Articles | Volume 19, issue 2
https://doi.org/10.5194/cp-19-357-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-357-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climatic and societal impacts in Scandinavia following the 536 and 540 CE volcanic double event
Evelien van Dijk
CORRESPONDING AUTHOR
Department of Geosciences, University of Oslo, Oslo, Norway
Ingar Mørkestøl Gundersen
CORRESPONDING AUTHOR
Museum of Cultural History, University of Oslo, Oslo, Norway
Anna de Bode
Department of Geography, University of Bergen, Bergen, Norway
Helge Høeg
Museum of Cultural History, University of Oslo, Oslo, Norway
Kjetil Loftsgarden
Museum of Cultural History, University of Oslo, Oslo, Norway
Frode Iversen
Museum of Cultural History, University of Oslo, Oslo, Norway
deceased, 4 October 2022
Claudia Timmreck
Max Planck Institute for Meteorology, Hamburg, Germany
Johann Jungclaus
Max Planck Institute for Meteorology, Hamburg, Germany
Department of Geosciences, University of Oslo, Oslo, Norway
Related authors
Evelien J. C. van Dijk, Christoph C. Raible, Michael Sigl, Johann Jungclaus, and Heinz Wanner
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-79, https://doi.org/10.5194/cp-2024-79, 2024
Manuscript not accepted for further review
Short summary
Short summary
The temperature in the past 4000 years consisted of warm and cold periods, initiated by external forcing. But, these periods are not consistent through time and space. We use climate models and reconstructions to study to which extent the periods are reflected in the European climate. We find that on local scales, the chaotic nature of the climate system is larger than the external forcing. This study shows that these periods have to be used very carefully when studying a local site.
Evelien van Dijk, Johann Jungclaus, Stephan Lorenz, Claudia Timmreck, and Kirstin Krüger
Clim. Past, 18, 1601–1623, https://doi.org/10.5194/cp-18-1601-2022, https://doi.org/10.5194/cp-18-1601-2022, 2022
Short summary
Short summary
A double volcanic eruption in 536 and 540 CE caused one of the coldest decades during the last 2000 years. We analyzed new climate model simulations from that period and found a cooling of up to 2°C and a sea-ice extent up to 200 km further south. Complex interactions between sea ice and ocean circulation lead to a reduction in the northward ocean heat transport, which makes the sea ice extend further south; this in turn leads to a surface cooling up to 20 years after the eruptions.
Félix García-Pereira, Jesús Fidel González-Rouco, Nagore Meabe-Yanguas, Philipp de Vrese, Norman Julius Steinert, Johann Jungclaus, and Stephan Lorenz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2126, https://doi.org/10.5194/egusphere-2025-2126, 2025
Short summary
Short summary
This work shows that changing the hydrological state of permafrost produces differences of up to 3 °C in the annual ground temperature, 1–2 m in the active layer thickness, and 5 million km2 in the permafrost extent. Including a deeper vertical thermal scheme reduces the extent decline by more than 2 million km2 in the highest radiative emission scenario. This is shown for the first time in fully-coupled experiments with an Earth System Model.
Wolfgang A. Müller, Stephan Lorenz, Trang V. Pham, Andrea Schneidereit, Renate Brokopf, Victor Brovkin, Nils Brüggemann, Fatemeh Chegini, Dietmar Dommenget, Kristina Fröhlich, Barbara Früh, Veronika Gayler, Helmuth Haak, Stefan Hagemann, Moritz Hanke, Tatiana Ilyina, Johann Jungclaus, Martin Köhler, Peter Korn, Luis Kornblüh, Clarissa Kroll, Julian Krüger, Karel Castro-Morales, Ulrike Niemeier, Holger Pohlmann, Iuliia Polkova, Roland Potthast, Thomas Riddick, Manuel Schlund, Tobias Stacke, Roland Wirth, Dakuan Yu, and Jochem Marotzke
EGUsphere, https://doi.org/10.5194/egusphere-2025-2473, https://doi.org/10.5194/egusphere-2025-2473, 2025
Short summary
Short summary
ICON XPP is a newly developed Earth System model configuration based on the ICON modeling framework. It merges accomplishments from the recent operational numerical weather prediction model with well-established climate components for the ocean, land and ocean-biogeochemistry. ICON XPP reaches typical targets of a coupled climate simulation, and is able to run long integrations and large-ensemble experiments, making it suitable for climate predictions and projections, and for climate research.
Tómas Zoëga, Trude Storelvmo, and Kirstin Krüger
Atmos. Chem. Phys., 25, 2989–3010, https://doi.org/10.5194/acp-25-2989-2025, https://doi.org/10.5194/acp-25-2989-2025, 2025
Short summary
Short summary
We use an Earth system model to systematically investigate the climate response to high-latitude effusive volcanic eruptions as a function of eruption season and size, with a focus on the Arctic. We find that different seasons strongly modulate the climate response, with Arctic surface warming observed in winter and cooling in summer. Additionally, as eruptions increase in terms of sulfur dioxide emissions, the climate response becomes increasingly insensitive to variations in emission strength.
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
Geosci. Model Dev., 18, 1189–1220, https://doi.org/10.5194/gmd-18-1189-2025, https://doi.org/10.5194/gmd-18-1189-2025, 2025
Short summary
Short summary
Vertical mixing is an important process, for example, for tropical sea surface temperature, but cannot be resolved by ocean models. Comparisons of mixing schemes and settings have usually been done with a single model, sometimes yielding conflicting results. We systematically compare two widely used schemes with different parameter settings in two different ocean models and show that most effects from mixing scheme parameter changes are model-dependent.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Evelien J. C. van Dijk, Christoph C. Raible, Michael Sigl, Johann Jungclaus, and Heinz Wanner
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-79, https://doi.org/10.5194/cp-2024-79, 2024
Manuscript not accepted for further review
Short summary
Short summary
The temperature in the past 4000 years consisted of warm and cold periods, initiated by external forcing. But, these periods are not consistent through time and space. We use climate models and reconstructions to study to which extent the periods are reflected in the European climate. We find that on local scales, the chaotic nature of the climate system is larger than the external forcing. This study shows that these periods have to be used very carefully when studying a local site.
Moritz Günther, Hauke Schmidt, Claudia Timmreck, and Matthew Toohey
Atmos. Chem. Phys., 24, 7203–7225, https://doi.org/10.5194/acp-24-7203-2024, https://doi.org/10.5194/acp-24-7203-2024, 2024
Short summary
Short summary
Stratospheric aerosol has been shown to cause pronounced cooling in the tropical Indian and western Pacific oceans. Using a climate model, we show that this arises from enhanced meridional energy export via the stratosphere. The aerosol causes stratospheric heating and thus an acceleration of the Brewer–Dobson circulation that accomplishes this transport. Our findings highlight the importance of circulation adjustments and surface perspectives on forcing for understanding temperature responses.
