Articles | Volume 19, issue 9
https://doi.org/10.5194/cp-19-1793-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1793-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Do phenomenological dynamical paleoclimate models have physical similarity with Nature? Seemingly, not all of them do
Mikhail Y. Verbitsky
CORRESPONDING AUTHOR
Gen5 Group, LLC, Newton, MA, USA
UCLouvain, Earth and Life Institute, Louvain-la-Neuve, Belgium
Michel Crucifix
UCLouvain, Earth and Life Institute, Louvain-la-Neuve, Belgium
Related authors
Mikhail Y. Verbitsky, Michael E. Mann, and Dmitry Volobuev
Earth Syst. Dynam., 15, 1015–1017, https://doi.org/10.5194/esd-15-1015-2024, https://doi.org/10.5194/esd-15-1015-2024, 2024
Short summary
Short summary
It was recently suggested that global warming can be explained by the non-anthropogenic factor of seismic activity. If that is the case, it would have profound implications. We have assessed the validity of the claim by using a statistical technique that evaluates the existence of causal connections between variables, finding no evidence for any causal relationship between seismic activity and global warming.
Mikhail Verbitsky
EGUsphere, https://doi.org/10.5194/egusphere-2024-1255, https://doi.org/10.5194/egusphere-2024-1255, 2024
Short summary
Short summary
Because of the ice-climate nonlinearity, its response to the orbital forcing may reduce mass influx, and the advection timescale may become longer. Thus, the Milankovitch theory becomes an initial value problem: Depending on initial conditions, for the same orbital forcing and for the same positive and negative feedbacks, the glacial rhythmicity could have been dominated either by the eccentricity period of ~100 kyr, or by the doubled obliquity period of ~80 kyr, or by a combination of both.
Mikhail Verbitsky
EGUsphere, https://doi.org/10.5194/egusphere-2022-758, https://doi.org/10.5194/egusphere-2022-758, 2022
Preprint archived
Short summary
Short summary
Phenomenological models may be impressive in reproducing empirical time series but this is not sufficient to claim physical similarity with nature until comparison of similarity parameters is performed. We illustrated such a process of diagnostics of physical similarity by comparing a phenomenological dynamical paleoclimate model with a more physically explicit dynamical model.
Mikhail Y. Verbitsky
Earth Syst. Dynam., 13, 879–884, https://doi.org/10.5194/esd-13-879-2022, https://doi.org/10.5194/esd-13-879-2022, 2022
Short summary
Short summary
Reconstruction and explanation of past climate evolution using proxy records is the essence of paleoclimatology. In this study, we use dimensional analysis of a dynamical model on orbital timescales to recognize theoretical limits of such forensic inquiries. Specifically, we demonstrate that major past events could have been produced by physically dissimilar processes making the task of paleo-record attribution to a particular phenomenon fundamentally difficult if not impossible.
Mikhail Verbitsky and Michael Mann
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-87, https://doi.org/10.5194/esd-2021-87, 2021
Revised manuscript not accepted
Short summary
Short summary
In this study, we highlight a component of global warming variability, a scaling law that is based purely on fundamental physical properties of the climate system.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 12, 63–67, https://doi.org/10.5194/esd-12-63-2021, https://doi.org/10.5194/esd-12-63-2021, 2021
Short summary
Short summary
We demonstrate here that a single physical phenomenon, specifically, a naturally changing balance between intensities of temperature advection and diffusion in the viscous ice media, may influence the entire spectrum of the Pleistocene variability from orbital to millennial timescales.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 11, 281–289, https://doi.org/10.5194/esd-11-281-2020, https://doi.org/10.5194/esd-11-281-2020, 2020
Short summary
Short summary
Using the central theorem of dimensional analysis, the π theorem, we show that the relationship between the amplitude and duration of glacial cycles is governed by a property of scale invariance that does not depend on the physical nature of the underlying positive and negative feedbacks incorporated by the system. It thus turns out to be one of the most fundamental properties of the Pleistocene climate.
Mikhail Y. Verbitsky, Michael E. Mann, Byron A. Steinman, and Dmitry M. Volobuev
Geosci. Model Dev., 12, 4053–4060, https://doi.org/10.5194/gmd-12-4053-2019, https://doi.org/10.5194/gmd-12-4053-2019, 2019
Short summary
Short summary
In this study, we propose an additional climate model validation procedure that assesses whether causality signals between model drivers and responses are consistent with those observed in nature. Specifically, we suggest the method of conditional dispersion as the best approach to directly measure the causality between model forcing and response. Our results show that there is a strong causal signal from the carbon dioxide series to the global temperature series.
Mikhail Y. Verbitsky, Michel Crucifix, and Dmitry M. Volobuev
Earth Syst. Dynam., 10, 257–260, https://doi.org/10.5194/esd-10-257-2019, https://doi.org/10.5194/esd-10-257-2019, 2019
Short summary
Short summary
We demonstrate here that nonlinear character of ice sheet dynamics, which was derived naturally from the conservation laws, is an effective means for propagating high-frequency forcing upscale.
Mikhail Y. Verbitsky, Michel Crucifix, and Dmitry M. Volobuev
Earth Syst. Dynam., 9, 1025–1043, https://doi.org/10.5194/esd-9-1025-2018, https://doi.org/10.5194/esd-9-1025-2018, 2018
Short summary
Short summary
Using a dynamical climate model purely reduced from the conservation laws of ice-moving media, we show that ice-sheet physics coupled with a linear climate temperature feedback conceal enough dynamics to satisfactorily explain the system response over the full Pleistocene. There is no need, a priori, to call for a nonlinear response of, for example, the carbon cycle.
