Articles | Volume 19, issue 6
https://doi.org/10.5194/cp-19-1265-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1265-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: A new online tool for δ18O–temperature conversions
Daniel E. Gaskell
CORRESPONDING AUTHOR
Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
Pincelli M. Hull
Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA
Related authors
No articles found.
Arne M. E. Winguth, Mikaela Brown, Pincelli Hull, Elizabeth Griffith, Christine Shields, Ellen Thomas, and Cornelia Winguth
EGUsphere, https://doi.org/10.5194/egusphere-2024-4209, https://doi.org/10.5194/egusphere-2024-4209, 2025
Short summary
Short summary
The Paleocene-Eocene Thermal Maximum (PETM) about 56 million years ago is characterized by a rapid perturbation of the global carbon cycle. Comparison of sedimentary records with results from a comprehensive Earth system model suggest that environmental changes including benthic foraminifera extinction may have caused by a massive carbon input at the PETM and associate collapse of the ocean circulation due to the greenhouse-gas induced warming.
Catherine V. Davis, Karen Wishner, Willem Renema, and Pincelli M. Hull
Biogeosciences, 18, 977–992, https://doi.org/10.5194/bg-18-977-2021, https://doi.org/10.5194/bg-18-977-2021, 2021
Cited articles
Agterhuis, T., Ziegler, M., de Winter, N. J., and Lourens, L. J.: Warm
deep-sea temperatures across Eocene Thermal Maximum 2 from clumped isotope
thermometry, Commun. Earth Environ., 3, 1–9, https://doi.org/10.1038/s43247-022-00350-8, 2022.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the
oxygen isotopic composition of planktonic foraminifera: Experimental results
and revised paleotemperature equations, Paleoceanography, 13, 150–160,
https://doi.org/10.1029/98PA00070, 1998.
Bijma, J., Spero, H. J., and Lea, D. W.: Reassessing Foraminiferal Stable
Isotope Geochemistry: Impact of the Oceanic Carbonate System (Experimental
Results), in: Use of Proxies in Paleoceanography, edited by: Fischer, D. G.
and Wefer, P. D. G., Springer, Berlin, Heidelberg, 489–512,
https://doi.org/10.1007/978-3-642-58646-0_20, 1999.
Böhm, F., Joachimski, M. M., Dullo, W.-C., Eisenhauer, A., Lehnert, H.,
Reitner, J., and Wörheide, G.: Oxygen isotope fractionation in marine
aragonite of coralline sponges, Geochim. Cosmochim. Ac., 64, 1695–1703, https://doi.org/10.1016/S0016-7037(99)00408-1, 2000.
Bouvier-Soumagnac, Y. and Duplessy, J.-C.: Carbon and oxygen isotopic
composition of planktonic foraminifera from laboratory culture, plankton tows and Recent sediment; implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle, J. Foraminif. Res., 15, 302–320, https://doi.org/10.2113/gsjfr.15.4.302, 1985.
Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M., and Prohaska, T.:
Assessment of international reference materials for isotope-ratio analysis
(IUPAC Technical Report), Pure Appl. Chem., 86, 425–467, 2014.
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K.
G.: Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation, Paleoceanography, 24, PA4216,
https://doi.org/10.1029/2008PA001683, 2009.
Cramer, B. S., Miller, K. G., Barrett, P. J., and Wright, J. D.: Late
Cretaceous–Neogene trends in deep ocean temperature and continental ice
volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and ) with sea level history, J. Geophys. Res.-Oceans, 116, C12023, https://doi.org/10.1029/2011JC007255, 2011.
Duplessy, J.-C., Labeyrie, L., and Waelbroeck, C.: Constraints on the ocean
oxygen isotopic enrichment between the Last Glacial Maximum and the Holocene: Paleoceanographic implications, Quaternary Sci. Rev., 21, 315–330, https://doi.org/10.1016/S0277-3791(01)00107-X, 2002.
Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C.: Revised
carbonate-water isotopic temperature scale, Geol. Soc. Am. Bull., 64, 1315–1326, 1953.
Erez, J. and Luz, B.: Experimental paleotemperature equation for planktonic
foraminifera, Geochim. Cosmochim. Ac., 47, 1025–1031,
https://doi.org/10.1016/0016-7037(83)90232-6, 1983.
Farmer, E. C., Kaplan, A., de Menocal, P. B., and Lynch-Stieglitz, J.:
Corroborating ecological depth preferences of planktonic foraminifera in the
tropical Atlantic with the stable oxygen isotope ratios of core top
specimens, Paleoceanography, 22, PA3205, https://doi.org/10.1029/2006PA001361, 2007.