Dennis Booge, Jerry F. Tjiputra, Dirk J. L. Olivié, Birgit Quack, and Kirstin Krüger
Earth Syst. Dynam., 15, 801–816, https://doi.org/10.5194/esd-15-801-2024, https://doi.org/10.5194/esd-15-801-2024, 2024
Short summary
Short summary
Oceanic bromoform, produced by algae, is an important precursor of atmospheric bromine, highlighting the importance of implementing these emissions in climate models. The simulated mean oceanic concentrations align well with observations, while the mean atmospheric values are lower than the observed ones. Modelled annual mean emissions mostly occur from the sea to the air and are driven by oceanic concentrations, sea surface temperature, and wind speed, which depend on season and location.
Zhihong Zhuo, Herman F. Fuglestvedt, Matthew Toohey, and Kirstin Krüger
Atmos. Chem. Phys., 24, 6233–6249, https://doi.org/10.5194/acp-24-6233-2024, https://doi.org/10.5194/acp-24-6233-2024, 2024
Short summary
Short summary
This work simulated volcanic eruptions with varied eruption source parameters under different initial conditions with a fully coupled Earth system model. We show that initial atmospheric conditions control the meridional distribution of volcanic volatiles and modulate volcanic forcing and subsequent climate and environmental impacts of tropical and Northern Hemisphere extratropical eruptions. This highlights the potential for predicting these impacts as early as the first post-eruption month.
Jean-Paul Vernier, Thomas J. Aubry, Claudia Timmreck, Anja Schmidt, Lieven Clarisse, Fred Prata, Nicolas Theys, Andrew T. Prata, Graham Mann, Hyundeok Choi, Simon Carn, Richard Rigby, Susan C. Loughlin, and John A. Stevenson
Atmos. Chem. Phys., 24, 5765–5782, https://doi.org/10.5194/acp-24-5765-2024, https://doi.org/10.5194/acp-24-5765-2024, 2024
Short summary
Short summary
The 2019 Raikoke eruption (Kamchatka, Russia) generated one of the largest emissions of particles and gases into the stratosphere since the 1991 Mt. Pinatubo eruption. The Volcano Response (VolRes) initiative, an international effort, provided a platform for the community to share information about this eruption and assess its climate impact. The eruption led to a minor global surface cooling of 0.02 °C in 2020 which is negligible relative to warming induced by human greenhouse gas emissions.
Christina V. Brodowsky, Timofei Sukhodolov, Gabriel Chiodo, Valentina Aquila, Slimane Bekki, Sandip S. Dhomse, Michael Höpfner, Anton Laakso, Graham W. Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Eugene Rozanov, Anja Schmidt, Takashi Sekiya, Simone Tilmes, Claudia Timmreck, Sandro Vattioni, Daniele Visioni, Pengfei Yu, Yunqian Zhu, and Thomas Peter
Atmos. Chem. Phys., 24, 5513–5548, https://doi.org/10.5194/acp-24-5513-2024, https://doi.org/10.5194/acp-24-5513-2024, 2024
Short summary
Short summary
The aerosol layer is an essential part of the climate system. We characterize the sulfur budget in a volcanically quiescent (background) setting, with a special focus on the sulfate aerosol layer using, for the first time, a multi-model approach. The aim is to identify weak points in the representation of the atmospheric sulfur budget in an intercomparison of nine state-of-the-art coupled global circulation models.
Félix García-Pereira, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, Norman Julius Steinert, Elena García-Bustamante, Philip de Vrese, Johann Jungclaus, Stephan Lorenz, Stefan Hagemann, Francisco José Cuesta-Valero, Almudena García-García, and Hugo Beltrami
Earth Syst. Dynam., 15, 547–564, https://doi.org/10.5194/esd-15-547-2024, https://doi.org/10.5194/esd-15-547-2024, 2024
Short summary
Short summary
According to climate model estimates, the land stored 2 % of the system's heat excess in the last decades, while observational studies show it was around 6 %. This difference stems from these models using land components that are too shallow to constrain land heat uptake. Deepening the land component does not affect the surface temperature. This result can be used to derive land heat uptake estimates from different sources, which are much closer to previous observational reports.
Laura C. Jackson, Eduardo Alastrué de Asenjo, Katinka Bellomo, Gokhan Danabasoglu, Helmuth Haak, Aixue Hu, Johann Jungclaus, Warren Lee, Virna L. Meccia, Oleg Saenko, Andrew Shao, and Didier Swingedouw
Geosci. Model Dev., 16, 1975–1995, https://doi.org/10.5194/gmd-16-1975-2023, https://doi.org/10.5194/gmd-16-1975-2023, 2023
Short summary
Short summary
The Atlantic meridional overturning circulation (AMOC) has an important impact on the climate. There are theories that freshening of the ocean might cause the AMOC to cross a tipping point (TP) beyond which recovery is difficult; however, it is unclear whether TPs exist in global climate models. Here, we outline a set of experiments designed to explore AMOC tipping points and sensitivity to additional freshwater input as part of the North Atlantic Hosing Model Intercomparison Project (NAHosMIP).
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Ilaria Quaglia, Claudia Timmreck, Ulrike Niemeier, Daniele Visioni, Giovanni Pitari, Christina Brodowsky, Christoph Brühl, Sandip S. Dhomse, Henning Franke, Anton Laakso, Graham W. Mann, Eugene Rozanov, and Timofei Sukhodolov
Atmos. Chem. Phys., 23, 921–948, https://doi.org/10.5194/acp-23-921-2023, https://doi.org/10.5194/acp-23-921-2023, 2023
Short summary
Short summary
The last very large explosive volcanic eruption we have measurements for is the eruption of Mt. Pinatubo in 1991. It is therefore often used as a benchmark for climate models' ability to reproduce these kinds of events. Here, we compare available measurements with the results from multiple experiments conducted with climate models interactively simulating the aerosol cloud formation.
Shih-Wei Fang, Claudia Timmreck, Johann Jungclaus, Kirstin Krüger, and Hauke Schmidt
Earth Syst. Dynam., 13, 1535–1555, https://doi.org/10.5194/esd-13-1535-2022, https://doi.org/10.5194/esd-13-1535-2022, 2022
Short summary
Short summary
The early 19th century was the coldest period over the past 500 years, when strong tropical volcanic events and a solar minimum coincided. This study quantifies potential surface cooling from the solar and volcanic forcing in the early 19th century with large ensemble simulations, and identifies the regions that their impacts cannot be simply additive. The cooling perspective of Arctic amplification exists in both solar and post-volcano period with the albedo feedback as the main contribution.