Lilian Vanderveken and Michel Crucifix
EGUsphere, https://doi.org/10.5194/egusphere-2024-2830, https://doi.org/10.5194/egusphere-2024-2830, 2024
Short summary
Short summary
Vegetation patterns in semi-arid regions arise from interactions between plants and environmental factors. This study uses a numerical model to explore how vegetation responds to changes in rainfall and random disturbances. We identify key timescales that influence resilience, showing that ecosystems rely on both stable and transitional states to adapt. These findings offer insights into the resilience mechanisms that help ecosystems maintain stability under environmental stress.
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
EGUsphere, https://doi.org/10.5194/egusphere-2024-2279, https://doi.org/10.5194/egusphere-2024-2279, 2024
Short summary
Short summary
We present SURFER v3.0, a simple climate model designed to estimate the impact of CO2 and CH4 emissions on global temperatures, sea levels, and ocean pH. We added new carbon cycle processes and calibrated the model to observations and results from more complex models, enabling use over time scales ranging from decades to millions of years. SURFER v3.0 is fast, transparent, and easy to use, making it an ideal tool for policy assessments and suitable for educational purposes.
Mikhail Y. Verbitsky, Michael E. Mann, and Dmitry Volobuev
Earth Syst. Dynam., 15, 1015–1017, https://doi.org/10.5194/esd-15-1015-2024, https://doi.org/10.5194/esd-15-1015-2024, 2024
Short summary
Short summary
It was recently suggested that global warming can be explained by the non-anthropogenic factor of seismic activity. If that is the case, it would have profound implications. We have assessed the validity of the claim by using a statistical technique that evaluates the existence of causal connections between variables, finding no evidence for any causal relationship between seismic activity and global warming.
Justin Gérard, Loïc Sablon, Jarno J. C. Huygh, Anne-Christine Da Silva, Alexandre Pohl, Christian Vérard, and Michel Crucifix
EGUsphere, https://doi.org/10.5194/egusphere-2024-1983, https://doi.org/10.5194/egusphere-2024-1983, 2024
Short summary
Short summary
We used cGENIE, a climate model, to explore how changes in continental configuration, CO2 levels, and orbital configuration affect ocean oxygen levels during the Devonian period (419–359 million years ago). Key factors contributing to ocean anoxia were identified, highlighting the influence of continental configurations, atmospheric conditions, and orbital changes. Our findings offer new insights into the causes and prolonged durations of Devonian ocean anoxic events.
Mikhail Verbitsky
EGUsphere, https://doi.org/10.5194/egusphere-2024-1255, https://doi.org/10.5194/egusphere-2024-1255, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Because of the ice-climate nonlinearity, its response to the orbital forcing may reduce mass influx, and the advection timescale may become longer. Thus, the Milankovitch theory becomes an initial value problem: Depending on initial conditions, for the same orbital forcing and for the same positive and negative feedbacks, the glacial rhythmicity could have been dominated either by the eccentricity period of ~100 kyr, or by the doubled obliquity period of ~80 kyr, or by a combination of both.
Justin Gérard and Michel Crucifix
Earth Syst. Dynam., 15, 293–306, https://doi.org/10.5194/esd-15-293-2024, https://doi.org/10.5194/esd-15-293-2024, 2024
Short summary
Short summary
We used cGENIE, a climate model, to investigate the Atlantic Meridional Overturning Circulation (AMOC) slowdown under a warming scenario. We apply a diagnostic that was used in a previous study (Levang and Schmitt, 2020) to separate the temperature from salinity contribution to this slowdown. We find that, in our model, the initial slowdown of the AMOC was driven by temperature and that salinity takes the lead for the termination of the circulation.
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Clim. Past, 19, 2551–2568, https://doi.org/10.5194/cp-19-2551-2023, https://doi.org/10.5194/cp-19-2551-2023, 2023
Short summary
Short summary
We investigated the different boundary conditions to allow ice sheet growth and ice sheet decline of the Antarctic ice sheet when it appeared ∼38–34 Myr ago. The thresholds for ice sheet growth and decline differ because of the different climatological conditions above an ice sheet (higher elevation and higher albedo) compared to a bare topography. We found that the ice–albedo feedback and the isostasy feedback respectively ease and delay the transition from a deglacial to glacial state.
Lilian Vanderveken, Marina Martínez Montero, and Michel Crucifix
Nonlin. Processes Geophys., 30, 585–599, https://doi.org/10.5194/npg-30-585-2023, https://doi.org/10.5194/npg-30-585-2023, 2023
Short summary
Short summary
In semi-arid regions, hydric stress affects plant growth. In these conditions, vegetation patterns develop and effectively allow for vegetation to persist under low water input. The formation of patterns and the transition between patterns can be studied with small models taking the form of dynamical systems. Our study produces a full map of stable and unstable solutions in a canonical vegetation model and shows how they determine the transitions between different patterns.
Marina Martínez Montero, Michel Crucifix, Victor Couplet, Nuria Brede, and Nicola Botta
Geosci. Model Dev., 15, 8059–8084, https://doi.org/10.5194/gmd-15-8059-2022, https://doi.org/10.5194/gmd-15-8059-2022, 2022
Short summary
Short summary
We present SURFER, a lightweight model that links CO2 emissions and geoengineering to ocean acidification and sea level rise from glaciers, ocean thermal expansion and Greenland and Antarctic ice sheets. The ice sheet module adequately describes the tipping points of both Greenland and Antarctica. SURFER is understandable, fast, accurate up to several thousands of years, capable of emulating results obtained by state of the art models and well suited for policy analyses.
Mikhail Verbitsky
EGUsphere, https://doi.org/10.5194/egusphere-2022-758, https://doi.org/10.5194/egusphere-2022-758, 2022
Preprint archived
Short summary
Short summary
Phenomenological models may be impressive in reproducing empirical time series but this is not sufficient to claim physical similarity with nature until comparison of similarity parameters is performed. We illustrated such a process of diagnostics of physical similarity by comparing a phenomenological dynamical paleoclimate model with a more physically explicit dynamical model.
