
Clim. Past, 19, 1793–1803, 2023
https://doi.org/10.5194/cp-19-1793-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Do phenomenological dynamical paleoclimate models have
physical similarity with Nature? Seemingly, not all of them do
Mikhail Y. Verbitsky1,2 and Michel Crucifix2

1Gen5 Group, LLC, Newton, MA, USA
2UCLouvain, Earth and Life Institute, Louvain-la-Neuve, Belgium

Correspondence: Mikhail Y. Verbitsky (verbitskys@gmail.com)

Received: 24 April 2023 – Discussion started: 22 May 2023
Revised: 2 August 2023 – Accepted: 14 August 2023 – Published: 13 September 2023

Abstract. Phenomenological models may be impressive in
reproducing empirical time series, but this is not sufficient
to claim physical similarity with Nature until comparison
of similarity parameters is performed. We illustrated such
a process of diagnostics of physical similarity by compar-
ing the phenomenological dynamical paleoclimate model of
Ganopolski (2023), the van der Pol model (as used by Cru-
cifix, 2013), and the model of Leloup and Paillard (2022)
with the physically explicit Verbitsky et al. (2018) model that
played a role of a reference dynamical system. We concluded
that phenomenological models of Ganopolski (2023) and of
Leloup and Paillard (2022) may be considered to be physi-
cally similar to the proxy parent dynamical system in some
range of parameters, or in other words they may be derived
from basic laws of physics under some reasonable physical
assumptions. We have not been able to arrive at the same
conclusion regarding the van der Pol model. Though devel-
opments of better proxies for the parent dynamical system
should be encouraged, we nevertheless believe that the diag-
nostics of physical similarity, as we describe it here, should
become a standard procedure to delineate a model that is
merely a statistical description of the data from a model that
can be claimed to have a link with known physical assump-
tions.

The similarity parameters we advance here as the key di-
mensionless quantities are the ratio of the astronomical forc-
ing amplitude to the terrestrial ice sheet mass influx and the
so-called V number that is the ratio of the amplitudes of time-
dependent positive and negative feedbacks. We propose us-
ing available physical models to discover additional similar-
ity parameters that may play central roles in ice age rhyth-
micity. Finding values for these similarity parameters should

become a central objective of future research into glacial–
interglacial dynamics.

1 Introduction

A mathematical model that is constructed to understand a
physical phenomenon must be simple enough, otherwise the
interpretation of the modeling results may be as difficult
as the interpretation of direct observations. In that regard,
even most sophisticated space-resolving models of global cli-
mate indeed provide a simplified picture of the phenomenon,
but a much more drastic degree of simplification is required
when we study climate on timescales of tens of thousands
of years. Faced with this challenge, Barry Saltzman used to
be a proponent of the phenomenological approach “through
the construction of low-order models in which the full be-
havior is projected onto the dynamics of a reduced number
of . . . highly aggregated variables” (Saltzman, 2002). Phe-
nomenological models of paleoclimate variability have rou-
tinely been used to explain certain characteristics of glacial–
interglacial cycles (e.g., Saltzman and Maasch, 1991; Saltz-
man and Verbitsky, 1992, 1993, 1994; Paillard, 1998; Tziper-
man et al., 2006; Crucifix, 2013; Kaufmann and Pretis, 2021;
Talento and Ganopolski, 2021; Leloup and Paillard, 2022;
Ganopolski, 2023). The core principle of the phenomeno-
logical approach is to fit model-produced time series to the
observational time series. When this goal is achieved, it is
tacitly assumed that there must be some physical similarity
between the phenomenological model and Nature. However,
we believe that the assumption of physical similarity with
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Nature can be more rigorously challenged before the impli-
cations of a phenomenological model are accepted.

In fluid dynamics, for example, the concept of phys-
ical similarity is the cornerstone of any judgment built
on model experimentations. Classical similarity parameters,
which emerge from the analysis of fundamental conserva-
tion laws, like the Reynolds number, the Péclet number, or
the Euler number quantify the relative importance of differ-
ent aspects of fluid flow. For an experimental or a numerical
model to be relevant, it should have quantitatively the same
similarity parameters as those of the natural phenomenon be-
ing considered. We will now apply this concept of physical
similarity to dynamical paleoclimate systems.

As physicists, we might want to describe a phenomenon
such as ice ages as “emerging from fundamental laws”. How-
ever, the fundamental laws that we know in physics dictate
interactions between particles. Perhaps one of the greatest
challenges of the physical approach to complex systems is
to explain how Nature organizes billions of billions of par-
ticles in interaction to generate some predictable behavior
even on very long timescales, such as glacial–interglacial cy-
cles. The methods of statistical physics tell us how to define
macroscopic variables to describe the collective behavior of
particles submitted to a conservation constraint and how the
phenomenon of dissipation emerges as a consequence of sta-
tistical mixing in a chaotic system. Dynamical systems the-
ory tells us why we mainly see the most unstable modes of
a system (Haken, 2006) and how timescale separation as-
sumptions allow us to focus on a subset of the system’s vari-
ables. In a nutshell, the theories of mathematical and statisti-
cal physics make it legitimate to assume that there is a natural
parent dynamical system with far fewer degrees of freedom
than Avogadro’s number and which has generated the phe-
nomenon that we see.

What “far fewer” means is not a straightforward matter. It
depends on what we describe as the phenomenon and how
fine-grained this description is. For example, the successions
of glacial–interglacial cycles and the timing of deglaciations
appear to follow fairly simple, predictable rules (Tzedakis et
al., 2017). Hence, it is legitimate to assume that the physical
parent dynamical system, which dictates the evolution of the
macroscopic state of climate at the orbital timescale, can be
reduced to a small number of degrees of freedom.