Evelien van Dijk, Johann Jungclaus, Stephan Lorenz, Claudia Timmreck, and Kirstin Krüger
Clim. Past, 18, 1601–1623, https://doi.org/10.5194/cp-18-1601-2022, https://doi.org/10.5194/cp-18-1601-2022, 2022
Short summary
Short summary
A double volcanic eruption in 536 and 540 CE caused one of the coldest decades during the last 2000 years. We analyzed new climate model simulations from that period and found a cooling of up to 2°C and a sea-ice extent up to 200 km further south. Complex interactions between sea ice and ocean circulation lead to a reduction in the northward ocean heat transport, which makes the sea ice extend further south; this in turn leads to a surface cooling up to 20 years after the eruptions.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Guangyu Liu, Toshihiko Hirooka, Nawo Eguchi, and Kirstin Krüger
Atmos. Chem. Phys., 22, 3493–3505, https://doi.org/10.5194/acp-22-3493-2022, https://doi.org/10.5194/acp-22-3493-2022, 2022
Short summary
Short summary
The sudden stratospheric warming (SSW) event that occurred in September 2019 in the Southern Hemisphere was analyzed. A large warming and decelerated westerly winds were observed in the southern polar region. Since a reversal from westerly to easterly winds did not take place SSW2019 was classified as a minor SSW. The total wave forcing and the contribution from PW1 were larger in 2019. The strong and long-lasting planetary-scale waves with zonal wavenumber 1 played a role in SSW2019.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Paul D. Hamer, Virginie Marécal, Ryan Hossaini, Michel Pirre, Gisèle Krysztofiak, Franziska Ziska, Andreas Engel, Stephan Sala, Timo Keber, Harald Bönisch, Elliot Atlas, Kirstin Krüger, Martyn Chipperfield, Valery Catoire, Azizan A. Samah, Marcel Dorf, Phang Siew Moi, Hans Schlager, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 16955–16984, https://doi.org/10.5194/acp-21-16955-2021, https://doi.org/10.5194/acp-21-16955-2021, 2021
Short summary
Short summary
Bromoform is a stratospheric ozone-depleting gas released by seaweed and plankton transported to the stratosphere via convection in the tropics. We study the chemical interactions of bromoform and its derivatives within convective clouds using a cloud-scale model and observations. Our findings are that soluble bromine gases are efficiently washed out and removed within the convective clouds and that most bromine is transported vertically to the upper troposphere in the form of bromoform.
Elizaveta Malinina, Alexei Rozanov, Ulrike Niemeier, Sandra Wallis, Carlo Arosio, Felix Wrana, Claudia Timmreck, Christian von Savigny, and John P. Burrows
Atmos. Chem. Phys., 21, 14871–14891, https://doi.org/10.5194/acp-21-14871-2021, https://doi.org/10.5194/acp-21-14871-2021, 2021
Short summary
Short summary
In the paper, changes in the stratospheric aerosol loading after the 2018 Ambae eruption were analyzed using OMPS-LP observations. The eruption was also simulated with the MAECHAM5-HAM global climate model. Generally, the model and observations agree very well. We attribute the good consistency of the results to a precisely determined altitude and mass of the volcanic injection, as well as nudging of the meteorological data. The radiative forcing from the eruption was estimated to be −0.13 W m−2.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Oliver Gutjahr, Nils Brüggemann, Helmuth Haak, Johann H. Jungclaus, Dian A. Putrasahan, Katja Lohmann, and Jin-Song von Storch
Geosci. Model Dev., 14, 2317–2349, https://doi.org/10.5194/gmd-14-2317-2021, https://doi.org/10.5194/gmd-14-2317-2021, 2021
Short summary
Short summary
We compare four ocean vertical mixing schemes in 100-year coupled simulations with the Max Planck Institute Earth System Model (MPI-ESM1.2) and analyse their model biases. Overall, the mixing schemes modify biases in the ocean interior that vary with region and variable but produce a similar global bias pattern. We therefore cannot classify any scheme as superior but conclude that the chosen mixing scheme may be important for regional biases.
Clarissa Alicia Kroll, Sally Dacie, Alon Azoulay, Hauke Schmidt, and Claudia Timmreck
Atmos. Chem. Phys., 21, 6565–6591, https://doi.org/10.5194/acp-21-6565-2021, https://doi.org/10.5194/acp-21-6565-2021, 2021
Short summary
Short summary
Volcanic forcing is counteracted by stratospheric water vapor (SWV) entering the stratosphere as a consequence of aerosol-induced cold-point warming. We find that depending on the emission strength, aerosol profile height and season of the eruption, up to 4 % of the tropical aerosol forcing can be counterbalanced. A power function relationship between cold-point warming/SWV forcing and AOD in the yearly average is found, allowing us to estimate the SWV forcing for comparable eruptions.
Ulrike Niemeier, Felix Riede, and Claudia Timmreck
Clim. Past, 17, 633–652, https://doi.org/10.5194/cp-17-633-2021, https://doi.org/10.5194/cp-17-633-2021, 2021
Short summary
Short summary
The 13 kyr BP Laacher See eruption impacted local environments, human communities and climate. We have simulated the evolution of its fine ash and sulfur cloud such that it reflects the empirically known ash distribution. In our models, the heating of the ash causes a mesocyclone which changes the dispersion of the cloud itself, resulting in enhanced transport to low latitudes. This may partially explain why no Laacher See ash has yet been found in Greenlandic ice cores.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Cited articles
Alm, T. and Elvevåg, B.: Ergotism in Norway. Part 1: The symptoms and
their interpretation from the late Iron Age to the seventeenth century,
Hist. Psychiatr., 24, 15–33, https://doi.org/10.1177/0957154X11433960, 2013.
Andersson, T.: Altgermanische Ethnika, Namn och Bygd, 97, 5–39, 2009 (in Norwegian).
Askeladden: https://askeladden.ra.no/, last access: 28 November 2022.
Åssveen, M. and Abrahamsen, U.: Varmesum for sorter og arter av korn,
Grønn forskning, 2, 55–59, 1999 (in Norwegian).
Axboe, M.: The year 536 and the Scandinavian gold hoards, Mediev. Archaeol., 43, 186–188, 1999.
Axboe, M.: Guld og guder, in: Ragnarok. Odins verden, Torsten Capelle and Christian Fischer (publishers), Silkeborg, 41–56, 2005 (in Norwegian).
Baillie, M. G.: Dendrochronology raises questions about the nature of the AD
536 dust-veil event, The Holocene, 4, 212–217, 1994.
Baillie, M. G.: Proposed re-dating of the European ice core chronology by
seven years prior to the 7th century AD, Geophys. Res. Lett., 35, L15813, https://doi.org/10.1029/2008GL034755, 2008.
Bajard, M., Ballo, E., Høeg, H. I., Bakke, J., Støren, E., Loftsgarden,
K., Iversen, F., Hagopian, W., Jahren, A. H., Svensen, H. H., and Krüger,
K.: Climate adaptation of pre-Viking societies, Quaternary Sci. Rev.,
278, 107374, https://doi.org/10.1016/j.quascirev.2022.107374, 2022.
Bårdseth, G. A.: Huset på Store Tune – og nokre betraktningar om
førhistoriske hus i Østfold, in: Historien i forhistorien. Festskrift
til Einar Østmo på 60-årsdagen, Kulturhistorisk museum, Universitetet i Oslo, Oslo, 273–280, ISBN 82-8084-027-3, 2006 (in Norwegian).
Bårdseth, G. A.: Kulturhistorisk syntese, in: Evaluering – resultat,
E6-prosjektet Østfold. Band 5, Kulturhistorisk museum, Fornminneseksjonen, Oslo, 79–104, ISBN 978-82-8084-038-7, 2008 (in Norwegian).