Mikhail Y. Verbitsky
Earth Syst. Dynam., 13, 879–884, https://doi.org/10.5194/esd-13-879-2022, https://doi.org/10.5194/esd-13-879-2022, 2022
Short summary
Short summary
Reconstruction and explanation of past climate evolution using proxy records is the essence of paleoclimatology. In this study, we use dimensional analysis of a dynamical model on orbital timescales to recognize theoretical limits of such forensic inquiries. Specifically, we demonstrate that major past events could have been produced by physically dissimilar processes making the task of paleo-record attribution to a particular phenomenon fundamentally difficult if not impossible.
Mikhail Verbitsky and Michael Mann
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-87, https://doi.org/10.5194/esd-2021-87, 2021
Revised manuscript not accepted
Short summary
Short summary
In this study, we highlight a component of global warming variability, a scaling law that is based purely on fundamental physical properties of the climate system.
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Geosci. Model Dev., 14, 6373–6401, https://doi.org/10.5194/gmd-14-6373-2021, https://doi.org/10.5194/gmd-14-6373-2021, 2021
Short summary
Short summary
Ice sheets are an important component of the climate system and interact with the atmosphere through albedo variations and changes in the surface height. On very long timescales, it is impossible to directly couple ice sheet models with climate models and other techniques have to be used. Here we present a novel coupling method between ice sheets and the atmosphere by making use of an emulator to simulate ice sheet–climate interactions for several million years.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 12, 63–67, https://doi.org/10.5194/esd-12-63-2021, https://doi.org/10.5194/esd-12-63-2021, 2021
Short summary
Short summary
We demonstrate here that a single physical phenomenon, specifically, a naturally changing balance between intensities of temperature advection and diffusion in the viscous ice media, may influence the entire spectrum of the Pleistocene variability from orbital to millennial timescales.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 11, 281–289, https://doi.org/10.5194/esd-11-281-2020, https://doi.org/10.5194/esd-11-281-2020, 2020
Short summary
Short summary
Using the central theorem of dimensional analysis, the π theorem, we show that the relationship between the amplitude and duration of glacial cycles is governed by a property of scale invariance that does not depend on the physical nature of the underlying positive and negative feedbacks incorporated by the system. It thus turns out to be one of the most fundamental properties of the Pleistocene climate.
Mikhail Y. Verbitsky, Michael E. Mann, Byron A. Steinman, and Dmitry M. Volobuev
Geosci. Model Dev., 12, 4053–4060, https://doi.org/10.5194/gmd-12-4053-2019, https://doi.org/10.5194/gmd-12-4053-2019, 2019
Short summary
Short summary
In this study, we propose an additional climate model validation procedure that assesses whether causality signals between model drivers and responses are consistent with those observed in nature. Specifically, we suggest the method of conditional dispersion as the best approach to directly measure the causality between model forcing and response. Our results show that there is a strong causal signal from the carbon dioxide series to the global temperature series.
Mikhail Y. Verbitsky, Michel Crucifix, and Dmitry M. Volobuev
Earth Syst. Dynam., 10, 257–260, https://doi.org/10.5194/esd-10-257-2019, https://doi.org/10.5194/esd-10-257-2019, 2019
Short summary
Short summary
We demonstrate here that nonlinear character of ice sheet dynamics, which was derived naturally from the conservation laws, is an effective means for propagating high-frequency forcing upscale.
Mikhail Y. Verbitsky, Michel Crucifix, and Dmitry M. Volobuev
Earth Syst. Dynam., 9, 1025–1043, https://doi.org/10.5194/esd-9-1025-2018, https://doi.org/10.5194/esd-9-1025-2018, 2018
Short summary
Short summary
Using a dynamical climate model purely reduced from the conservation laws of ice-moving media, we show that ice-sheet physics coupled with a linear climate temperature feedback conceal enough dynamics to satisfactorily explain the system response over the full Pleistocene. There is no need, a priori, to call for a nonlinear response of, for example, the carbon cycle.
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
Guillaume Lenoir and Michel Crucifix
Nonlin. Processes Geophys., 25, 145–173, https://doi.org/10.5194/npg-25-145-2018, https://doi.org/10.5194/npg-25-145-2018, 2018
Short summary
Short summary
We develop a general framework for the frequency analysis of irregularly sampled time series. We also design a test of significance against a general background noise which encompasses the Gaussian white or red noise. Our results generalize and unify methods developed in the fields of geosciences, engineering, astronomy and astrophysics. All the analysis tools presented in this paper are available to the reader in the Python package WAVEPAL.
Guillaume Lenoir and Michel Crucifix
Nonlin. Processes Geophys., 25, 175–200, https://doi.org/10.5194/npg-25-175-2018, https://doi.org/10.5194/npg-25-175-2018, 2018
Short summary
Short summary
There is so far no general framework for handling the continuous wavelet transform when the time sampling is irregular. Here we provide such a framework with the Morlet wavelet, based on the results of part I of this study. We also design a test of significance against a general background noise which encompasses the Gaussian white or red noise. All the analysis tools presented in this article are available to the reader in the Python package WAVEPAL.
Natalie S. Lord, Michel Crucifix, Dan J. Lunt, Mike C. Thorne, Nabila Bounceur, Harry Dowsett, Charlotte L. O'Brien, and Andy Ridgwell
Clim. Past, 13, 1539–1571, https://doi.org/10.5194/cp-13-1539-2017, https://doi.org/10.5194/cp-13-1539-2017, 2017
Short summary
Short summary
We present projections of long-term changes in climate, produced using a statistical emulator based on climate data from a state-of-the-art climate model. We use the emulator to model changes in temperature and precipitation over the late Pliocene (3.3–2.8 million years before present) and the next 200 thousand years. The impact of the Earth's orbit and the atmospheric carbon dioxide concentration on climate is assessed, and the data for the late Pliocene are compared to proxy temperature data.
