
91–121, https://doi.org/10.1016/j.quascirev.2015.09.016, 2016.
Stull, R. B. (Ed.): An Introduction to Boundary Layer Meteorology, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-009-3027-8, 1988.
Svenning, J.-C. and Skov, F.: Limited filling of the potential range in
European tree species, Ecol. Lett., 7, 565–573,
https://doi.org/10.1111/j.1461-0248.2004.00614.x, 2004.
Velichko, A. A., Andreev, A. A., and Klimanov, V. A.: Climate and vegetation
dynamics in the tundra and forest zone during the late glacial and holocene,
Quatern. Int., 41–42, 71–96, https://doi.org/10.1016/S1040-6182(96)00039-0,
1997.
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt,
J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R.: A new digital
bathymetric model of the world's oceans, Earth Space Sci., 2, 331–345,
https://doi.org/10.1002/2015EA000107, 2015.
Weischet, W. and Endlicher, W.: Einführung in die Allgemeine
Klimatologie, Schweizerbart Science Publishers, Stuttgart, Germany, 342 pp., ISBN 978-3-443-07155-4,
2008.
Wilby, R. L., Wigley, T. M. L., Conway, D., Jones, P. D., Hewitson, B. C.,
Main, J., and Wilks, D. S.: Statistical downscaling of general circulation
model output: A comparison of methods, Water Resour. Res., 34, 2995–3008,
https://doi.org/10.1029/98WR02577, 1998.
Williams, J. W. and Jackson, S. T.: Novel climates, no-analog communities,
and ecological surprises, Front. Ecol. Environ., 5, 475–482, 2007.
Williams, J. W., Shuman, B. N., III, T. W., Bartlein, P. J., and Leduc, P.
L.: Late-Quaternary Vegetation Dynamics in North America: Scaling from Taxa
to Biomes, Ecol. Monogr., 74, 309–334, 2004.
Willmott, C. J. and Robeson, S. M.: Climatologically aided interpolation
(CAI) of terrestrial air temperature, Int. J. Climatol., 15, 221–229,
https://doi.org/10.1002/joc.3370150207, 1995.
Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic
Implications of Dynamical and Statistical Approaches to Downscaling Climate
Model Outputs, Clim. Change, 62, 189–216,
https://doi.org/10.1023/B:CLIM.0000013685.99609.9e, 2004.
Woodward, F. I., Fogg, G. E., Heber, U., Laws, R. M., and Franks, F.: The
impact of low temperatures in controlling the geographical distribution of
plants, Philos. T. R. Soc. B, 326, 585–593,
https://doi.org/10.1098/rstb.1990.0033, 1990.
Yannic, G., Pellissier, L., Ortego, J., Lecomte, N., Couturier, S., Cuyler,
C., Dussault, C., Hundertmark, K. J., Irvine, R. J., Jenkins, D. A.,
Kolpashikov, L., Mager, K., Musiani, M., Parker, K. L., Røed, K. H.,
Sipko, T., Þórisson, S. G., Weckworth, B. V., Guisan, A.,
Bernatchez, L., and Côté, S. D.: Genetic diversity in caribou linked
to past and future climate change, Nat. Clim. Change, 4, 132–137,
https://doi.org/10.1038/nclimate2074, 2014.
Yannic, G., Hagen, O., Leugger, F., Karger, D. N., and Pellissier, L.:
Harnessing paleo-environmental modeling and genetic data to predict
intraspecific genetic structure, Evol. Appl., 13, 1526–1542,
https://doi.org/10.1111/eva.12986, 2020.
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global
peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37, L13402,
https://doi.org/10.1029/2010GL043584, 2010.
Short summary
Here we present global monthly climate time series for air temperature and precipitation at 1 km resolution for the last 21 000 years. The topography at all time steps is created by combining high-resolution information on glacial cover from current and Last Glacial Maximum glacier databases with the interpolation of an ice sheet model and a coupling to mean annual temperatures from a global circulation model.
Here we present global monthly climate time series for air temperature and precipitation at 1 km...