Bårdseth, G. A., Sageider, B. M., and Sandvik, P. U.: Busetjingsspor og
mogleg hall frå yngre jarnalder på Bjørnstad søndre (lokalitet
11), in: Hus, gard og graver langs E6 i Sarpsborg kommune. E6-prosjektet
Østfold. Band 2, Kulturhistorisk museum, Fornminneseksjonen, Oslo, 71–90, ISBN 978-82-8084-035-6, 2007 (in Norwegian).
Berglund, B. E.: Human impact and climate changes – synchronous events and a
causal link?, Quatern. Int., 105, 7–12, 2003.
Berglund, B. E., Birks, H. J. B., Ralska-Jasiewiczowa, M., and Wright, H. E.:
Palaeoecological events during the last 15 000 years. Regional Syntheses of
Palaeoecological Studies of Lakes and Mires in Europe, Whiley, Chichester, ISBN: 0471958409, 1996 (in Norwegian).
Bjørnstad, Å: Vårt daglege brød: kornets kulturhistorie, 2nd
utg. edn., Vidarforlaget, Oslo, ISBN 9788279901303, 2012 (in Norwegian).
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using
an autoregressive gamma process, Bayesian. Anal., 6, 457–474, 2011.
Bondeson, L. and Bondesson, T.: On the mystery cloud of AD 536, a crisis
in dispute and epidemic ergotism: a linking hypothesis, Danish Journal of
Archaeology, 3, 61–67, https://doi.org/10.1080/21662282.2014.941176, 2014.
Briffa, K. R., Jones, P. D., Schweingruber, F. H., and Osborn, T. J.: Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years, Nature, 393, 450–455, 1998.
Brink, S.: Law and society. The Viking World, Routledge, London, 23–31, ISBN 9780415333153, 2008a.
Brink, S.: People and land in early Scandinavia, in: Franks, Northmen, and Slavs: Identities and State Formation in Early Medieval Europe, Cursor Mundi, edited by: Geary, P., Urbanìczyk, P., and Garipzanov, I. H., Brepols,
Turnhout, 5, 87–112, 2008b.
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet,
V., Kaplan, J. O., Herzig, F., Heussner, K. U., Wanner, H., and Luterbacher,
J.: 2500 years of European climate variability and human susceptibility,
Science, 331, 578–582, 2011.
Büntgen, U., Myglan, V. S., Ljungqvist, F. C., McCormick, M., Di Cosmo,
N., Sigl, M., Jungclaus, J., Wagner, S., Krusic, P. J., Esper, J., and Kaplan, J. O.: Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD, Nat. Geosci., 9, 231–236, 2016.
Carter, T. R.: Changes in the thermal growing season in Nordic countries
during the past century and prospects for the future, Agr. Food Sci., 7, 161–179, https://doi.org/10.23986/afsci.72857, 1998.
Cassou, C.: Intraseasonal interaction between the Madden–Julian oscillation
and the North Atlantic Oscillation, Nature, 455, 523–527, 2008.
Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank,
D., Krusic, P. J., Tegel, W., van der Schrier, G., Andreu-Hayles, L., and
Baillie, M.: Old World megadroughts and pluvials during the Common Era,
Science Advances, 1, e1500561, https://doi.org/10.1126/sciadv.1500561, 2015.
Crema, E. R. and Bevan, A.: Inference from large sets of radiocarbon dates:
software and methods, Radiocarbon, 63, 23–39, https://doi.org/10.1017/RDC.2020.95, 2020.
Dahl, B., Husvegg, J. R., and Åhrberg, E. S.: Arkeologisk og botanisk
undersøkelse av hus i Bergevik. Berge gnr. 37 bnr. 1, Forsand kommune,
Rogaland. Oppdragsrapport, unpublished excavation report, Arkeologisk
museum, Universitetet i Stavanger, 2017 (in Norwegian).
Damlien, H., Berg-Hanse, I. M., Melheim, L., Mjærum, A., Persson, P.,
Schülke, A., and Solheim, S.: Steinalderen i Sørøst-Norge. Faglig
program for steinalderundersøkelser ved Kulturhistorisk museum, Cappelen Damm akademisk NOASP, Oslo, https://doi.org/10.23865/noasp.141, 2021 (in Norwegian).
de Bode, A.: A pollen-based reconstruction of the paleoenvironment and
cultural landscape in Southeastern Norway from the Iron Age to the Middle
Ages, Bachelor thesis, Leiden University, https://hdl.handle.net/1887/3209493 (last access: 28 November 2022), 2021.
Degroot, D., Anchukaitis, K., Bauch, M., Burnham, J., Carnegy, F., Cui, J.,
de Luna, K., Guzowski, P., Hambrecht, G., Huhtamaa, H., and Izdebski, A.:
Towards a rigorous understanding of societal responses to climate change,
Nature, 591, 539–550, 2021.
Di Cosmo, N., Oppenheimer, C., and Büntgen, U.: Interplay of
environmental and socio-political factors in the downfall of the Eastern
Türk Empire in 630 CE, Clim. Change, 145, 383–395, 2017.
Driscoll, S., Bozzo, A., Gray, L. J., Robock, A., and Stenchikov, G.: Coupled
Model Intercomparison Project 5 (CMIP5) simulations of climate following
volcanic eruptions, J. Geophys. Res., 117, D17105, https://doi.org/10.1029/2012JD017607, 2012.
ESGF: https://esgf.llnl.gov/, last access:19 January 2023.
Esper, J., Büntgen, U., Timonen, M., and Frank, D. C.: Variability and
extremes of northern Scandinavian summer temperatures over the past two
millennia, Global Planet. Change, 88, 1–9, 2012.
Fan, Y., Tjiputra, J., Muri, H., Lombardozzi, D., Park, C. E., Wu, S., and
Keith, D.: Solar geoengineering can alleviate climate change pressures on
crop yields, Nature Food, 2, 373–381, 2021.
Folland, C. K., Knight, J., Linderholm, H. W., Fereday, D., Ineson, S., and
Hurrell, J. W.: The summer North Atlantic Oscillation: past, present, and
future, J. Climate, 22, 1082–1103, 2009.
Foss, H.: Beretning fra Statens forsøksstasjon for fjellbygdene 1925,
Ottende arbeidsår, Forsøk med rug og hvete i fjellbygdene, Grøndahl & Søns Boktrykkeri, Oslo, 167–187, 1926 (in Norwegian).
Foss, H.: Kornavl i fjellbygder, Cappelen, Oslo, 167–187, 1927 (in Norwegian).
Frøseth, R. B.: Korn, in: Økologisk handbok. Matvekster, edited by: Serikstad, G. L., GAN Forlag, Oslo, 167–187, ISBN 82-492-0648-7, 2004 (in Norwegian).
Goring, S., Dawson, A., Simpson, G. L., Ram, K., Graham, R. W., Grimm, E.