Paul J. Valdes, Edward Armstrong, Marcus P. S. Badger, Catherine D. Bradshaw, Fran Bragg, Michel Crucifix, Taraka Davies-Barnard, Jonathan J. Day, Alex Farnsworth, Chris Gordon, Peter O. Hopcroft, Alan T. Kennedy, Natalie S. Lord, Dan J. Lunt, Alice Marzocchi, Louise M. Parry, Vicky Pope, William H. G. Roberts, Emma J. Stone, Gregory J. L. Tourte, and Jonny H. T. Williams
Geosci. Model Dev., 10, 3715–3743, https://doi.org/10.5194/gmd-10-3715-2017, https://doi.org/10.5194/gmd-10-3715-2017, 2017
Short summary
Short summary
In this paper we describe the family of climate models used by the BRIDGE research group at the University of Bristol as well as by various other institutions. These models are based on the UK Met Office HadCM3 models and here we describe the various modifications which have been made as well as the key features of a number of configurations in use.
N. Bounceur, M. Crucifix, and R. D. Wilkinson
Earth Syst. Dynam., 6, 205–224, https://doi.org/10.5194/esd-6-205-2015, https://doi.org/10.5194/esd-6-205-2015, 2015
P. A. Araya-Melo, M. Crucifix, and N. Bounceur
Clim. Past, 11, 45–61, https://doi.org/10.5194/cp-11-45-2015, https://doi.org/10.5194/cp-11-45-2015, 2015
Short summary
Short summary
By using a statistical tool termed emulator, we study the sensitivity of the Indian monsoon during the the Pleistocene. The originality of the present work is to consider, as inputs, several elements of the climate forcing that have varied in the past, and then use the emulator as a method to quantify the link between forcing variability and climate variability. The methodology described here may naturally be applied to other regions of interest.
Q. Z. Yin, U. K. Singh, A. Berger, Z. T. Guo, and M. Crucifix
Clim. Past, 10, 1645–1657, https://doi.org/10.5194/cp-10-1645-2014, https://doi.org/10.5194/cp-10-1645-2014, 2014
M. N. A. Maris, B. de Boer, S. R. M. Ligtenberg, M. Crucifix, W. J. van de Berg, and J. Oerlemans
The Cryosphere, 8, 1347–1360, https://doi.org/10.5194/tc-8-1347-2014, https://doi.org/10.5194/tc-8-1347-2014, 2014
M. Crucifix
Clim. Past, 9, 2253–2267, https://doi.org/10.5194/cp-9-2253-2013, https://doi.org/10.5194/cp-9-2253-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Modelling only | Timescale: Milankovitch
Antarctic climate response in Last Interglacial simulations using the Community Earth System Model (CESM2)
Large-ensemble simulations of the North American and Greenland ice sheets at the Last Glacial Maximum with a coupled atmospheric general circulation–ice sheet model
New estimation of critical insolation–CO2 relationship for triggering glacial inception
Toward generalized Milankovitch theory (GMT)
Unraveling the complexities of the Last Glacial Maximum climate: the role of individual boundary conditions and forcings
Deglacial climate changes as forced by different ice sheet reconstructions
The coupled system response to 250 years of freshwater forcing: Last Interglacial CMIP6–PMIP4 HadGEM3 simulations
An energy budget approach to understand the Arctic warming during the Last Interglacial
Milankovitch, the father of paleoclimate modeling
Greenland climate simulations show high Eemian surface melt which could explain reduced total air content in ice cores
The response of tropical precipitation to Earth's precession: the role of energy fluxes and vertical stability
Interhemispheric effect of global geography on Earth's climate response to orbital forcing
Link between the North Atlantic Oscillation and the surface mass balance components of the Greenland Ice Sheet under preindustrial and last interglacial climates: a study with a coupled global circulation model
Eemian Greenland SMB strongly sensitive to model choice
The importance of snow albedo for ice sheet evolution over the last glacial cycle
Comparison of surface mass balance of ice sheets simulated by positive-degree-day method and energy balance approach
Sea ice led to poleward-shifted winds at the Last Glacial Maximum: the influence of state dependency on CMIP5 and PMIP3 models
The effect of a dynamic soil scheme on the climate of the mid-Holocene and the Last Glacial Maximum
Obliquity forcing of low-latitude climate
Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica
Coupled ice sheet–climate modeling under glacial and pre-industrial boundary conditions
Relative impact of insolation and the Indo-Pacific warm pool surface temperature on the East Asia summer monsoon during the MIS-13 interglacial
Factors controlling the last interglacial climate as simulated by LOVECLIM1.3
Deglacial ice sheet meltdown: orbital pacemaking and CO2 effects
Statistical downscaling of a climate simulation of the last glacial cycle: temperature and precipitation over Northern Europe
Impact of precession on the climate, vegetation and fire activity in southern Africa during MIS4
Mending Milankovitch's theory: obliquity amplification by surface feedbacks
Megalake Chad impact on climate and vegetation during the late Pliocene and the mid-Holocene
Modeling the climatic implications and indicative senses of the Guliya δ18O-temperature proxy record to the ocean–atmosphere system during the past 130 ka
Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise
Southern westerlies in LGM and future (RCP4.5) climates
Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada
The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles
Methane variations on orbital timescales: a transient modeling experiment
Deciphering the spatio-temporal complexity of climate change of the last deglaciation: a model analysis
Effects of orbital forcing on atmosphere and ocean heat transports in Holocene and Eemian climate simulations with a comprehensive Earth system model
Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle
Individual and combined effects of ice sheets and precession on MIS-13 climate
Mira Berdahl, Gunter R. Leguy, William H. Lipscomb, Bette L. Otto-Bliesner, Esther C. Brady, Robert A. Tomas, Nathan M. Urban, Ian Miller, Harriet Morgan, and Eric J. Steig
Clim. Past, 20, 2349–2371, https://doi.org/10.5194/cp-20-2349-2024, https://doi.org/10.5194/cp-20-2349-2024, 2024
Short summary
Short summary
Studying climate conditions near the Antarctic ice sheet (AIS) during Earth’s past warm periods informs us about how global warming may influence AIS ice loss. Using a global climate model, we investigate climate conditions near the AIS during the Last Interglacial (129 to 116 kyr ago), a period with warmer global temperatures and higher sea level than today. We identify the orbital and freshwater forcings that could cause ice loss and probe the mechanisms that lead to warmer climate conditions.