Specifically, we may suggest that this parent dynamical
system is governed by n physical parameters ai such that a
dependent variable of interest, x, can be expressed as the fol-
lowing function:

x = ϕ (a1, a2 . . ., ai, . . ., an) . (1)

If k parameters of a1, a2, . . . , ai , . . . , an are parameters
with independent dimensions, then according to π theorem
(Buckingham, 1914), in the dimensionless form the phe-
nomenon (Eq. 1) can be described by m= n− k dimension-
less similarity parameters 51, 52, . . . ,5i , . . . ,5m:

5=8 (51, 52, . . ., 5i, . . ., 5m) . (2)

Two physical phenomena have physical similarity if both
of them are described in the dimensionless form by
the same function 8(51, 52, . . . ,5i , . . . ,5m) and have
identical numerical values of similarity parameters 51,
52, . . . ,5i , . . . ,5m; however, numerical values of the gov-
erning parameters a1, a2, . . . , ai , . . . , an may be different
(e.g., Barenblatt, 2003).

As we have already mentioned, our knowledge about a
parent dynamical system is suggested to us by the presence
of empirical time series. It means that one of the similarity
parameters, say 51, is dimensionless time t

τ
(t and τ are

dimensional time and a timescale, correspondingly), while
all other parameters 52, . . . ,5i , . . . ,5m are fixed to specific
values. Hence, an experimental time series (neglecting mea-
sure errors) can be described as

5=8

(
t

τ
, 52, . . ., 5i, . . ., 5m

)
. (3)

If we created a model dynamical system such that it is gov-
erned by p governing parameters bi

x = ψ
(
b1, b2, . . ., bi, . . ., bp

)
, (4)

and r parameters of b1, b2, . . . , bi , . . . , bp are parameters with
independent dimensions, then again, according to π the-
orem, in the dimensionless form, the model can be de-
scribed by q = p−r dimensionless similarity parameters π1,
π2, . . . ,πi , . . . ,πq :

π =9
(
π1, π2, . . ., πi, . . ., πq

)
. (5)

For a specific time series and for a fixed set of parameters
π2 . . . ,πi , . . . ,πq , the model (Eq. 5) can be presented as

π =9

(
t

τ
, π2, . . ., πi, . . ., πq

)
. (6)

The essence of the phenomenological approach is to
fit the function 9

(
t
τ
, π2, . . ., πi, . . ., πq

)
to the function

8
(
t
τ
, 52, . . ., 5i, . . ., 5m

)
under the “best” set of param-

eters π2, . . . ,πi , . . . ,πq , i.e., to equate the model time series
9
(
t
τ
, π2, . . ., πi, . . ., πq

)
and the natural, empirical time se-

ries 8
(
t
τ
, 52, . . ., 5i, . . ., 5m

)
:

9

(
t

τ
, π2, . . ., πi , . . ., πq

)
=8

(
t

τ
, 52, . . ., 5i , . . ., 5m

)
. (7)

It is obvious that even if the goal (Eq. 7) is achieved at
every t

τ
point, we still cannot claim the model (Eq. 6) to

be physically similar to Nature (Eq. 3) until we prove that
πi =5i , i.e., that πi physics in the model is as significant as
the 5i physics of Nature. Simply speaking, merely match-
ing a proposed phenomenological model with empirical data
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does not make a case for physical similarity because it does
not provide evidence that it happens for the right reason, the
reason being the similarity parameters of the right value, i.e.,
πi =5i .

However, how can we compare πi physics of the phe-
nomenological model and 5i physics of Nature if the phe-
nomenological models are not derived from the laws of
physics? Although phenomenological models indeed have
not been derived from the laws of physics, they are not com-
pletely ignorant of the physical content: they still have a mea-
surable physical variable, i.e., time, and they also have orbital
and terrestrial forcings and positive and negative feedbacks.
If the parent dynamical system was formulated in terms of
similarity parameters formed by the ratios of timescales and
by the ratios of the forcing and feedback amplitudes, then
the comparison with phenomenological models that also use
timescales and forcing and feedback ratios would be possi-
ble. The VCV18 model (Verbitsky et al., 2018) is one such
candidate (a proxy) for a parent dynamical system. VCV18
was derived from the scaled mass and heat balance equations
of the non-Newtonian ice flow. Next, we will derive scaling
laws and similarity parameters for three phenomenological
models: (a) the model of Ganopolski (2023), (b) the van der
Pol model as it has been described by Crucifix (2013),
and (c) the model of Leloup and Paillard (2022) (hereafter,
G23, VDP, and LP22, respectively). Each of these mod-
els produces a specific function 9(π1, π2, . . . ,πi , . . . ,πq ).
We then compare the functions of 9(π1, π2, . . . ,πi , . . . ,πq )
of these models with the corresponding function of 8(51,
52, . . . ,5i , . . . ,5m) provided by VCV18 to recognize or re-
ject the hypothesis of physical similarity with a proxy for the
parent dynamical system.

Certainly, we cannot expect that the time series produced
by G23, VDP, and LP22 models and by the VCV18 model
will be identical, and therefore these models will not be
physically similar in the most rigorous sense of Eq. (7). We
will demonstrate, however, that the answer to the physical-
similarity question is insightful if our dependent variable
of interest x is not necessarily a time series but a time-
independent attribute such as the period of glacial rhythmic-
ity. All models of this study reproduce the ∼ 100 kyr period
of the Late Pleistocene glaciations equally well. We will now
evaluate if the similarity parameters involved in the corre-
sponding Eq. (7) are quantitatively the same.

