Articles | Volume 19, issue 9
https://doi.org/10.5194/cp-19-1793-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1793-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Do phenomenological dynamical paleoclimate models have physical similarity with Nature? Seemingly, not all of them do
Mikhail Y. Verbitsky
CORRESPONDING AUTHOR
Gen5 Group, LLC, Newton, MA, USA
UCLouvain, Earth and Life Institute, Louvain-la-Neuve, Belgium
Michel Crucifix
UCLouvain, Earth and Life Institute, Louvain-la-Neuve, Belgium
Related authors
Mikhail Verbitsky and Anne Willem Omta
EGUsphere, https://doi.org/10.5194/egusphere-2025-3334, https://doi.org/10.5194/egusphere-2025-3334, 2025
Short summary
Short summary
The cause of the MPT- period shift is generally thought to be a change within the Earth System, since the orbital insolation forcing does not change its pattern through the event. Here we propose that the MPT could be a dominant-period relaxation process that is strongly dependent on the initial state of the system and this sensitivity to the initial state is enabled by the orbital forcing.
Mikhail Y. Verbitsky, Michael E. Mann, and Dmitry Volobuev
Earth Syst. Dynam., 15, 1015–1017, https://doi.org/10.5194/esd-15-1015-2024, https://doi.org/10.5194/esd-15-1015-2024, 2024
Short summary
Short summary
It was recently suggested that global warming can be explained by the non-anthropogenic factor of seismic activity. If that is the case, it would have profound implications. We have assessed the validity of the claim by using a statistical technique that evaluates the existence of causal connections between variables, finding no evidence for any causal relationship between seismic activity and global warming.
Mikhail Verbitsky and Dmitry Volobuev
EGUsphere, https://doi.org/10.5194/egusphere-2024-1255, https://doi.org/10.5194/egusphere-2024-1255, 2024
Short summary
Short summary
The dynamics of ice sheets is defined by the advection of mass and temperature. Reduced mass influx makes advection timescale to become longer, which is equivalent to a longer system’s memory of its initial conditions. In this case the Milankovitch theory becomes an initial value problem. The dependence of the similarity parameter that governs initial-values sensitivity on poorly defined mass balance makes ice ages to be hardly predictable and disambiguation of paleo-records to be challenging.
Mikhail Verbitsky
EGUsphere, https://doi.org/10.5194/egusphere-2022-758, https://doi.org/10.5194/egusphere-2022-758, 2022
Preprint archived
Short summary
Short summary
Phenomenological models may be impressive in reproducing empirical time series but this is not sufficient to claim physical similarity with nature until comparison of similarity parameters is performed. We illustrated such a process of diagnostics of physical similarity by comparing a phenomenological dynamical paleoclimate model with a more physically explicit dynamical model.
Mikhail Y. Verbitsky
Earth Syst. Dynam., 13, 879–884, https://doi.org/10.5194/esd-13-879-2022, https://doi.org/10.5194/esd-13-879-2022, 2022
Short summary
Short summary
Reconstruction and explanation of past climate evolution using proxy records is the essence of paleoclimatology. In this study, we use dimensional analysis of a dynamical model on orbital timescales to recognize theoretical limits of such forensic inquiries. Specifically, we demonstrate that major past events could have been produced by physically dissimilar processes making the task of paleo-record attribution to a particular phenomenon fundamentally difficult if not impossible.
Mikhail Verbitsky and Michael Mann
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-87, https://doi.org/10.5194/esd-2021-87, 2021
Revised manuscript not accepted
Short summary
Short summary
In this study, we highlight a component of global warming variability, a scaling law that is based purely on fundamental physical properties of the climate system.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 12, 63–67, https://doi.org/10.5194/esd-12-63-2021, https://doi.org/10.5194/esd-12-63-2021, 2021
Short summary
Short summary
We demonstrate here that a single physical phenomenon, specifically, a naturally changing balance between intensities of temperature advection and diffusion in the viscous ice media, may influence the entire spectrum of the Pleistocene variability from orbital to millennial timescales.