C., and Williams, J. W.: neotoma: A Programmatic Interface to the Neotoma
Paleoecological Database, Open Quaternary, 1, 2, https://doi.org/10.5334/oq.ab, 2015.
Göthberg, H. (Ed.): Mer än bara hus och gårdar, in: Hus och bebyggelse i Uppland. Delar av förhistorisk sammanhang, Vol. 3, Riksantikvarieämbetet, Uppsala, ISBN 978-91-7209-467-3, 2007 (in Norwegian).
Göthberg, H. and Sundkvist, A.: Järnalderns gårdsmiljöer –
tradition och förandring under tusen år, in: At Uppsalum – människor och landskapande. Utbyggnad av Ostkustbanan genom Gamla Uppsala, edited by: Jörpeland, L. B., Göthberg, H., Seiler, A., and Wikborg, J., Arkeologerna, Statens historiska museer, Stockholm, 21–46, ISBN: 9789198390131, 2017 (in Norwegian).
Gräslund, B.: Fimbulvintern, Ragnarök och klimatkrisen år 536-537 e. Kr., Saga och sed. Kungl. Gustav Adolfs Akademiens årsbok, 2007, 93–123, 2007 (in Norwegian).
Gräslund, B. and Price, N.: Twilight of the gods? The “dust veil
event” of AD 536 in critical perspective, Antiquity, 86, 428–443, 2012.
Grudd, H.: Torneträsk tree-ring width and density AD 500–2004: a test
of climatic sensitivity and a new 1500-year reconstruction of north
Fennoscandian summers, Clim. Dynam., 31, 843–857, 2008.
Gundersen, I. M.: Jordbruksbosetninger i dalbunnen. Fellestrekk, in:
Gård og utmark i Gudbrandsdalen. Arkeologiske undersøkelser i Fron
2011-2012, Portal forlag, Kristiansand, 121–130, https://doi.org/10.23865/noasp.56, 2016 (in Norwegian).
Gundersen, I. M.: The Fimbulwinter theory and the 6th century crisis in the
light of Norwegian archaeology: Towards a human-environmental approach,
Primitive tider, 21, 101–119, 2019.
Gundersen, I. M.: Iron Age Vulnerability. The Fimbulwinter hypothesis and
the archaeology of the inlands of eastern Norway, PhD monograph, University of Oslo, Oslo, Zenodo [thesis], https://doi.org/10.5281/zenodo.5782896, 2021.
Gundersen, I. M., Rødsrud, C. L., and Post-Melbye, J. R.: Kokegroper som
massemateriale. Regional variasjon i en kulturhistorisk brytningstid, in:
Ingen vei utenom. Arkeologiske utgravninger i knyttet til etablering av ny
riksveg 3 og 25 i Løten og Elverum kommuner, Innlandet, Cappelen Damm Akademisk forlag, Oslo, 187–199, ISBN 978-82-02-67233-1, 2020 (in Norwegian).
Halstead, P.: The economy has a normal surplus: economic stability and
social change among early farming communities of Thessaly, Greece, in: Bad
Year Economics: Cultural Responses to Risk and Uncertainty, Cambridge University Press, Cambridge, 68–80, https://doi.org/10.1017/CBO9780511521218.006, 1989.
Hansen, J.: Landsbydannelse og bebyggelsesstruktur i 1. årtusinde. En
præsentation af et bebyggelseshistorisk regionalstudie, in:
Socioekonomisk mångfald. Ritualer och urbanitet, Rapport från
projektseminarium för Ostkustbanan (OKB) genom Gamla Uppsala, Statens Historiska Museer, Arkeologerna, Stockholm & Uppsala, 11–26, URN: urn:nbn:se:sh:diva-32057, 2016 (in Norwegian).
Hanssen-Bauer, I., Førland, E. J., Haddeland, I., Hisdal, H., Mayer, S.,
Nesje, A., and Ådlandsvik, B.: Climate in Norway 2100 – a knowledge base
for climate adaptation, Vol. 1/2017, ISSN 2387-3027, 2017.
Harbeck, M., Seifert, L., Hänsch, S., Wagner, D. M., Birdsell, D.,
Parise, K. L., Wiechmann, I., Grupe, G., Thomas, A., Keim, P., and Zöller, L.: Yersinia pestis DNA from skeletal remains from the 6th century AD reveals insights into Justinianic Plague, PLoS Pathog., 9, e1003349, https://doi.org/10.1371/journal.ppat.1003349, 2013.
Hatlestad, K., Wehlin, J., and Lindholm, K.-J.: Coping with Risk. A
Deep-Time Perspective on Societal Responses to Ecological Uncertainty in the
River Dalälven Catchment Area in Sweden, Land, 10, 883, https://doi.org/10.3390/land10080883, 2021.
Hegerl, G. C., Crowley, T. J., Hyde, W. T., and Frame, D. J.: Climate sensitivity constrained by temperature reconstructions over the past seven centuries, Nature, 440, 1029–1032, 2006.
Helama, S., Jones, P. D., and Briffa, K. R.: Limited late antique cooling,
Nat. Geosci., 10, 242–243, 2017.
Helama, S., Arppe, L., Uusitalo, J., Holopainen, J., Makela, H. M., Makinen,
H., and Oinonen, M.: Volcanic dust veils from sixth century tree-ring isotopes linked to reduced irradiance, primary production and human health, Sci. Rep., 8, 1339, https://doi.org/10.1038/s41598-018-19760-w, 2018.
Helama, S., Saranpää, P., Pearson, C. L., Arppe, L., Holopainen, J.,
Mäkinen, H., Mielikäinen, K., Nöjd, P., Sutinen, R.,
Taavitsainen, J. P., and Timonen, M.: Frost rings in 1627 BC and AD 536 in
subfossil pinewood from Finnish Lapland, Quaternary Sci. Rev., 204, 208–215, 2019.
Hines, J. and IJssennagger, N.: Frisians and Their North Sea Neighbours:
From the Fifth Century to the Viking Age, Boydell & Brewer, https://www.jstor.org/stable/10.7722/j.ctt1t6p55t (last access: 28 November 2022), 2017.
Høeg, H. I.: Varia 39: Pollenanalytiske undersøkelser i “Østerdalsområdet” med hovedvekt på Rødsmoen, Åmot i
Hedmark, Varia, ISBN 82-7181-134-7, 1996 (in Norwegian).
Høeg, H. I.: Varia 46: Pollenanalytiske undersøkelser på Øvre
Romerike, Ullensaker og Nannestad, Akershus kommune, Varia, ISBN 82-7181-144-4, 1997 (in Norwegian).
Høeg, H. I.: Pollenanalytiske undersøkelser i Rogaland og Ersdal i
Vest-Agder, in: Museumslandskap. Artikkelsamling til Kerstin Griffin på 60-års-dagen, Vol. AmS-Rapport 12A, 145–225, edited by: Selsing, L. and Lillehammer, G., Arkeologisk museum, Stavanger, ISBN 82-7760-060-7, 1999 (in Norwegian).
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation: Regional
temperatures and precipitation, Science, 269, 676–679, 1995.