2 Method

2.1 VCV18 model as a proxy for a parent dynamical
system

Deriving a low-order dynamical paleoclimate model that
may be considered a candidate (a proxy) parent dynamical
system is not a trivial exercise. The “low-order” challenge
means that out of the multitude of physical phenomena in-
volved only a few should be recognized as dominant, and the

“dynamical” challenge means that the space-resolving prop-
erties should be sensibly reduced to some integrated vari-
ables. Accordingly, in developing VCV18 proxy parent dy-
namical system, we first assumed that ice ages can be ex-
plained by only two components of the global climate sys-
tem, with continental ice sheets and the ocean representing
the rest of the climate. For an ice sheet we adopted mass,
momentum, and heat conservation equations of a “thin” layer
of homogeneous non-Newtonian ice, and the rest of the cli-
mate was represented by the energy balance equation. To
migrate from the three-dimensional to dynamical equations
we used scaling analysis that provides simple mathematical
statements that are consistent with the original physics. Ac-
cordingly, the VCV18 dynamical model of the ice–climate
system is defined by the following set of equations:

dS
dt
=

4
5
ζ−1S3/4 (â− εF − κω− cθ) , (8)

dθ
dt
= ζ−1S−1/4 (â− εF − κω) {αω+β [S− S0]− θ} (9)

dω
dt
=−γ [S− S0]−

ω

τ
. (10)

Here, S (m2) is the area of glaciation, θ (◦C) is the basal ice
sheet temperature, and ω (◦C) is the global temperature of the
rest of the climate. Equation (8) represents global ice balance
d(HS)

dt = AS, where the ice thickness H is determined from
the thin-layer approximation of ice flow, H = ζS1/4, ζ is di-
mensional profile factor (Verbitsky and Chalikov, 1986), and
A= â−εF−κω−cθ is the surface mass influx. Equation (9)
describes vertical ice temperature advection with a timescale
H/(â− εF − κω), and Eq. (10) is the global energy balance
equation. The parameter â (m s−1) is the snow precipitation
rate; F is normalized external forcing, i.e., mid-July inso-
lation at 65◦ N (Berger and Loutre, 1991) of the amplitude ε
(m s−1); κω represents fast positive feedback from the global
climate on ice sheet mass balance; and cθ is the ice discharge
due to ice sheet basal sliding incorporating (both delayed
due to the vertical temperature advection) positive feedback
from the global temperature, αω, and a negative feedback
of basal temperature reaction to the changes in ice geometry
β[S−S0]. Further, −γ [S−S0] is external forcing for global
temperature (e.g., albedo); κ (m s−1 ◦C−1), c (m s−1 ◦C−1),
α (dimensionless), β (◦C m−2), and γ (◦C m−2 s−1) are sen-
sitivity coefficients; S0 (m2) is a reference glaciation area;
and τ (s) is the global-temperature timescale.

Schematically, the dynamical system (Eqs. 8–10) is shown
in Fig. 1a. It can be seen that the dynamics of the VCV18
system are defined by the amplitude and periodicity of the
orbital forcing, ε, T ; by the terrestrial forcing â; and by
three feedback loops: the fast positive feedback, −κω, and
by two delayed positive and negative feedbacks, combined
in the term −cθ . The dimensional analysis of the VCV18
model has been performed previously (Verbitsky and Cru-
cifix, 2020, 2021; Verbitsky, 2022). It was revealed that its
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Figure 1. (a) The parent dynamical system VCV18 (Eqs. 8–10). Red circles mark positive feedback loops, and green circles mark negative
feedback loops. (b) The same as (a) but for the G23 phenomenological model (Eqs. 12 and 13). (c) The same as (a) but for simplified system
VCV18-1 (Eqs. 22 and 23). (d) The same as (a) but for VDP model (Eqs. 30 and 31). (e) The same as (a) but for the LP22 model (Eqs. 37
and 38), I = 0. (f) The same as (a) but for the LP22 model (Eqs. 44 and 45).

large-scale periodicity is generally governed by two dimen-
sionless parameters: the ratio of the astronomical forcing am-
plitude ε to the terrestrial ice sheet mass influx, 52 = ε/â,
and the so-called V number, 53 = V , which is the ratio of
amplitudes of time-dependent positive and negative feed-
backs. Specifically, the period P of the VCV18 system re-
sponse to the astronomical forcing of period T is of the fol-
lowing form (hereafter called the “P -scaling law”):

P

T
=8

( ε
â
,V
)
. (11)

For T = 40 kyr, ε
â
= 1.4, V = 0.7, and 8= 2 (obliquity pe-

riod doubling). The corresponding time series and positive-
versus-negative feedback evolution are shown in Fig. 2a
and b.

2.2 G23 model

The G23 model (specifically “Model 2” as annotated in
Ganopolski, 2023) describes the evolution of global ice vol-
ume v (dimensionless) as a response to orbital forcing εF (F
is normalized external forcing of the amplitude ε):
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Figure 2. Time series (ka) and corresponding positive-versus-negative feedback loops: (a, b) VCV18 (Eqs. 8–10), where
(
S
S0

)5/4
is nor-

malized ice volume; (c, d) G23 (Eqs. 12 and 13); (e, f) VCV18-1 (Eqs. 22 and 23), where all variables are normalized by characteristic
ice thickness, H ′ =

(
â/κ

)1/4, and the dotted triangle corresponds to LP22 (Eqs. 44 and 45) without astronomical forcing; and (g, h) VDP
(Eqs. 30 and 31).

dv
dt
=
av− bv2

− εF + d

1− δgv∗
, (12)

v∗ =
1
T ∗

t∫
t−T ∗

v(t ′)dt ′. (13)

The term δgv∗ represents an additional positive feedback ac-
tivated (δ = δ1 = 1) when dv

dt < 0. When dv
dt ≥ 0, δ = δ2 = 0.

Graphically, the dynamical system (Eqs. 12 and 13) is shown
in Fig. 1b. We observe that the dynamics of the G23 sys-

tem are, like VCV18, defined by the amplitude and periodic-
ity of the orbital forcing, ε, T , and by three feedback loops:
two positive feedbacks, av, gv∗, and one negative feedback,
−bv2. Unlike VCV18, however, all feedbacks are instan-
taneous. We now review how these differences may be re-
flected in the corresponding P -scaling law.