Gaskell, D. E. and Hull, P. M.: δ18O to temperature converter, Yale Peabody Museum, https://research.peabody.yale.edu/d180/index.html (last access: 7 June 2023), 2023a.
Gaskell, D. E. and Hull, P. M.: δ18O to temperature converter, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7946599, 2023b.
Gaskell, D. E., Huber, M., O'Brien, C. L., Inglis, G. N., Acosta, R. P.,
Poulsen, C. J., and Hull, P. M.: The latitudinal temperature gradient and
its climate dependence as inferred from foraminiferal δ18O over
the past 95 million years, P. Natl. Acad. Sci. USA, 119, e2111332119, https://doi.org/10.1073/pnas.2111332119, 2022.
Geffen, A. J.: Otolith oxygen and carbon stable isotopes in wild and
laboratory-reared plaice (Pleuronectes platessa), Environ. Biol. Fish., 95,
419–430, https://doi.org/10.1007/s10641-012-0033-2, 2012.
Godiksen, J. A., Svenning, M.-A., Dempson, J. B., Marttila, M., Storm-Suke,
A., and Power, M.: Development of a species-specific fractionation equation
for Arctic charr (Salvelinus alpinus (L.)): an experimental approach,
Hydrobiologia, 650, 67–77, https://doi.org/10.1007/s10750-009-0056-7, 2010.
Gradstein, F. M., Ogg, J. G., and Smith, A. G. (Eds.): A Geologic Time Scale 2004, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511536045, 2005.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M. (Eds.): The
Geologic Time Scale, Elsevier, https://doi.org/10.1016/C2011-1-08249-8, 2012.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.: Geologic Time
Scale 2020, Elsevier, https://doi.org/10.1016/C2020-1-02369-3, 2020.
Grossman, E. L.: Chapter 10 – Oxygen Isotope Stratigraphy, in: The Geologic
Time Scale, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and
Ogg, G. M., Elsevier, Boston, 181–206, https://doi.org/10.1016/B978-0-444-59425-9.00010-X, 2012.
Grossman, E. L. and Ku, T.-L.: Oxygen and carbon isotope fractionation in
biogenic aragonite: Temperature effects, Chem. Geol., 59, 59–74, https://doi.org/10.1016/0168-9622(86)90057-6, 1986.
Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Yancey, T.
E., and Pérez-Huerta, A.: Temperature evolution and the oxygen isotope
composition of Phanerozoic oceans from carbonate clumped isotope thermometry, Earth Planet. Sc. Lett., 490, 40–50, https://doi.org/10.1016/j.epsl.2018.02.001, 2018.
Høie, H., Otterlei, E., and Folkvord, A.: Temperature-dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus
morhua L.), ICES J. Mar. Sci., 61, 243–251, https://doi.org/10.1016/j.icesjms.2003.11.006, 2004.
Hollis, C. J., Taylor, K. W. R., Handley, L., Pancost, R. D., Huber, M.,
Creech, J. B., Hines, B. R., Crouch, E. M., Morgans, H. E. G., Crampton, J.
S., Gibbs, S., Pearson, P. N., and Zachos, J. C.: Early Paleogene temperature history of the Southwest Pacific Ocean: Reconciling proxies and models, Earth Planet. Sc. Lett., 349–350, 53–66, https://doi.org/10.1016/j.epsl.2012.06.024, 2012.
Hollis, C. J., Dunkley Jones, T., Anagnostou, E., Bijl, P. K., Cramwinckel,
M. J., Cui, Y., Dickens, G. R., Edgar, K. M., Eley, Y., Evans, D., Foster, G. L., Frieling, J., Inglis, G. N., Kennedy, E. M., Kozdon, R., Lauretano, V., Lear, C. H., Littler, K., Lourens, L., Meckler, A. N., Naafs, B. D. A., Pälike, H., Pancost, R. D., Pearson, P. N., Röhl, U., Royer, D. L.,
Salzmann, U., Schubert, B. A., Seebeck, H., Sluijs, A., Speijer, R. P., Stassen, P., Tierney, J., Tripati, A., Wade, B., Westerhold, T., Witkowski, C., Zachos, J. C., Zhang, Y. G., Huber, M., and Lunt, D. J.: The DeepMIP
contribution to PMIP4: methodologies for selection, compilation and analysis
of latest Paleocene and early Eocene climate proxy data, incorporating
version 0.1 of the DeepMIP database, Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, 2019.
Hut, G.: Consultants' group meeting on stable isotope reference samples for
geochemical and hydrological investigations, International Atomic Energy
Agency, Vienna, Austria, https://inis.iaea.org/search/search.aspx?orig_q=RN:18075746 (last access: 7 June 2023), 1987.