Sam Sherriff-Tadano, Ruza Ivanovic, Lauren Gregoire, Charlotte Lang, Niall Gandy, Jonathan Gregory, Tamsin L. Edwards, Oliver Pollard, and Robin S. Smith
Clim. Past, 20, 1489–1512, https://doi.org/10.5194/cp-20-1489-2024, https://doi.org/10.5194/cp-20-1489-2024, 2024
Short summary
Short summary
Ensemble simulations of the climate and ice sheets of the Last Glacial Maximum (LGM) are performed with a new coupled climate–ice sheet model. Results show a strong sensitivity of the North American ice sheet to the albedo scheme, while the Greenland ice sheet appeared more sensitive to basal sliding schemes. Our result implies a potential connection between the North American ice sheet at the LGM and the future Greenland ice sheet through the albedo scheme.
Stefanie Talento, Matteo Willeit, and Andrey Ganopolski
Clim. Past, 20, 1349–1364, https://doi.org/10.5194/cp-20-1349-2024, https://doi.org/10.5194/cp-20-1349-2024, 2024
Short summary
Short summary
To trigger glacial inception, the summer maximum insolation at high latitudes in the Northern Hemisphere must be lower than a critical value. This value is not constant but depends on the atmospheric CO2 concentration. Paleoclimatic data do not give enough information to derive the relationship between the critical threshold and CO2. However, knowledge of such a relation is important for predicting future glaciations and the impact anthropogenic CO2 emissions might have on them.
Andrey Ganopolski
Clim. Past, 20, 151–185, https://doi.org/10.5194/cp-20-151-2024, https://doi.org/10.5194/cp-20-151-2024, 2024
Short summary
Short summary
Despite significant progress in modelling Quaternary climate dynamics, a comprehensive theory of glacial cycles is still lacking. Here, using the results of model simulations and data analysis, I present a framework of the generalized Milankovitch theory (GMT), which further advances the concept proposed by Milutin Milankovitch over a century ago. The theory explains a number of facts which were not known during Milankovitch time's, such as the 100 kyr periodicity of the late Quaternary.
Xiaoxu Shi, Martin Werner, Hu Yang, Roberta D'Agostino, Jiping Liu, Chaoyuan Yang, and Gerrit Lohmann
Clim. Past, 19, 2157–2175, https://doi.org/10.5194/cp-19-2157-2023, https://doi.org/10.5194/cp-19-2157-2023, 2023
Short summary
Short summary
The Last Glacial Maximum (LGM) marks the most recent extremely cold and dry time period of our planet. Using AWI-ESM, we quantify the relative importance of Earth's orbit, greenhouse gases (GHG) and ice sheets (IS) in determining the LGM climate. Our results suggest that both GHG and IS play important roles in shaping the LGM temperature. Continental ice sheets exert a major control on precipitation, atmospheric dynamics, and the intensity of El Niño–Southern Oscillation.
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023, https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary
Short summary
The last deglaciation is a period of large warming from 21 000 to 9000 years ago, concomitant with ice sheet melting. Here, we evaluate the impact of different ice sheet reconstructions and different processes linked to their changes. Changes in bathymetry and coastlines, although not often accounted for, cannot be neglected. Ice sheet melt results in freshwater into the ocean with large effects on ocean circulation, but the timing cannot explain the observed abrupt climate changes.
Maria Vittoria Guarino, Louise C. Sime, Rachel Diamond, Jeff Ridley, and David Schroeder
Clim. Past, 19, 865–881, https://doi.org/10.5194/cp-19-865-2023, https://doi.org/10.5194/cp-19-865-2023, 2023
Short summary
Short summary
We investigate the response of the atmosphere, ocean, and ice domains to the release of a large volume of glacial meltwaters thought to have occurred during the Last Interglacial period. We show that the signal that originated in the North Atlantic travels over great distances across the globe. It modifies the ocean gyre circulation in the Northern Hemisphere as well as the belt of westerly winds in the Southern Hemisphere, with consequences for Antarctic sea ice.
Marie Sicard, Masa Kageyama, Sylvie Charbit, Pascale Braconnot, and Jean-Baptiste Madeleine
Clim. Past, 18, 607–629, https://doi.org/10.5194/cp-18-607-2022, https://doi.org/10.5194/cp-18-607-2022, 2022
Short summary
Short summary
The Last Interglacial (129–116 ka) is characterised by an increased summer insolation over the Arctic region, which leads to a strong temperature rise. The aim of this study is to identify and quantify the main processes and feedback causing this Arctic warming. Using the IPSL-CM6A-LR model, we investigate changes in the energy budget relative to the pre-industrial period. We highlight the crucial role of Arctic sea ice cover, ocean and clouds on the Last Interglacial Arctic warming.
Andre Berger
Clim. Past, 17, 1727–1733, https://doi.org/10.5194/cp-17-1727-2021, https://doi.org/10.5194/cp-17-1727-2021, 2021
Short summary
Short summary
This paper stresses the original contributions of Milankovitch related to his caloric seasons and his climate model giving the caloric seasons a climatological meaning.