For the purpose of dimensional analysis, we consider
Eqs. (12) and (13) in dimensional form assuming the follow-
ing dimensions for variables and parameters involved: t (s),
v (m3), a (s−1), b (m−3 s−1), ε (m3 s−1), F (which is a di-
mensionless function of the period T (s)), d (m3 s−1), δ1, δ2
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(dimensionless), g (m−3), and v∗ (m3). The period of the sys-
tem response to the astronomical forcing is then a function of
the following governing parameters:

P = ψ (a,b,ε,T ,d,δ1,δ2,g) . (14)

For more explicit physical interpretation, instead of the pa-
rameter b we will use parameter â = a2

b
(m3 s−1), which is

the mean growth rate. In addition, for the reference values of
parameters provided by G23, d � ε and δ1, δ2 are constant.
Therefore, we can rewrite Eq. (14) as follows:

P = ψ(a, â,ε,T ,g). (15)

If we choose â, T as parameters with independent dimen-
sions, then according to π theorem

P

T
=9

( ε
â
, T a, T gâ

)
. (16)

Let us now determine the V number for G23 as the ratio
of amplitudes of time-dependent positive and negative feed-
backs. Obviously, such a ratio should be completely defined
by the internal (terrestrial) G23 properties, giving the follow-
ing equation:

V = λ(a,b,g). (17)

If we choose a and b as parameters with independent dimen-
sions, then according to π theorem

V =3
(ga
b

)
. (18)

We can also express g as a function of V :

ga

b
=3−1(V ). (19)

Accordingly, the P -scaling law of G23 can be written as fol-
lows:

P

T
=9

[ ε
â
, T a, T a3−1(V )

]
, (20)

or

P

T
=9

(
ε

â
,
T

τ
, V

)
; τ = 1/a. (21)

We see that the scaling law in Eq. 21 is different from the
scaling law in Eq. 11 because the 9 function of Eq. (21)
depends on T , unlike the 8 function of Eq. (11). There are
only two scenarios for orbital periods to escape the 9 func-
tion (or the 8 function) in a scaling law. First, they may be
excluded from the governing equations when the main pe-
riod of system’s variability is attributed to the internal terres-
trial physics. This is the case for the VDP and LP22 models
that will be considered later, but it is definitely not applicable
to either G23 or VCV18. The second scenario occurs when

a system incorporates multiple parameters encoding differ-
ent timescales. The interplay of these parameters may create
a situation when T -dependent similarity parameters jointly
form a T -independent conglomerate similarity parameter,
giving a system the so-called property of incomplete simi-
larity (Barenblatt, 2003). This property has been discovered
for VCV18 (Verbitsky, 2022). As the result, the 8 function
of the scaling law (Eq. 11) does not depend on orbital period
(8= 2 in the range of T = 35–60 kyr). In contrast, as we
have already noted, G23 positive and negative feedbacks are
instantaneous, the G23 single ice growth timescale τ ∼ 1/a
does not have a “counterpart” for an interplay, and therefore
the 9 function of Eq. (21) is period T dependent.

Nevertheless, for T = 40 kyr, ε
â
= 1.6, V = 1.1, and 9 =

2 (obliquity period doubling). Hence, only under the obliq-
uity forcing the VCV18 and G23 models appear to be phys-
ically similar in regard to two quantitatively close similarity
parameters: ε

â
, the ratio of the astronomical forcing ampli-

tude ε to the growth rate â, and the V number. The corre-
sponding time series and positive-versus-negative feedback
evolution are shown in Fig. 2c and d. Geometrically, the sim-
ilarity between the VCV18 and G23 models in terms of the
V number emerges from Fig. 2b and d as similar slopes of the
corresponding feedback loops; however, the instantaneous
nature of G23 feedbacks makes their “loop” asymptotically
thin.

2.3 Simplified VCV18 model (VCV18-1) as a proxy for a
parent dynamical system

The next phase of our study is devoted to two phenomeno-
logical models, VDP and LP22, which have 100 kyr auto-
oscillations independent of orbital forcing. To make the di-
agnostics of physical similarity possible, we have to further
simplify VCV18 system with several physically reasonable
assumptions.

a. Since the global-temperature timescale in Eq. (10) is
much faster than other timescales (orbital, ice accumu-
lation, and ice temperature advection), we assume that
global temperature is an instantaneous function of the
glaciation forcing.

b. In Eq. (9), we assume α = 0 (for example, the effect of
increased global temperature is offset by increased snow
precipitation rate; see experiment D in the Appendix of
VCV18), which cancels the direct effect of climate on
basal temperature.

c. We rewrite Eqs. (8) and (9) in terms of ice thickness
H = ζS1/4.

d. We attribute all system variability to terrestrial causes
(ε = 0).

The simplified dynamical system then takes the following
form:
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dH
dt
= â+ κH 4

− cθ, (22)

dθ
dt
=
H 4
− θ

H/â
. (23)

The physical meaning of all variables and governing param-
eters is the same as in Eqs. (8) and (9), but the numerical
values and dimensions of some parameters and variables are
indeed different – specifically, t (s),H (m), θ (m4), â (m s−1),
κ (m−3 s−1), and c (m−3 s−1). The casual graph of the dy-
namical system (Eqs. 22 and 23) is shown in Fig. 1c.

The period of system variability is a function of three gov-
erning parameters:

P = ϕ(â,κ,c). (24)

If we choose â, κ as parameters with independent dimen-
sions, then according to π theorem

P

τ
=8

(κ
c

)
(25)

τ =
(
â3κ

)−1/4
.