Hurrell, J. W., Kushnir, Y., Ottersen, G. and Visbeck, M.: An overview of the
North Atlantic oscillation, Geophysical Monograph-American Geophysical
Union, 134, 1–36, 2003.
Iles, C. E. and Hegerl, G. C.: The global precipitation response to volcanic eruptions in the CMIP5 models, Environ. Res. Lett., 9, 104012, https://doi.org/10.1088/1748-9326/9/10/104012, 2014.
Iversen, F.: Estate division: Social cohesion in the aftermath of AD 536-7,
in: The Agrarian Life of the North 2000 BC AD 1000: Studies in Rural
Settlement and Farming in Norway, Portal Academic, Kristiansand, 41–76, ISBN: 978-82-8314-099-6, 2016.
Iversen, F.: Between Tribe and Kingdom: People, land, and law in Scandia AD
500-1350. Rulership in 1st to 14th century Scandinavia royal graves and
sites at Avaldsnes and beyond, edited by: Skre, D., De Gruter, Berlin,
245–304, https://doi.org/10.1515/9783110421101, 2019.
Iversen, F.: The Four Petty Kingdoms of Upplond: Equestrian Graves and the
Political Integration of the Norwegian Highlands in Late Viking Age Norway,
Viking, 84, 13–42, https://doi.org/10.5617/viking.9046, 2021.
Iversen, F. and Brendalsmo, J.: Den tidlige kirkeorganisasjonen i
Eidsivatingslagen, Collegium Medievale, 33, 113–162, 2020 (in Norwegian).
Juggins, S.: rioja: Analysis of Quaternary Science Data, R package version
0.9-26, https://cran.r-project.org/package=rioja (last access: 28 November 2022), 2020.
Jungclaus, J. H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L. P., Egorova, T., Evans, M., González-Rouco, J. F., Goosse, H., Hurtt, G. C., Joos, F., Kaplan, J. O., Khodri, M., Klein Goldewijk, K., Krivova, N., LeGrande, A. N., Lorenz, S. J., Luterbacher, J., Man, W., Maycock, A. C., Meinshausen, M., Moberg, A., Muscheler, R., Nehrbass-Ahles, C., Otto-Bliesner, B. I., Phipps, S. J., Pongratz, J., Rozanov, E., Schmidt, G. A., Schmidt, H., Schmutz, W., Schurer, A., Shapiro, A. I., Sigl, M., Smerdon, J. E., Solanki, S. K., Timmreck, C., Toohey, M., Usoskin, I. G., Wagner, S., Wu, C.-J., Yeo, K. L., Zanchettin, D., Zhang, Q., and Zorita, E.: The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations, Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, 2017.
Keller, M., Spyrou, M. A., Scheib, C. L., Neumann, G. U., Kröpelin, A.,
Haas-Gebhard, B., Päffgen, B., Haberstroh, J., Ribera i Lacomba, A.,
Raynaud, C., and Cessford, C.: Ancient Yersinia pestis genomes from across
Western Europe reveal early diversification during the First Pandemic
(541–750), P. Natl. Acad. Sci. USA, 116, 12363–12372, 2019.
Kostick, C. and Ludlow, F.: The dating of volcanic events and their impact
upon European society, 400–800 CE, Post-Classical Archaeologies, 5, 7–30, 2015.
Larsen, L. B., Vinther, B. M., Briffa, K. R., Melvin, T. M., Clausen, H. B.,
Jones, P. D., Siggaard-Andersen, M. L., Hammer, C. U., Eronen, M., Grudd, H.,
and Gunnarson, B. E.: New ice core evidence for a volcanic cause of the AD
536 dust veil, Geophys. Res. Lett., 35, L04708, https://doi.org/10.1029/2007GL032450, 2008.
Little, L. K.: Plague and the end of antiquity: the pandemic of 541–750,
Cambridge University Press, ISBN-13 978-0-521-84639-4, 2006.
Ljungkvist, J. and Frölund, P.: Gamla Uppsala–the emergence of a centre and a magnate complex, Journal of Archaeology and Ancient History (JAAH), 16, 1–29, 2015.
Loftsgarden, K.: Mass production and mountain marketplaces in Norway in the
Viking and Middle Ages, Mediev. Archaeol., 64, 94–115, 2020.
Loftsgarden, K. and Solheim, S.: Uncovering population dynamics in Southeastearn Norway from 1300 BC to AD 800 using summed radiocarbon
probability distributions, in: Complexity and dynamics: Settlement and landscape from the Iron Age and Medieval period in the Nordic Countries.
Sidestone Press, in press, 2022.
Løken, T.: Bronze Age and Early Iron Age house and settlement development
at Forsandmoen, south-western Norway, Museum of Archaeology, University of Stavanger, Stavanger, ISBN 978-82-7760-190-8, 2020.
Loktu, L. and Gundersen, I. M.: Jernaldergårdene ved Breivegen. Kontinuitet og endring over 300 år, in: Gård og utmark i
Gudbrandsdalen. Arkeologiske undersøkelser i Fron 2011-2012, Portal forlag Kristiansand, 145–165, https://doi.org/10.23865/noasp.56, 2016 (in Norwegian).
Lorenz, S.: MPI-ESM 521-680 CE ensemble, Norstore [data set], https://doi.org/10.11582/2022.00029, 2022.
Lowe, J. J., Walker, M., and Walker, M. J. C.: Geomorphological evidence.
Reconstructing Quaternary Environments, Routledge, New York, 19–92, ISBN: 9781315797496, 2015.
Löwenborg, D.: An Iron Age shock doctrine: did the AD 536-7 event
trigger large-scale social changes in the Mälaren valley area?, Journal
of Archaeology and Ancient History (JAAH), 4, 29 pp., 2012.
Ludlow, F., Stine, A. R., Leahy, P., Murphy, E., Mayewski, P. A., Taylor, D., Killen, J., Baillie, M. G., Hennessy, M., and Kiely, G.: Medieval Irish chronicles reveal persistent volcanic forcing of severe winter cold events, 431–1649 CE, Environ. Res. Lett., 8, 024035, https://doi.org/10.1088/1748-9326/8/2/024035, 2013.
Malone, K.: Widsith, Rosenkilde and Bagger, Copenhagen, 1962.
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., and Fast, I.: Developments
in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response
to increasing CO2, J. Adv. Model. Earth Sy., 11, 998–1038. 2019.
McCormick, M., Büntgen, U., Cane, M. A., Cook, E. R., Harper, K., Huybers, P., Litt, T., Manning, S. W., Mayewski, P. A., More, A. F., and Nicolussi, K.: Climate change during and after the Roman Empire: reconstructing the past from scientific and historical evidence, J. Interdiscipl. Hist., 43, 169–220, 2012.
McIlveen, J. F. R.: Basic meteorology : a physical outline, Van Nostrand Reinhold, Wokingham & Berkshire, UK, ISBN 0442317697, 1986.
Michelangeli, P. A., Vautard, R., and Legras, B.: Weather regimes: Recurrence
and quasi stationarity, J. Atmos. Sci., 52, 1237–1256, 1995.