Andreas Plach, Bo M. Vinther, Kerim H. Nisancioglu, Sindhu Vudayagiri, and Thomas Blunier
Clim. Past, 17, 317–330, https://doi.org/10.5194/cp-17-317-2021, https://doi.org/10.5194/cp-17-317-2021, 2021
Short summary
Short summary
In light of recent large-scale melting of the Greenland ice sheet
(GrIS), e.g., in the summer of 2012 several days with surface melt
on the entire ice sheet (including elevations above 3000 m), we use
computer simulations to estimate the amount of melt during a
warmer-than-present period of the past. Our simulations show more
extensive melt than today. This is important for the interpretation of
ice cores which are used to reconstruct the evolution of the ice sheet
and the climate.
Chetankumar Jalihal, Joyce Helena Catharina Bosmans, Jayaraman Srinivasan, and Arindam Chakraborty
Clim. Past, 15, 449–462, https://doi.org/10.5194/cp-15-449-2019, https://doi.org/10.5194/cp-15-449-2019, 2019
Short summary
Short summary
Insolation is thought to drive monsoons on orbital timescales. We find that insolation can be a trigger for changes in precipitation, but surface energy and vertical stability play an important role too. These feedbacks are found to be dominant over oceans and can even counter the insolation forcing, thus leading to a land–sea differential response in precipitation.
Rajarshi Roychowdhury and Robert DeConto
Clim. Past, 15, 377–388, https://doi.org/10.5194/cp-15-377-2019, https://doi.org/10.5194/cp-15-377-2019, 2019
Short summary
Short summary
The climate response of the Earth to orbital forcing shows a distinct hemispheric asymmetry, and one of the reasons can be ascribed to the unequal distribution of land in the Northern Hemisphere and Southern Hemisphere. We show that a land asymmetry effect (LAE) exists, and that it can be quantified. By using a GCM with a unique geographic setup, we illustrate that there are far-field influences of global geography that moderate or accentuate the Earth's response to orbital forcing.
Silvana Ramos Buarque and David Salas y Melia
Clim. Past, 14, 1707–1725, https://doi.org/10.5194/cp-14-1707-2018, https://doi.org/10.5194/cp-14-1707-2018, 2018
Short summary
Short summary
The link between the surface mass balance components of the Greenland Ice Sheet and both phases of the NAO is examined under preindustrial and warmer and colder climates of the last interglacial from simulations performed with CNRM-CM5.2. Accumulation in south Greenland is correlated with positive (negative) phases of the NAO in a warm (cold) climate. Melting under a warm (cold) climate is correlated with the negative (positive) phase of the NAO in north and northeast Greenland (at the margins).
Andreas Plach, Kerim H. Nisancioglu, Sébastien Le clec'h, Andreas Born, Petra M. Langebroek, Chuncheng Guo, Michael Imhof, and Thomas F. Stocker
Clim. Past, 14, 1463–1485, https://doi.org/10.5194/cp-14-1463-2018, https://doi.org/10.5194/cp-14-1463-2018, 2018
Short summary
Short summary
The Greenland ice sheet is a huge frozen water reservoir which is crucial for predictions of sea level in a warming future climate. Therefore, computer models are needed to reliably simulate the melt of ice sheets. In this study, we use climate model simulations of the last period where it was warmer than today in Greenland. We test different melt models under these climatic conditions and show that the melt models show very different results under these warmer conditions.
Matteo Willeit and Andrey Ganopolski
Clim. Past, 14, 697–707, https://doi.org/10.5194/cp-14-697-2018, https://doi.org/10.5194/cp-14-697-2018, 2018
Short summary
Short summary
The surface energy and mass balance of ice sheets strongly depends on surface albedo. Here, using an Earth system model of intermediate complexity, we explore the role played by surface albedo for the simulation of glacial cycles. We show that the evolution of the Northern Hemisphere ice sheets over the last glacial cycle is very sensitive to the parameterization of snow grain size and the effect of dust deposition on snow albedo.
Eva Bauer and Andrey Ganopolski
Clim. Past, 13, 819–832, https://doi.org/10.5194/cp-13-819-2017, https://doi.org/10.5194/cp-13-819-2017, 2017
Short summary
Short summary
Transient glacial cycle simulations with an EMIC and the PDD method require smaller melt factors for inception than for termination and larger factors for American than European ice sheets. The PDD online method with standard values simulates a sea level drop of 250 m at the LGM. The PDD online run reproducing the LGM ice volume has deficient ablation for reversing from glacial to interglacial climate, so termination is delayed. The SEB method with dust impact on snow albedo is seen as superior.
Louise C. Sime, Dominic Hodgson, Thomas J. Bracegirdle, Claire Allen, Bianca Perren, Stephen Roberts, and Agatha M. de Boer
Clim. Past, 12, 2241–2253, https://doi.org/10.5194/cp-12-2241-2016, https://doi.org/10.5194/cp-12-2241-2016, 2016
Short summary
Short summary
Latitudinal shifts in the Southern Ocean westerly wind jet could explain large observed changes in the glacial to interglacial ocean CO2 inventory. However there is considerable disagreement in modelled deglacial-warming jet shifts. Here multi-model output is used to show that expansion of sea ice during the glacial period likely caused a slight poleward shift and intensification in the westerly wind jet. Issues with model representation of the winds caused much of the previous disagreement.
M. Stärz, G. Lohmann, and G. Knorr
Clim. Past, 12, 151–170, https://doi.org/10.5194/cp-12-151-2016, https://doi.org/10.5194/cp-12-151-2016, 2016
Short summary
Short summary
In order to account for coupled climate-soil processes, we developed a soil scheme which is asynchronously coupled to an earth system model. We tested the scheme and found additional warming for a relatively warm climate (mid-Holocene), and extra cooling for a colder (Last Glacial Maximum) than preindustrial climate. These findings indicate a relatively strong positive soil feedback to climate, which may help to reduce model-data discrepancies for the climate of the geological past.