Parameters â, κ , c lack in the VDP and LP22 models, and
therefore we transition to the V number that must be a func-
tion of the same â, κ , c parameters:

V = λ(â,κ,c). (26)

Since the V number is dimensionless and â, κ are parameters
with independent dimensions, according to π theorem

V =3(κ/c). (27)

This also means that

κ

c
=3−1(V ), (28)

and we can finally present the VCV18-1 P -scaling law as
follows:

P

τ
=8(V ). (29)

In other words, the P -scaling law of the VCV18-1 system
is fully defined by the balance between positive and neg-
ative feedbacks. For τ = 50 kyr, V = 0.63 and 8= 2. The
corresponding 100 kyr period auto-oscillations of the system
(Eqs. 22 and 23) and its positive-versus-negative feedback
loop are shown in Fig. 2e and f.

2.4 VDP model

We now consider the VDP model, which is a variant of the
historical van der Pol (1922) model used by De Saedeleer

et al. (2013) and Crucifix (2013) to study synchronization
properties of ice ages.

dx
dt
=
−β − y

τ
(30)

dy
dt
=
α

τ

(
y−

y3

3
+ x

)
(31)

Here all variables and parameters, except time and timescale
τ , are dimensionless. Variable x is a proxy for the glacia-
tion, and variable y represents the rest of the climate. Since
τ
α
� τ , for longer, glaciation-like processes, we can rewrite

Eqs. (30) and (31) as follows:

dx
dt
=

1
τ

(
−β + x−

y3

3

)
, (32)

y−
y3

3
+ x = 0. (33)

Equation (33) defines the “critical manifold” (Guckenheimer
et al., 2003). The system (Eqs. 32 and 33) describes VDP
“slow” dynamics between two glacial–interglacial bifurca-
tion points. To get VDP time series, we solve the non-
idealized system (Eqs. 30 and 31), and we use the system
(Eqs. 32 and 33) to visualize system’s positive, x, and neg-
ative, y3

3 , feedbacks. Schematically, the dynamical system
(Eqs. 30 and 31) is shown in Fig. 1d. The period of system
(Eqs. 32 and 33) variability is the function of two governing
parameters:

P = ψ(τ,β). (34)

Only parameter τ is dimensional, and therefore according to
π theorem

P

τ
=9(β). (35)

The amplitudes of VDP variables are defined by the criti-
cal manifold (Eq. 33) that does not contain parameters τ ,
β, and therefore both x and y amplitudes do not depend on
model parameters. Consequently, the amplitudes of positive
and negative feedbacks do not depend on them either. In fact,
the x amplitude in VDP model is always ∼ 0.8, while the
y amplitude is always 2. Therefore, the ratio of the amplitude
of the positive feedback, x, to the amplitude of the negative
feedback, y

3

3 , is always V = 0.3. In summary,

V = const. (36)

This property (Eq. 36) makes the VDP model fundamentally
different from all other models in this study. In all other mod-
els, the V number is the function of model’s governing pa-
rameters, and under different scenarios it changes when pa-
rameters change. In the VDP model, the V number is prede-
fined by the model’s structure. Consequently, the scaling law
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(Eq. 35) does not contain any V number, and thus it cannot
match the scaling law (Eq. 29). Therefore, there is no physi-
cal similarity between the VCV18-1 and the VDP models.

The auto-oscillations of the system (Eqs. 30 and 31) and
positive-versus-negative feedback evolution are shown in
Fig. 2g and h. For τ = 50 kyr and β = 0.3, 9 = 2.2. Fig-
ure 2e and g show well why the phenomenological ap-
proach may be misleading. For the same internal timescale
of 50 kyr, VCV18-1 and VDP models both produce asym-
metrical (slow growth and fast retreat) glaciation time series
with the respective periods P close to 100 kyr, but this oc-
curs because of very different physics: in the VDP model the
positive feedbacks are much weaker (V = 0.3) than in the
VCV18-1 model (V = 0.63). Most importantly, this discrep-
ancy cannot be changed because the VDP model is rigid in
this regard.

2.5 LP22 model

The LP22 model is described by two differential equations,
first, for the growing ice volume,

dv
dt
=−

I

τi
+

1
τg
, (37)

and another for the diminishing ice volume,

dv
dt
=−

I

τi
−
v

τd
. (38)

Here, v and I are normalized ice volume and astronomi-
cal forcing, respectively, and τi , τg , and τd are dimensional
timescales. Additionally, if I < I0 the system switches from
Eqs. (38) to (37), while if I + v > V0 the system switches
from Eq. (37) to (38). Though the original LP22 model does
not consider its evolution without astronomical forcing, os-
cillations still occur when I = 0 and the equation-switching
conditions are v ≤ V1 (V1 is the minimal, interglacial, vol-
ume) and v ≥ V0, respectively. Schematically, the dynamical
system (Eqs. 37 and 38) with I = 0 is shown in Fig. 1e. The
period of auto-oscillations is a function of four parameters:

P = ψ
(
V0, τg, V1, τd

)
. (39)

The parameter V1� V0 can be settled as a constant, and
therefore

P = ψ
(
V0, τg, τd

)
. (40)

If we select τg as an independent-dimension parameter, then
according to π theorem

P

τg
=9

(
V0,τd/τg

)
. (41)

Equation (37) describes a linear ice volume growth, implying
zero net feedback. This does not indicate the absence of feed-
backs. Indeed, if we are ready to accept that the LP22 model

is more than just a successful fit to empirical data, then for
the growing ice sheet Eq. (37) should be consistent with the
dimensional total mass balance

dv
dt
= âS; (42)

i.e., changes in ice volume are equal to mass influx â accu-
mulated over its area S. If we multiply and divide âS by ice
thickness H , the total mass balance (Eq. 42) becomes

dv
dt
=
v

τg
, (43)

where τg =H/â. Equation (43) tells us that the positive feed-
back v

τg
must be present in the growing ice sheet: it relates to

the area growth with volume. Its absence in Eq. (37) there-
fore suggests that â has another component that completely
compensates for v