Miller, G. H., Geirsdóttir, Á., Zhong, Y., Larsen, D. J.,
Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A., Lehman, S. J., Southon, J. R., and Anderson, C.: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks, Geophys. Res. Lett., 39, L02708, https://doi.org/10.1029/2011GL050168, 2012.
Mordechai, L., Eisenberg, M., Newfield, T. P., Izdebski, A., Kay, J. E.,
and Poinar, H.: The Justinianic Plague: an inconsequential pandemic?, P. Natl. Acad. Sci. USA, 116, 25546–25554, 2019.
Munch, P. A.: Historisk-geographisk beskrivelse over kongeriget Norge
(Noregsveldi) i middelalderen, Wilhelm Grams Forlag, 1849 (in Norwegian).
Myhre, B.: Landbruk, landskap og samfunn 4000 f.Kr.-800 e.Kr, in: Jorda blir levevei: 4000 f.Kr.-1350 e.Kr, edited by: Myhre, B. and Øye, I., Samlaget, Oslo, 11–213, ISBN 825215584, 2002 (in Norwegian).
Näsman, U.: Jernalderens driftsformer i arkæologisk belysning, in: Danske landbrukslandskaper gennem 2000 år, Fra digevoldinger til støtteordninger, edited by: Odgaard, B. and Rømer, J. R., Aarhus Universitetsforlag, Århus, 99–116, 2009 (in Norwegian).
Neidorf, L.: The Dating of Widsith and the Study of Germanic Antiquity,
Neophilologus, 97, 165–183, 2013.
Nesje, A., Gundersen, I. M., and Cannell, R.: Flommer og flomskred i Gudbrandsdalen i et værmessig og klimatisk perspektiv, in: Gundersen, I. M., Gård og utmark i Gudbrandsdalen. Arkeologiske undersøkelser i Fron 2011-2012, Portal forlag, Kristiansand, 80–93, https://doi.org/10.23865/noasp.56, 2016 (in Norwegian).
Nielsen, K. H.: “... the sun was darkened by day and the moon by night ...
there was distress among men ...” - on social and political development in
the 5th- to 7th-century southern Scandinavia, in: Neue Forschungsergebnisse
zur nordwesteuropäischen Frühgeschichte unter besonderer
Berücksichtigung der altsächsischen Kultur im heutigen Niedersachsen, Isensee Verlag, Oldenburg, 247–285, ISBN 3899952286, 2005.
Nielsen, K. H.: Abundant Gold and Bad Harvests: Changes in Southern
Scandinavian Society during the 5th to 7th Centuries, in: Transformatio
mundi. The transition from the late migration period to the early Viking age
in the east Baltic, Kaunas University of Technology, Department of Philosophy and Cultural Science, Kaunas, 41–50, ISBN 9789955982715, 2006.
Odgaard, B. and Nielsen, A. B.: Udvikling i arealdækning i perioden
0-1850: Pollen og landskabshistorie, in: Danske landbrukslandskaper gennem
2000 år: Fra digevoldinger til støtteordninger, Aarhus Universitetsforlag, Århus, 41–58, ISBN: 9788779344204, 2009 (in Norwegian).
Oinonen, M., Alenius, T., Arppe, L., Bocherens, H., Etu-Sihvola, H., Helama,
S., Huhtamaa, H., Lahtinen, M., Mannermaa, K., Onkamo, P., and Palo, J.:
Buried in water, burdened by nature – Resilience carried the Iron Age people
through Fimbulvinter, PLoS ONE, 15, e0231787, https://doi.org/10.1371/journal.pone.0231787, 2020.
O'Shea, J. and Halstead, P.: Conclusion: bad year economics, in: Bad Year
Economics: Cultural Responses to Risk and Uncertainty, Cambridge University Press, Cambridge, 123–126, https://doi.org/10.1017/CBO9780511521218.012, 1989.
Pedersen, E. A. and Widgren, M.: Agriculture in Sweden: 800 BC-AD 1000, in: The Agrarian history of Sweden : 4000 BC to AD 2000, edited by: Myrdal, J. and Morell, M., Nordic Academic Press, Lund, 46–71, 2011.
Procopius: History of the Wars, Volume III, translated by: Dewing, H. B., Loeb Classical Library, Harvard University Press, 1919.
Puschmann, O.: Nasjonalt referansesystem for landskap. Beskrivelse av Norges
45 landskapsregioner, NIJOS rapport 10/2005, Ås, ISBN 82-7464-355-0, 2005 (in Norwegian).
Rampino, M. R., Self, S., and Stothers, R. B.: Volcanic winters, Annu. Rev. Earth Pl. Sc., 16, 73–99, 1988.
Ranheden, H.: Vegetationsförendringar, in: Land och samhälle i förändring, Uppländska bygder i ett långtidsperspektiv, Vol. 4, 17–118, edited by: Hjärthner-Holdar, E., Ranheden, H., and Seiler, A., Riksantikvarieämbetet, Upplandsmuseet, Societas
Archaeologica Upsaliensis, Uppsala, ISBN 9789172094789, 2007 (in Norwegian).
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/, last access: 28 November 2022.
Reimer, P. J., Austin, W. E., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., and Grootes, P. M.: The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP), Radiocarbon, 62, 725–757, 2020.
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, 2000.
Rødsrud, C. L.: Graver og bosetningsspor på Bjørnstad
(lokalitet 44), in: Hus, gard og graver langs E6 i Sarpsborg kommune,
edited by: Bårdseth, G. A., Kulturhistorisk museum, Fornminneseksjonen, Oslo, E6-prosjektet Østfold, Band 2, 91–183, ISBN 9788280840356, 2007 (in Norwegian).
Rosen, W.: Justinian's flea: plague, empire and the birth of Europe, Random
House, ISBN 978 0224 07369 1, 2006.
Sigl, M., McConnell, J. R., Layman, L., Maselli, O., McGwire, K., Pasteris,
D., Dahl-Jensen, D., Steffensen, J. P., Vinther, B., Edwards, R., and
Mulvaney, R.: A new bipolar ice core record of volcanism from WAIS Divide
and NEEM and implications for climate forcing of the last 2000 years, J. Geophys. Res.-Atmos., 118, 1151–1169, 2013.
Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F., Büntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., and Fischer, H.: Timing and climate forcing of volcanic eruptions for the past 2,500 years, Nature, 523, 543–549, 2015.
Skre, D.: Rulership and Ruler's Sites in 1st–10th-century Scandinavia.
Rulership in 1st to 14th century Scandinavia royal graves and sites at
Avaldsnes and beyond, edited by: Skre, D., De Gruter, Berlin, 193–243, https://doi.org/10.1515/9783110421101, 2019.
Solberg, B.: Jernalderen i Norge: ca. 500 f. Kr.-1030 e.Kr, Cappelen akademisk forlag, ISBN 9788202231781, 2000 (in Norwegian).