Justin Gérard, Alexandre Pohl, Loïc Sablon, Jarno Huygh, Anne-Christine Da Silva, and Michel Crucifix
EGUsphere, https://doi.org/10.5194/egusphere-2025-4238, https://doi.org/10.5194/egusphere-2025-4238, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We studied how changes in Earth’s orbit affected ocean oxygen during the Devonian, a time of repeated environmental crises and extinctions. Using computer simulations, we show that certain orbital cycles, especially eccentricity maxima, exacerbate oxygen loss in the oceans, while obliquity also played a key role at high latitudes. The results also help explain why records from different places show contrasting signals and provide new insight into how natural climate cycles can affect ocean life.
Mikhail Verbitsky and Anne Willem Omta
EGUsphere, https://doi.org/10.5194/egusphere-2025-3334, https://doi.org/10.5194/egusphere-2025-3334, 2025
Short summary
Short summary
The cause of the MPT- period shift is generally thought to be a change within the Earth System, since the orbital insolation forcing does not change its pattern through the event. Here we propose that the MPT could be a dominant-period relaxation process that is strongly dependent on the initial state of the system and this sensitivity to the initial state is enabled by the orbital forcing.
Lilian Vanderveken and Michel Crucifix
Nonlin. Processes Geophys., 32, 189–200, https://doi.org/10.5194/npg-32-189-2025, https://doi.org/10.5194/npg-32-189-2025, 2025
Short summary
Short summary
Vegetation patterns in semi-arid regions arise from interactions between plants and environmental factors. This study uses a numerical model to explore how vegetation responds to changes in rainfall and random disturbances. We identify key timescales that influence resilience, showing that ecosystems rely on both stable and unstable states to adapt. These findings offer insights into the resilience mechanisms that help ecosystems maintain stability under environmental stress.
Loïc Sablon, Pierre Maffre, Yves Goddéris, Paul J. Valdes, Justin Gérard, Jarno J. C. Huygh, Anne-Christine Da Silva, and Michel Crucifix
EGUsphere, https://doi.org/10.5194/egusphere-2025-1696, https://doi.org/10.5194/egusphere-2025-1696, 2025
Short summary
Short summary
We propose an innovative climate modelling framework that combines statistical methods with climate simulations to study Earth's environmental systems. The model captures how orbital changes and carbon dioxide levels influence climate atmospheric dynamics, offering a detailed and efficient way to explore long-term processes. This tool provides new opportunities to investigate Earth's climate history and its implications for future changes.
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025, https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
Short summary
We present SURFER v3.0, a simple climate model designed to estimate the impact of CO2 and CH4 emissions on global temperatures, sea levels, and ocean pH. We added new carbon cycle processes and calibrated the model to observations and results from more complex models, enabling use over timescales ranging from decades to millions of years. SURFER v3.0 is fast, transparent, and easy to use, making it an ideal tool for policy assessments and suitable for educational purposes.
Justin Gérard, Loïc Sablon, Jarno J. C. Huygh, Anne-Christine Da Silva, Alexandre Pohl, Christian Vérard, and Michel Crucifix
Clim. Past, 21, 239–260, https://doi.org/10.5194/cp-21-239-2025, https://doi.org/10.5194/cp-21-239-2025, 2025
Short summary
Short summary
We used cGENIE, a climate model, to explore how changes in continental configuration, CO2 levels, and orbital configuration affected ocean oxygen levels during the Devonian period (419–359 million years ago). Key factors contributing to ocean anoxia were identified, highlighting the influence of continental configurations, atmospheric conditions, and orbital changes. Our findings offer new insights into the causes and prolonged durations of Devonian ocean anoxic events.
Takahito Mitsui, Peter Ditlevsen, Niklas Boers, and Michel Crucifix
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-39, https://doi.org/10.5194/esd-2024-39, 2024
Revised manuscript accepted for ESD
Short summary
Short summary
The late Pleistocene glacial cycles are dominated by a 100-kyr periodicity, rather than other major astronomical periods like 19, 23, 41, or 400 kyr. Various models propose distinct mechanisms to explain this, but their diversity may obscure the key factor behind the 100-kyr periodicity. We propose a time-scale matching hypothesis, suggesting that the ice-sheet climate system responds to astronomical forcing at ~100 kyr because its intrinsic timescale is closer to 100 kyr than to other periods.