τg
and yet another component that is in-

versely proportional to S (e.g., continentality effect). Hence,
the system (Eqs. 37 and 38) must be written as follows to
have physical meaning:

dv
dt
=

1
τg
+
v

τg
−
v

τg
(44)

dv
dt
=−

v

τd
. (45)

Schematically, the dynamical system (Eqs. 44 and 45) is
shown in Fig. 1f. The amplitude of the positive feed-
back is V0

τg
, and the amplitude of the negative feedback is

max
{
V0
τg
;
V0
τd

}
. Since τg > τd , the V number is therefore

equal to

V =
τd

τg
. (46)

Accordingly, the P -scaling law (Eq. 41) for the LP22 model
can be written as

P

τg
=9 (V0,V ) . (47)

For example, for τg = 50 kyr, V0 = 1.5, V1 = 0.2, and τd =
20 kyr, we get V = 0.4 and 9 = 2, and, as we have estab-
lished before, for the VCV18-1 model, τ = 50 kyr, V = 0.63,
and 8= 2. Therefore, we can talk about physical similarity
between the VCV18-1 and LP22 models in terms of reason-
ably close V numbers.

The similarity between the VCV18-1 and LP22 models
becomes very visual in Fig. 2f, which describes the positive-
versus-negative feedback loops. It can be observed during
much of the ice growth in the VCV18-1 model that posi-
tive and negative feedbacks also completely compensate for
each other. In fact, we can consider the LP22 model to be an
approximation of the VCV18-1 feedback loop by a triangle.
Indeed, the LP22 positive and negative feedbacks compen-
sate for each other during ice advance, and when the critical
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Figure 3. The P -scaling laws of the VCV18-1 (blue; the dotted line
is its trend line) and the LP22 (brown) model.

value of v (i.e., V0) is achieved, the system instantly migrates
to the single dominant negative feedback. Simply put, these
two models are as similar to one another as the shape of the
LP22 feedback loop triangle in Fig. 2f is similar to the shape
of the VCV18-1 feedback loop, as the V number is the ra-
tio of its horizontal dimension to its vertical dimension. This
similarity can be illustrated even further if we compare ex-
plicit scaling laws (Eqs. 29 and 47). For this purpose, we
solved equations (Eqs. 22 and 23) by changing the parame-
ter c and thus gradually changing the balance between posi-
tive and negative feedbacks. The results of these additional
experiments are presented in Fig. 3 together with the P -
scaling law (Eq. 47) that can be estimated in a very straight-
forward manner: P ∼ V0τg+τd or P

τg
∼ V0+τd/τg , which is

finally P
τg
∼ V0+V . It can be observed that the LP22 scaling

law closely resembles the VCV18-1 scaling law trend line,
thus supporting our assertion that we can consider the LP22
model being an approximation of the VCV18-1 model.

3 Conclusions

Nikolai Gogol would have said that “a magic apple tree
may grow golden apples . . . but not pears”. Phenomenolog-
ical models may not be bounded by a specific physics, but
they have to be consistent with the laws of physics. The con-
cept of physical similarity is what allows us to be vigilant
about such consistency. Accordingly, we started our presen-
tation with the following question: are phenomenological dy-
namical paleoclimate models physically similar to Nature?
We demonstrated that though they may be remarkably ac-
curate in reproducing empirical time series, this is not suf-
ficient to claim physical similarity with Nature until simi-
larity parameters are considered. We illustrated such a pro-
cess of diagnostics of physical similarity by comparing three
phenomenological dynamical paleoclimate models with the

Figure 4. Physical similarity diagnostics for the obliquity period
doubling of the VCV18 and G23 models and for 100 kyr auto-
oscillations of the VDP, LP22, and VCV18-1 models. The physi-
cal similarity is visualized here as proximity between the models in
the ε

â
−V space. Dashed red ovals embrace models that we found

to be physically similar, and therefore they are in reasonably close
proximity in the diagram.

more explicit model that played the role of a parent dynam-
ical system. Though the nomination of the VCV18 model to
serve as a proxy for the parent dynamical system can indeed
be questioned and the developments of better proxies should
be encouraged, we nevertheless believe that the diagnostics
of physical similarity we have described should become a
standard procedure before a phenomenological model can be
utilized for interpretations of historical records or for future
predictions. In other words, claiming a model to be a phe-
nomenological one is not an indulgence but a liability.

The results of the analysis are summarized in Fig. 4. Here,
the physical similarity is visualized as the proximity between
the models in the

(
ε
â
, V
)

space.
LP22 and G23 models can be considered to be physi-

cally similar to particular versions of the VCV18 model,
which amounts to saying that they may be derived from ba-
sic laws of physics under some reasonable physical assump-
tions. These findings boost the physical viability of these
phenomenological models, but this is not unconditional and
there are clear boundaries to the physical legitimacy of these
phenomenological models. For LP22, the ratio of the feed-
back’s amplitudes, the V number, is also the ratio of the
timescales. For the Late Pleistocene and the Early Pleis-
tocene, all timescales are likely to be different, and the phys-
ical similarity would therefore need to be re-examined sepa-
rately for each period. For the G23 model, physical similarity
was found only for the obliquity range forcing.

Generally speaking, our observation that the VDP model is
not physically similar to the simplified version of the VCV18
model is not a final verdict. It is indeed an indication that
VDP is not based on ice physics, but there may be other phys-
ical phenomena that may provide physical legitimacy to the
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VDP model. We are, however, a bit skeptical that such a phe-
nomenon can easily be found because it would need to be
constrained in the same way as the VDP model. Specifically,
its ratio of positive and negative feedbacks must to be fixed
to a specific value that never changes.