J. H. C. Bosmans, F. J. Hilgen, E. Tuenter, and L. J. Lourens
Clim. Past, 11, 1335–1346, https://doi.org/10.5194/cp-11-1335-2015, https://doi.org/10.5194/cp-11-1335-2015, 2015
Short summary
Short summary
Our study shows that the influence of obliquity (the tilt of Earth's rotational axis) can be explained through changes in the insolation gradient across the tropics. This explanation is fundamentally different from high-latitude mechanisms that were previously often inferred to explain obliquity signals in low-latitude paleoclimate records, for instance glacial fluctuations. Our study is based on state-of-the-art climate model experiments.
N. Sudarchikova, U. Mikolajewicz, C. Timmreck, D. O'Donnell, G. Schurgers, D. Sein, and K. Zhang
Clim. Past, 11, 765–779, https://doi.org/10.5194/cp-11-765-2015, https://doi.org/10.5194/cp-11-765-2015, 2015
F. A. Ziemen, C. B. Rodehacke, and U. Mikolajewicz
Clim. Past, 10, 1817–1836, https://doi.org/10.5194/cp-10-1817-2014, https://doi.org/10.5194/cp-10-1817-2014, 2014
Q. Z. Yin, U. K. Singh, A. Berger, Z. T. Guo, and M. Crucifix
Clim. Past, 10, 1645–1657, https://doi.org/10.5194/cp-10-1645-2014, https://doi.org/10.5194/cp-10-1645-2014, 2014
M. F. Loutre, T. Fichefet, H. Goosse, P. Huybrechts, H. Goelzer, and E. Capron
Clim. Past, 10, 1541–1565, https://doi.org/10.5194/cp-10-1541-2014, https://doi.org/10.5194/cp-10-1541-2014, 2014
M. Heinemann, A. Timmermann, O. Elison Timm, F. Saito, and A. Abe-Ouchi
Clim. Past, 10, 1567–1579, https://doi.org/10.5194/cp-10-1567-2014, https://doi.org/10.5194/cp-10-1567-2014, 2014
N. Korhonen, A. Venäläinen, H. Seppä, and H. Järvinen
Clim. Past, 10, 1489–1500, https://doi.org/10.5194/cp-10-1489-2014, https://doi.org/10.5194/cp-10-1489-2014, 2014
M.-N. Woillez, G. Levavasseur, A.-L. Daniau, M. Kageyama, D. H. Urrego, M.-F. Sánchez-Goñi, and V. Hanquiez
Clim. Past, 10, 1165–1182, https://doi.org/10.5194/cp-10-1165-2014, https://doi.org/10.5194/cp-10-1165-2014, 2014
C. R. Tabor, C. J. Poulsen, and D. Pollard
Clim. Past, 10, 41–50, https://doi.org/10.5194/cp-10-41-2014, https://doi.org/10.5194/cp-10-41-2014, 2014
C. Contoux, A. Jost, G. Ramstein, P. Sepulchre, G. Krinner, and M. Schuster
Clim. Past, 9, 1417–1430, https://doi.org/10.5194/cp-9-1417-2013, https://doi.org/10.5194/cp-9-1417-2013, 2013
D. Xiao, P. Zhao, Y. Wang, and X. Zhou
Clim. Past, 9, 735–747, https://doi.org/10.5194/cp-9-735-2013, https://doi.org/10.5194/cp-9-735-2013, 2013
E. J. Stone, D. J. Lunt, J. D. Annan, and J. C. Hargreaves
Clim. Past, 9, 621–639, https://doi.org/10.5194/cp-9-621-2013, https://doi.org/10.5194/cp-9-621-2013, 2013
Y. Chavaillaz, F. Codron, and M. Kageyama
Clim. Past, 9, 517–524, https://doi.org/10.5194/cp-9-517-2013, https://doi.org/10.5194/cp-9-517-2013, 2013
J. Majorowicz, J. Safanda, and K. Osadetz
Clim. Past, 8, 667–682, https://doi.org/10.5194/cp-8-667-2012, https://doi.org/10.5194/cp-8-667-2012, 2012
A. Ganopolski and R. Calov
Clim. Past, 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011, https://doi.org/10.5194/cp-7-1415-2011, 2011
T. Y. M. Konijnendijk, S. L. Weber, E. Tuenter, and M. van Weele
Clim. Past, 7, 635–648, https://doi.org/10.5194/cp-7-635-2011, https://doi.org/10.5194/cp-7-635-2011, 2011
D. M. Roche, H. Renssen, D. Paillard, and G. Levavasseur
Clim. Past, 7, 591–602, https://doi.org/10.5194/cp-7-591-2011, https://doi.org/10.5194/cp-7-591-2011, 2011
N. Fischer and J. H. Jungclaus
Clim. Past, 6, 155–168, https://doi.org/10.5194/cp-6-155-2010, https://doi.org/10.5194/cp-6-155-2010, 2010
S. Bonelli, S. Charbit, M. Kageyama, M.-N. Woillez, G. Ramstein, C. Dumas, and A. Quiquet
Clim. Past, 5, 329–345, https://doi.org/10.5194/cp-5-329-2009, https://doi.org/10.5194/cp-5-329-2009, 2009
Q. Z. Yin, A. Berger, and M. Crucifix
Clim. Past, 5, 229–243, https://doi.org/10.5194/cp-5-229-2009, https://doi.org/10.5194/cp-5-229-2009, 2009
Cited articles
Barenblatt, G. I.: Scaling, Cambridge University Press, Cambridge, ISBN 0521533945, 2003.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last
10 million years, Quaternary Sci. Rev., 10, 297–317, 1991.