Mikhail Y. Verbitsky, Michael E. Mann, and Dmitry Volobuev
Earth Syst. Dynam., 15, 1015–1017, https://doi.org/10.5194/esd-15-1015-2024, https://doi.org/10.5194/esd-15-1015-2024, 2024
Short summary
Short summary
It was recently suggested that global warming can be explained by the non-anthropogenic factor of seismic activity. If that is the case, it would have profound implications. We have assessed the validity of the claim by using a statistical technique that evaluates the existence of causal connections between variables, finding no evidence for any causal relationship between seismic activity and global warming.
Mikhail Verbitsky and Dmitry Volobuev
EGUsphere, https://doi.org/10.5194/egusphere-2024-1255, https://doi.org/10.5194/egusphere-2024-1255, 2024
Short summary
Short summary
The dynamics of ice sheets is defined by the advection of mass and temperature. Reduced mass influx makes advection timescale to become longer, which is equivalent to a longer system’s memory of its initial conditions. In this case the Milankovitch theory becomes an initial value problem. The dependence of the similarity parameter that governs initial-values sensitivity on poorly defined mass balance makes ice ages to be hardly predictable and disambiguation of paleo-records to be challenging.
Justin Gérard and Michel Crucifix
Earth Syst. Dynam., 15, 293–306, https://doi.org/10.5194/esd-15-293-2024, https://doi.org/10.5194/esd-15-293-2024, 2024
Short summary
Short summary
We used cGENIE, a climate model, to investigate the Atlantic Meridional Overturning Circulation (AMOC) slowdown under a warming scenario. We apply a diagnostic that was used in a previous study (Levang and Schmitt, 2020) to separate the temperature from salinity contribution to this slowdown. We find that, in our model, the initial slowdown of the AMOC was driven by temperature and that salinity takes the lead for the termination of the circulation.
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Clim. Past, 19, 2551–2568, https://doi.org/10.5194/cp-19-2551-2023, https://doi.org/10.5194/cp-19-2551-2023, 2023
Short summary
Short summary
We investigated the different boundary conditions to allow ice sheet growth and ice sheet decline of the Antarctic ice sheet when it appeared ∼38–34 Myr ago. The thresholds for ice sheet growth and decline differ because of the different climatological conditions above an ice sheet (higher elevation and higher albedo) compared to a bare topography. We found that the ice–albedo feedback and the isostasy feedback respectively ease and delay the transition from a deglacial to glacial state.
Lilian Vanderveken, Marina Martínez Montero, and Michel Crucifix
Nonlin. Processes Geophys., 30, 585–599, https://doi.org/10.5194/npg-30-585-2023, https://doi.org/10.5194/npg-30-585-2023, 2023
Short summary
Short summary
In semi-arid regions, hydric stress affects plant growth. In these conditions, vegetation patterns develop and effectively allow for vegetation to persist under low water input. The formation of patterns and the transition between patterns can be studied with small models taking the form of dynamical systems. Our study produces a full map of stable and unstable solutions in a canonical vegetation model and shows how they determine the transitions between different patterns.
Marina Martínez Montero, Michel Crucifix, Victor Couplet, Nuria Brede, and Nicola Botta
Geosci. Model Dev., 15, 8059–8084, https://doi.org/10.5194/gmd-15-8059-2022, https://doi.org/10.5194/gmd-15-8059-2022, 2022
Short summary
Short summary
We present SURFER, a lightweight model that links CO2 emissions and geoengineering to ocean acidification and sea level rise from glaciers, ocean thermal expansion and Greenland and Antarctic ice sheets. The ice sheet module adequately describes the tipping points of both Greenland and Antarctica. SURFER is understandable, fast, accurate up to several thousands of years, capable of emulating results obtained by state of the art models and well suited for policy analyses.