Figure 4 clearly shows that the VDP, LP22, and even
VCV18-1 models are not physically similar to the VCV18
model. Indeed, the VDP, LP22, and VCV18-1 scaling laws
do not have a similarity parameter that is a ratio of orbital
and terrestrial forcing amplitudes, and therefore these mod-
els are located on the horizontal axis of Fig. 4. Interestingly,
the VDP, LP22, and VCV18-1 models are located to the
left of the VCV18 and G23 models, thus revealing the more
prominent role of their negative feedbacks. As is clearly dis-
played in the positive-versus-negative feedback diagrams of
Fig. 2, this happens because the mechanism of ice disinte-
gration in these two groups of models is based on very dif-
ferent physics. In the VCV18-1, VDP, and LP22 models, the
disintegration of ice sheets happens when the negative feed-
back suddenly becomes dominant and destroys an ice sheet.
In both the VCV18 and G23 models, the disintegration is due
to the additional fast positive feedback, which is small during
most of the ice growth period but eventually becomes strong
enough to boost the orbital forcing that attempts ice destruc-
tion.

Importantly, we arrived at the above conclusions without
making any effort to somehow artificially minimize (or max-
imize) a “distance” between the models in Fig. 4 (though it
may be an interesting separate exercise) but instead for the
most part used published reference values of model parame-
ters.

In addition, it should not be forgotten that Fig. 4 is just our
attempt to present the most important results visually in one
diagram. Since it is 2-dimensional, it demonstrates similarity
(or its absence) in terms of two similarity parameters, the ra-
tio of astronomical forcing amplitude to the terrestrial growth
rate and the positive-to-negative feedback ratio. These two
dimensions would not be sufficient if more similarity param-
eters need to be visually presented. For example, Eq. (21)
shows that the G23 model depends on the similarity param-
eter formed by the ratio of the orbital period T to the in-
ternal timescale 1/a. This similarity parameter is absent in
the VCV18 model. This absence of similarity is not apparent
from Fig. 4, but it is discussed in Sect. 2.2.

As a final conclusion, we agree with the Saltzman (2002)
proposal that “the essential slow physics is to be sought in
the low-order models.” We observe, however, that “essential
slow physics” that can be derived from phenomenological
models is limited to orbital and terrestrial timescales, to ra-
tios of amplitudes of orbital and terrestrial forcings, and to
ratios of amplitudes of positive and negative feedbacks. This
is as much as phenomenological models can offer, and there-
fore we deviate from further idea of Saltzman (2002) that
more explicit models should be tuned to satisfy a best phe-
nomenological model. Instead, we propose using available

physical models for diagnostics of the physical-similarity hy-
pothesis that need to be either confirmed or rejected. Specif-
ically, physical models have to be explored to identify addi-
tional dimensionless quantities playing key roles in their dy-
namics. Further, finding values for these quantities should be
a central objective of future research into glacial–interglacial
dynamics.

Of course, encoding empirical data in a simple mathemat-
ical statement will always remain a tempting possibility. As
Grigory Barenblatt (2003) said, “applied mathematics is the
art of constructing mathematical models of phenomena in
nature”. This means that there are no strict rules as to how
a piece of mathematical “art” needs to be produced. There-
fore, we do not attempt here to discourage our fellow “artists”
from alluding to phenomenological models. Our goal instead
was to remind them about the limitations of phenomenolog-
ical models and to suggest how these limitations may be ad-
dressed.

Code availability. The MATLAB R2015b code and data
to reproduce the time series and corresponding feed-
back loops as they are presented in Fig. 2 are available at
https://doi.org/10.5281/zenodo.8329443 (Verbitsky, 2023).

Data availability. This paper refers exclusively to published re-
search articles and their data. We refer the reader to the cited lit-
erature (Berger and Loutre, 1991) for access to data.

Author contributions. MYV conceived the research, developed
the formalism, and wrote the first draft of the manuscript. The au-
thors jointly discussed the findings and contributed equally to the
editing of the manuscript.

Competing interests. The contact author has declared that nei-
ther of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We are grateful to Andrey Ganopolski for
discussions and generous insight into the G23 model, including the
time series of Fig. 2c and d, and to Dmitry Volobuev for his help
in digitizing VCV18. We are also grateful to our two anonymous
reviewers for their helpful suggestions.

Review statement. This paper was edited by Z. S. Zhang and re-
viewed by two anonymous referees.

Clim. Past, 19, 1793–1803, 2023 https://doi.org/10.5194/cp-19-1793-2023

https://doi.org/10.5281/zenodo.8329443


M. Y. Verbitsky and M. Crucifix: Do phenomenological models have physical similarity with Nature? 1803

References

Barenblatt, G. I.: Scaling, Cambridge University Press, Cambridge,
ISBN 0521533945, 2003.

Berger, A. and Loutre, M. F.: Insolation values for the climate of the
last 10 million years, Quaternary Sci. Rev., 10, 297–317, 1991.

Buckingham, E.: On physically similar systems; illustrations of the
use of dimensional equations, Phys. Rev., 4, 345–376, 1914.

Crucifix, M.: Why could ice ages be unpredictable?, Clim. Past, 9,
2253–2267, https://doi.org/10.5194/cp-9-2253-2013, 2013.

De Saedeleer B., Crucifix, M. and Wieczorek, S.: Is the as-
tronomical forcing a reliable and unique pacemaker for cli-
mate? A conceptual model study, Clim. Dynam., 40, 273–294,
https://doi.org/10.1007/s00382-012-1316-1, 2013.

Ganopolski, A.: Toward Generalized Milankovitch Theory (GMT),
Clim. Past Discuss. [preprint], https://doi.org/10.5194/cp-2023-
57, in review, 2023.

Guckenheimer, J., Hoffman, K., and Weckesser, W.: The
Forced van der Pol Equation I: The Slow Flow and
Its Bifurcations, SIAM J. Appl. Dynam. Syst., 2, 1–35,
https://doi.org/10.1137/S1111111102404738, 2003.