Buckingham, E.: On physically similar systems; illustrations of the use of
dimensional equations, Phys. Rev., 4, 345–376, 1914.
Crucifix, M.: Why could ice ages be unpredictable?, Clim. Past, 9, 2253–2267, https://doi.org/10.5194/cp-9-2253-2013, 2013.
De Saedeleer B., Crucifix, M. and Wieczorek, S.: Is the astronomical forcing
a reliable and unique pacemaker for climate? A conceptual model study, Clim. Dynam., 40, 273–294, https://doi.org/10.1007/s00382-012-1316-1, 2013.
Ganopolski, A.: Toward Generalized Milankovitch Theory (GMT), Clim. Past Discuss. [preprint], https://doi.org/10.5194/cp-2023-57, in review, 2023.
Guckenheimer, J., Hoffman, K., and Weckesser, W.: The Forced van der Pol
Equation I: The Slow Flow and Its Bifurcations, SIAM J. Appl. Dynam. Syst., 2, 1–35, https://doi.org/10.1137/S1111111102404738, 2003.
Haken, H.: Information and self-organization: A macroscopic approach to
complex systems, Springer Science & Business Media, ISBN 3-540-66286-3, 2006.
Kaufmann, R. K., and Pretis, F.: Understanding glacial cycles: A multivariate disequilibrium approach, Quaternary Sci. Rev., 251, 106694, https://doi.org/10.1016/j.quascirev.2020.106694, 2021.
Leloup, G. and Paillard, D.: Influence of the choice of insolation forcing
on the results of a conceptual glacial cycle model, Clim. Past, 18, 547–558, https://doi.org/10.5194/cp-18-547-2022, 2022.
Paillard, D.: The timing of Pleistocene glaciations from a simple multiple-state climate model, Nature, 391, 378–381, 1998.
Saltzman, B.: Dynamical paleoclimatology: generalized theory of global
climate change, in: Vol. 80, Academic Press, San Diego, CA, ISBN 0126173311, 2002.
Saltzman, B. and Maasch, K. A.: A first-order global model of late Cenozoic
climatic change II. Further analysis based on a simplification of CO2
dynamics, Clim. Dynam., 5, 201–210, 1991.
Saltzman, B. and Verbitsky, M. Y.: Asthenospheric ice-load effects in a global dynamical-system model of the Pleistocene climate, Clim. Dynam., 8, 1–11, 1992.
Saltzman, B. and Verbitsky, M. Y.: Multiple instabilities and modes of glacial rhythmicity in the Plio-Pleistocene: a general theory of late Cenozoic climatic change, Clim. Dynam., 9, 1–15, 1993.
Saltzman, B. and Verbitsky, M.: Late Pleistocene climatic trajectory in the
phase space of global ice, ocean state, and CO2: Observations and theory, Paleoceanography, 9, 767–779, 1994.
Talento, S. and Ganopolski, A.: Reduced-complexity model for the impact of
anthropogenic CO2 emissions on future glacial cycles, Earth Syst. Dynam., 12, 1275–1293, https://doi.org/10.5194/esd-12-1275-2021, 2021.
Tzedakis, P. C., Crucifix, M., Mitsui, T., and Wolff, E. W.: A simple rule to
determine which insolation cycles lead to interglacials, Nature, 542, 427–432, 2017.
Tziperman, E., Raymo, M. E., Huybers, P., and Wunsch, C.: Consequences of
pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to
Milankovitch forcing, Paleoceanography, 21, PA4206, https://doi.org/10.1029/2005PA001241, 2006.
van der Pol, B.: On oscillation hysteresis in a triode generator with two
degrees of freedom, Philos. Mag. Ser., 6, 700—719, https://doi.org/10.1080/14786442208633932, 1922.
Verbitsky, M. Y.: Inarticulate past: similarity properties of the ice–climate system and their implications for paleo-record attribution, Earth Syst. Dynam., 13, 879–884, https://doi.org/10.5194/esd-13-879-2022, 2022.
Verbitsky, M. Y.: Supplementary code and data to Climate of the Past paper “Do phenomenological dynamical paleoclimate models have physical similarity with Nature? Seemingly, not all of them do” by Mikhail Y. Verbitsky and Michel Crucifix, Zenodo [code], https://doi.org/10.5281/zenodo.8329443, 2023.
Verbitsky, M. Y. and Chalikov, D. V.: Modelling of the Glaciers-Ocean-Atmosphere System, edited by: Monin, A. S., Gidrometeoizdat, Leningrad, 135 pp., 1986.
Verbitsky, M. Y. and Crucifix, M.: π-theorem generalization of the ice-age theory, Earth Syst. Dynam., 11, 281–289, https://doi.org/10.5194/esd-11-281-2020, 2020.
Verbitsky, M. Y. and Crucifix, M.: ESD Ideas: The Peclet number is a cornerstone of the orbital and millennial Pleistocene variability, Earth
Syst. Dynam., 12, 63–67, https://doi.org/10.5194/esd-12-63-2021, 2021.
Verbitsky, M. Y., Crucifix, M., and Volobuev, D. M.: A theory of Pleistocene
glacial rhythmicity, Earth Syst. Dynam., 9, 1025–1043,
https://doi.org/10.5194/esd-9-1025-2018, 2018.
Short summary
Are phenomenological dynamical paleoclimate models physically similar to Nature? We demonstrated that though they may be very accurate in reproducing empirical time series, this is not sufficient to claim physical similarity with Nature until similarity parameters are considered. We suggest that the diagnostics of physical similarity should become a standard procedure before a phenomenological model can be utilized for interpretations of historical records or future predictions.
Are phenomenological dynamical paleoclimate models physically similar to Nature? We demonstrated...