Mikhail Verbitsky
EGUsphere, https://doi.org/10.5194/egusphere-2022-758, https://doi.org/10.5194/egusphere-2022-758, 2022
Preprint archived
Short summary
Short summary
Phenomenological models may be impressive in reproducing empirical time series but this is not sufficient to claim physical similarity with nature until comparison of similarity parameters is performed. We illustrated such a process of diagnostics of physical similarity by comparing a phenomenological dynamical paleoclimate model with a more physically explicit dynamical model.
Mikhail Y. Verbitsky
Earth Syst. Dynam., 13, 879–884, https://doi.org/10.5194/esd-13-879-2022, https://doi.org/10.5194/esd-13-879-2022, 2022
Short summary
Short summary
Reconstruction and explanation of past climate evolution using proxy records is the essence of paleoclimatology. In this study, we use dimensional analysis of a dynamical model on orbital timescales to recognize theoretical limits of such forensic inquiries. Specifically, we demonstrate that major past events could have been produced by physically dissimilar processes making the task of paleo-record attribution to a particular phenomenon fundamentally difficult if not impossible.
Mikhail Verbitsky and Michael Mann
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-87, https://doi.org/10.5194/esd-2021-87, 2021
Revised manuscript not accepted
Short summary
Short summary
In this study, we highlight a component of global warming variability, a scaling law that is based purely on fundamental physical properties of the climate system.
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Geosci. Model Dev., 14, 6373–6401, https://doi.org/10.5194/gmd-14-6373-2021, https://doi.org/10.5194/gmd-14-6373-2021, 2021
Short summary
Short summary
Ice sheets are an important component of the climate system and interact with the atmosphere through albedo variations and changes in the surface height. On very long timescales, it is impossible to directly couple ice sheet models with climate models and other techniques have to be used. Here we present a novel coupling method between ice sheets and the atmosphere by making use of an emulator to simulate ice sheet–climate interactions for several million years.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 12, 63–67, https://doi.org/10.5194/esd-12-63-2021, https://doi.org/10.5194/esd-12-63-2021, 2021
Short summary
Short summary
We demonstrate here that a single physical phenomenon, specifically, a naturally changing balance between intensities of temperature advection and diffusion in the viscous ice media, may influence the entire spectrum of the Pleistocene variability from orbital to millennial timescales.
Cited articles
Barenblatt, G. I.: Scaling, Cambridge University Press, Cambridge, ISBN 0521533945, 2003.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last
10 million years, Quaternary Sci. Rev., 10, 297–317, 1991.
Buckingham, E.: On physically similar systems; illustrations of the use of
dimensional equations, Phys. Rev., 4, 345–376, 1914.
Crucifix, M.: Why could ice ages be unpredictable?, Clim. Past, 9, 2253–2267, https://doi.org/10.5194/cp-9-2253-2013, 2013.
De Saedeleer B., Crucifix, M. and Wieczorek, S.: Is the astronomical forcing
a reliable and unique pacemaker for climate? A conceptual model study, Clim. Dynam., 40, 273–294, https://doi.org/10.1007/s00382-012-1316-1, 2013.
Ganopolski, A.: Toward Generalized Milankovitch Theory (GMT), Clim. Past Discuss. [preprint], https://doi.org/10.5194/cp-2023-57, in review, 2023.
Guckenheimer, J., Hoffman, K., and Weckesser, W.: The Forced van der Pol
Equation I: The Slow Flow and Its Bifurcations, SIAM J. Appl. Dynam. Syst., 2, 1–35, https://doi.org/10.1137/S1111111102404738, 2003.
Haken, H.: Information and self-organization: A macroscopic approach to
complex systems, Springer Science & Business Media, ISBN 3-540-66286-3, 2006.
Kaufmann, R. K., and Pretis, F.: Understanding glacial cycles: A multivariate disequilibrium approach, Quaternary Sci. Rev., 251, 106694, https://doi.org/10.1016/j.quascirev.2020.106694, 2021.
Leloup, G. and Paillard, D.: Influence of the choice of insolation forcing
on the results of a conceptual glacial cycle model, Clim. Past, 18, 547–558, https://doi.org/10.5194/cp-18-547-2022, 2022.