Haken, H.: Information and self-organization: A macroscopic ap-
proach to complex systems, Springer Science & Business Media,
ISBN 3-540-66286-3, 2006.

Kaufmann, R. K., and Pretis, F.: Understanding glacial cycles: A
multivariate disequilibrium approach, Quaternary Sci. Rev., 251,
106694, https://doi.org/10.1016/j.quascirev.2020.106694, 2021.

Leloup, G. and Paillard, D.: Influence of the choice of inso-
lation forcing on the results of a conceptual glacial cycle
model, Clim. Past, 18, 547–558, https://doi.org/10.5194/cp-18-
547-2022, 2022.

Paillard, D.: The timing of Pleistocene glaciations from a simple
multiple-state climate model, Nature, 391, 378–381, 1998.

Saltzman, B.: Dynamical paleoclimatology: generalized theory of
global climate change, in: Vol. 80, Academic Press, San Diego,
CA, ISBN 0126173311, 2002.

Saltzman, B. and Maasch, K. A.: A first-order global model of late
Cenozoic climatic change II. Further analysis based on a simpli-
fication of CO2 dynamics, Clim. Dynam., 5, 201–210, 1991.

Saltzman, B. and Verbitsky, M. Y.: Asthenospheric ice-load effects
in a global dynamical-system model of the Pleistocene climate,
Clim. Dynam., 8, 1–11, 1992.

Saltzman, B. and Verbitsky, M. Y.: Multiple instabilities and modes
of glacial rhythmicity in the Plio-Pleistocene: a general theory of
late Cenozoic climatic change, Clim. Dynam., 9, 1–15, 1993.

Saltzman, B. and Verbitsky, M.: Late Pleistocene climatic trajectory
in the phase space of global ice, ocean state, and CO2: Observa-
tions and theory, Paleoceanography, 9, 767–779, 1994.

Talento, S. and Ganopolski, A.: Reduced-complexity model for the
impact of anthropogenic CO2 emissions on future glacial cycles,
Earth Syst. Dynam., 12, 1275–1293, https://doi.org/10.5194/esd-
12-1275-2021, 2021.

Tzedakis, P. C., Crucifix, M., Mitsui, T., and Wolff, E. W.: A simple
rule to determine which insolation cycles lead to interglacials,
Nature, 542, 427–432, 2017.

Tziperman, E., Raymo, M. E., Huybers, P., and Wunsch, C.: Conse-
quences of pacing the Pleistocene 100 kyr ice ages by nonlinear
phase locking to Milankovitch forcing, Paleoceanography, 21,
PA4206, https://doi.org/10.1029/2005PA001241, 2006.

van der Pol, B.: On oscillation hysteresis in a triode generator
with two degrees of freedom, Philos. Mag. Ser., 6, 700—719,
https://doi.org/10.1080/14786442208633932, 1922.

Verbitsky, M. Y.: Inarticulate past: similarity properties of
the ice–climate system and their implications for paleo-
record attribution, Earth Syst. Dynam., 13, 879–884,
https://doi.org/10.5194/esd-13-879-2022, 2022.

Verbitsky, M. Y.: Supplementary code and data to Climate of the
Past paper “Do phenomenological dynamical paleoclimate mod-
els have physical similarity with Nature? Seemingly, not all of
them do” by Mikhail Y. Verbitsky and Michel Crucifix, Zenodo
[code], https://doi.org/10.5281/zenodo.8329443, 2023.

Verbitsky, M. Y. and Chalikov, D. V.: Modelling of the Glaciers-
Ocean-Atmosphere System, edited by: Monin, A. S., Gidrome-
teoizdat, Leningrad, 135 pp., 1986.

Verbitsky, M. Y. and Crucifix, M.: π -theorem generalization
of the ice-age theory, Earth Syst. Dynam., 11, 281–289,
https://doi.org/10.5194/esd-11-281-2020, 2020.

Verbitsky, M. Y. and Crucifix, M.: ESD Ideas: The Peclet number is
a cornerstone of the orbital and millennial Pleistocene variability,
Earth Syst. Dynam., 12, 63–67, https://doi.org/10.5194/esd-12-
63-2021, 2021.

Verbitsky, M. Y., Crucifix, M., and Volobuev, D. M.: A theory of
Pleistocene glacial rhythmicity, Earth Syst. Dynam., 9, 1025–
1043, https://doi.org/10.5194/esd-9-1025-2018, 2018.

https://doi.org/10.5194/cp-19-1793-2023 Clim. Past, 19, 1793–1803, 2023

https://doi.org/10.5194/cp-9-2253-2013
https://doi.org/10.1007/s00382-012-1316-1
https://doi.org/10.5194/cp-2023-57
https://doi.org/10.5194/cp-2023-57
https://doi.org/10.1137/S1111111102404738
https://doi.org/10.1016/j.quascirev.2020.106694
https://doi.org/10.5194/cp-18-547-2022
https://doi.org/10.5194/cp-18-547-2022
https://doi.org/10.5194/esd-12-1275-2021
https://doi.org/10.5194/esd-12-1275-2021
https://doi.org/10.1029/2005PA001241
https://doi.org/10.1080/14786442208633932
https://doi.org/10.5194/esd-13-879-2022
https://doi.org/10.5281/zenodo.8329443
https://doi.org/10.5194/esd-11-281-2020
https://doi.org/10.5194/esd-12-63-2021
https://doi.org/10.5194/esd-12-63-2021
https://doi.org/10.5194/esd-9-1025-2018

	Abstract
	Introduction
	Method
	VCV18 model as a proxy for a parent dynamical system
	G23 model
	Simplified VCV18 model (VCV18-1) as a proxy for a parent dynamical system
	VDP model
	LP22 model

	Conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