Stamnes, A. A.: Effect of temperature change on Iron Age cereal production
and settlement patterns in Mid-Norway, in: The Agrarian Life of the North
2000 BC AD 1000: Studies in Rural Settlement and Farming in Norway, Portal Academic, Kristiansand, 27–40, ISBN: 978-82-8314-099-6, 2016.
Stenchikov, G., Robock, A., Ramaswamy, V., Schwarzkopf, M. D., Hamilton, K.,
and Ramachandran, S.: Arctic Oscillation response to the 1991 Mount Pinatubo
eruption: Effects of volcanic aerosols and ozone depletion, J. Geophys. Res., 107, 4803, https://doi.org/10.1029/2002JD002090, 2002.
Stothers, R. B.: Mystery cloud of AD 536, Nature, 307, 344–345, 1984.
Stothers, R. B. and Rampino, M. R.: Volcanic eruptions in the Mediterranean before AD 630 from written and archaeological sources, J. Geophys. Res., 88, 6357–6371, 1983.
Strand, E.: Korn og korndyrking, Landbruksforlaget, Oslo, ISBN 8252910270, 1984 (in Norwegian).
TeBrake, W. H.: Ecology and economy in early medieval Frisia, Viator, 9,
1–30, 1978.
Tedesco, P. S.: Joint modeling of low temperature and low wind speed events over Europe conditioned on winter weather regimes, Master thesis, University of Oslo, http://urn.nb.no/URN:NBN:no-84856 (last access: 28 November 2022), 2020.
Tejedor, E., Steiger, N. J., Smerdon, J. E., Serrano-Notivoli, R., and Vuille, M.: Global hydroclimatic response to tropical volcanic eruptions over the last millennium, P. Natl. Acad. Sci. USA, 118, e2019145118, https://doi.org/10.1073/pnas.2019145118, 2021.
ter Schure, A. T. M., Bajard, M., Loftsgarden, K., Høeg, H. I., Ballo, E.,
Bakke, J., Støren, E. W. N., Iversen, F., Kool, A., Brysting, A. K., and
Krüger, K.: Anthropogenic and environmental drivers of vegetation change
in southeastern Norway during the Holocene, Quaternary Sci. Rev., 270, 107175, https://doi.org/10.1016/j.quascirev.2021.107175, 2021.
Toohey, M. and Sigl, M.: Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE, Earth Syst. Sci. Data, 9, 809–831, https://doi.org/10.5194/essd-9-809-2017, 2017.
Toohey, M., Krüger, K., Sigl, M., Stordal, F., and Svensen, H.: Climatic
and societal impacts of a volcanic double event at the dawn of the Middle Ages, Clim. Change, 136, 401–412, 2016.
Tvauri, A.: The impact of the climate catastrophe of 536–537 AD in Estonia
and neighbouring areas, Eesti Arheoloogia Ajakiri, 18, 30–56, 2014.
UniMus: Resources, API documentation and links, MUSIT – the Norwegian University museum database initiative, https://www.unimus.no/, last access: 28 November 2022.
van Dijk, E., Jungclaus, J., Lorenz, S., Timmreck, C., and Krüger, K.: Was there a volcanic-induced long-lasting cooling over the Northern Hemisphere in the mid-6th–7th century?, Clim. Past, 18, 1601–1623, https://doi.org/10.5194/cp-18-1601-2022, 2022.
Van Loon, H. and Rogers, J. C.: The seesaw in winter temperatures between
Greenland and northern Europe. Part I: General description, Mon. Weather
Rev., 106, 296–310, 1978.
Vautard, R.: Multiple weather regimes over the North Atlantic: Analysis of
precursors and successors, Mon. Weather Rev., 118, 2056–2081, 1990.
Verhulst, A.: The carolingian economy, Cambridge University Press, https://doi.org/10.1017/CBO9780511817083, 2002.
Villumsen, T.: Jernaldergården på Grytting. Gårdsbosættelse
i 500 år i romertid og folkevandringstid, in: Gård og utmark i
Gudbrandsdalen: arkeologiske undersøkelser i Fron 2011-2012, Portal forlag, Kristiansand, 166–180, 2016 (in Norwegian).
Wagner, D. M., Klunk, J., Harbeck, M., Devault, A., Waglechner, N., Sahl,
J. W., Enk, J., Birdsell, D. N., Kuch, M., Lumibao, C., and Poinar, D.:
Yersinia pestis and the Plague of Justinian 541–543 AD: a genomic analysis, Lancet Infect. Dis., 14, 319–326, 2014.
Welinder, S.: Prehistoric agriculture in Eastern Middle Sweden: a model for
food production, population growth, agricultural innovations, and ecological
limitations in prehistoric Eastern Middle Sweden 4000 BC-AD 1000, No. 4,
LiberLäromedel/Gleerup, ISBN 9783774905276, 1975.
Westling, S. and Jensen, C. E.: Indications of rye (Secale cereale) cultivation from 7th century south-western Norway, in: Archaeobotanical
studies of past plant cultivation in northern Europe, Barkhuis Publishing, Groningen, 83–100, ISBN 9789493194113, 2020.
Westling, S., Fredh, E. D., Lagerås, P., and Oma, K. A.: Agricultural
Resilience during the 6th Century Crisis: Exploring Strategies and Adaptations Using Plant-Macrofossil Data from Hove-Sørbø and
Forsandmoen in Southwestern Norway, Nor. Archaeol. Rev., 55, 38–63, https://doi.org/10.1080/00293652.2022.2071331, 2022.
Wickham, H.: ggplot2: elegant graphics for data analysis, Springer, ISSN: 2197-5736, 2016.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D. A.,
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., and Kuhn,
M.: Welcome to the Tidyverse, Journal of Open Source Software, 4, 1686, https://doi.org/10.21105/joss.01686, 2019.
Wieckowska-Lüth, M., Kirleis, W., and Doerfler, W.: Holocene history of
landscape development in the catchment of Lake Skogstjern, southeastern
Norway, based on a high-resolution multi-proxy record, The Holocene, 27,
1928–1947, 2017.
Zambri, B., LeGrande, A. N., Robock, A., and Slawinska, J.: Northern
Hemisphere winter warming and summer monsoon reduction after volcanic
eruptions over the last millennium, J. Geophys. Res.-Atmos., 122, 7971–7989, 2017.
Zambri, B., Robock, A., Mills, M. J., and Schmidt, A.: Modeling the 1783–1784 Laki eruption in Iceland: 2. Climate impacts, J. Geophys.
Res.-Atmos., 124, 6770–6790. 2019.
Zhong, Y., Miller, G. H., Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Schneider, D. P., and Geirsdottir, A.: Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice-ocean mechanism,
Clim. Dynam., 37, 2373–2387, 2011.
Short summary
The mid-6th century was one of the coldest periods of the last 2000 years as characterized by great societal changes. Here, we study the effect of the volcanic double event in 536 CE and 540 CE on climate and society in southern Norway. The combined climate and growing degree day models and high-resolution pollen and archaeological records reveal that the northern and western sites are vulnerable to crop failure with possible abandonment of farms, whereas the southeastern site is more resilient.
The mid-6th century was one of the coldest periods of the last 2000 years as characterized by...