Paillard, D.: The timing of Pleistocene glaciations from a simple multiple-state climate model, Nature, 391, 378–381, 1998.
Saltzman, B.: Dynamical paleoclimatology: generalized theory of global
climate change, in: Vol. 80, Academic Press, San Diego, CA, ISBN 0126173311, 2002.
Saltzman, B. and Maasch, K. A.: A first-order global model of late Cenozoic
climatic change II. Further analysis based on a simplification of CO2
dynamics, Clim. Dynam., 5, 201–210, 1991.
Saltzman, B. and Verbitsky, M. Y.: Asthenospheric ice-load effects in a global dynamical-system model of the Pleistocene climate, Clim. Dynam., 8, 1–11, 1992.
Saltzman, B. and Verbitsky, M. Y.: Multiple instabilities and modes of glacial rhythmicity in the Plio-Pleistocene: a general theory of late Cenozoic climatic change, Clim. Dynam., 9, 1–15, 1993.
Saltzman, B. and Verbitsky, M.: Late Pleistocene climatic trajectory in the
phase space of global ice, ocean state, and CO2: Observations and theory, Paleoceanography, 9, 767–779, 1994.
Talento, S. and Ganopolski, A.: Reduced-complexity model for the impact of
anthropogenic CO2 emissions on future glacial cycles, Earth Syst. Dynam., 12, 1275–1293, https://doi.org/10.5194/esd-12-1275-2021, 2021.
Tzedakis, P. C., Crucifix, M., Mitsui, T., and Wolff, E. W.: A simple rule to
determine which insolation cycles lead to interglacials, Nature, 542, 427–432, 2017.
Tziperman, E., Raymo, M. E., Huybers, P., and Wunsch, C.: Consequences of
pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to
Milankovitch forcing, Paleoceanography, 21, PA4206, https://doi.org/10.1029/2005PA001241, 2006.
van der Pol, B.: On oscillation hysteresis in a triode generator with two
degrees of freedom, Philos. Mag. Ser., 6, 700—719, https://doi.org/10.1080/14786442208633932, 1922.
Verbitsky, M. Y.: Inarticulate past: similarity properties of the ice–climate system and their implications for paleo-record attribution, Earth Syst. Dynam., 13, 879–884, https://doi.org/10.5194/esd-13-879-2022, 2022.
Verbitsky, M. Y.: Supplementary code and data to Climate of the Past paper “Do phenomenological dynamical paleoclimate models have physical similarity with Nature? Seemingly, not all of them do” by Mikhail Y. Verbitsky and Michel Crucifix, Zenodo [code], https://doi.org/10.5281/zenodo.8329443, 2023.
Verbitsky, M. Y. and Chalikov, D. V.: Modelling of the Glaciers-Ocean-Atmosphere System, edited by: Monin, A. S., Gidrometeoizdat, Leningrad, 135 pp., 1986.
Verbitsky, M. Y. and Crucifix, M.: π-theorem generalization of the ice-age theory, Earth Syst. Dynam., 11, 281–289, https://doi.org/10.5194/esd-11-281-2020, 2020.
Verbitsky, M. Y. and Crucifix, M.: ESD Ideas: The Peclet number is a cornerstone of the orbital and millennial Pleistocene variability, Earth
Syst. Dynam., 12, 63–67, https://doi.org/10.5194/esd-12-63-2021, 2021.
Verbitsky, M. Y., Crucifix, M., and Volobuev, D. M.: A theory of Pleistocene
glacial rhythmicity, Earth Syst. Dynam., 9, 1025–1043,
https://doi.org/10.5194/esd-9-1025-2018, 2018.
Short summary
Are phenomenological dynamical paleoclimate models physically similar to Nature? We demonstrated that though they may be very accurate in reproducing empirical time series, this is not sufficient to claim physical similarity with Nature until similarity parameters are considered. We suggest that the diagnostics of physical similarity should become a standard procedure before a phenomenological model can be utilized for interpretations of historical records or future predictions.
Are phenomenological dynamical paleoclimate models physically similar to Nature? We demonstrated...