Juillet-Leclerc, A. and Schmidt, G.: A calibration of the oxygen isotope
paleothermometer of coral aragonite from Porites, Geophys. Res. Lett., 28, 4135–4138, https://doi.org/10.1029/2000GL012538, 2001.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475, https://doi.org/10.1016/S0016-7037(97)00169-5, 1997.
Kim, S.-T., O'Neil, J. R., Hillaire-Marcel, C., and Mucci, A.: Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration, Geochim. Cosmochim. Ac., 71, 4704–4715, https://doi.org/10.1016/j.gca.2007.04.019, 2007.
LeGrande, A. N. and Schmidt, G. A.: Global gridded data set of the oxygen
isotopic composition in seawater, Geophys. Res. Lett., 33, L12604, https://doi.org/10.1029/2006GL026011, 2006.
Lynch-Stieglitz, J., Curry, W. B., and Slowey, N.: A geostrophic transport
estimate for the Florida Current from the oxygen isotope composition of
benthic foraminifera, Paleoceanography, 14, 360–373, https://doi.org/10.1029/1999PA900001, 1999.
Malevich, S. B., Vetter, L., and Tierney, J. E.: Global Core Top Calibration
of δ18O in Planktic Foraminifera to Sea Surface Temperature,
Paleoceanogr. Paleoclimatol., 34, 1292–1315, https://doi.org/10.1029/2019PA003576, 2019.
Marchitto, T. M., Curry, W. B., Lynch-Stieglitz, J., Bryan, S. P., Cobb, K.
M., and Lund, D. C.: Improved oxygen isotope temperature calibrations for
cosmopolitan benthic foraminifera, Geochim. Cosmochim. Ac., 130, 1–11, https://doi.org/10.1016/j.gca.2013.12.034, 2014.
McCrea, J. M.: On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale, J. Chem. Phys., 18, 849–857, https://doi.org/10.1063/1.1747785, 1950.
Meckler, A. N., Sexton, P. F., Piasecki, A. M., Leutert, T. J., Marquardt, J., Ziegler, M., Agterhuis, T., Lourens, L. J., Rae, J. W. B., Barnet, J.,
Tripati, A., and Bernasconi, S. M.: Cenozoic evolution of deep ocean temperature from clumped isotope thermometry, Science, 377, 86–90,
https://doi.org/10.1126/science.abk0604, 2022.
Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G.
S., and Wright, J. D.: Cenozoic sea-level and cryospheric evolution from
deep-sea geochemical and continental margin records, Sci. Adv., 6, eaaz1346, https://doi.org/10.1126/sciadv.aaz1346, 2020.
Modestou, S. E., Leutert, T. J., Fernandez, A., Lear, C. H., and Meckler, A.
N.: Warm Middle Miocene Indian Ocean Bottom Water Temperatures: Comparison
of Clumped Isotope and -Based Estimates, Paleoceanogr. Paleoclimatol., 35, e2020PA003927, https://doi.org/10.1029/2020PA003927, 2020.
Mulitza, S., Boltovskoy, D., Donner, B., Meggers, H., Paul, A., and Wefer,
G.: Temperature:δ18O relationships of planktonic foraminifera
collected from surface waters, Palaeogeogr. Palaeoclimatol. Palaeoecol., 202, 143–152, https://doi.org/10.1016/S0031-0182(03)00633-3, 2003.
Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams,
S., Pfaffelmoser, T., Seton, M., Russell, S. H. J., and Zahirovic, S.: GPlates: Building a Virtual Earth Through Deep Time, Geochem. Geophy. Geosy., 19, 2243–2261, https://doi.org/10.1029/2018GC007584, 2018.
Ogg, J. G., Ogg, G. M., and Gradstein, F. M.: A Concise Geologic Time Scale,
Elsevier, https://doi.org/10.1016/C2009-0-64442-1, 2016.
O'Neil, J. R., Clayton, R. N., and Mayeda, T. K.: Oxygen Isotope Fractionation in Divalent Metal Carbonates, J. Chem. Phys., 51, 5547–5558,
https://doi.org/10.1063/1.1671982, 1969.
Patterson, W. P., Smith, G. R., and Lohmann, K. C.: Continental Paleothermometry and Seasonality Using the Isotopic Composition of
Aragonitic Otoliths of Freshwater Fishes, in: Climate Change in Continental
Isotopic Records, AGU – American Geophysical Union, 191–202,
https://doi.org/10.1029/GM078p0191, 1993.
Pearson, P. N.: Oxygen Isotopes in Foraminifera: Overview and Historical Review, The Paleontological Society Papers, 18, 1–38, https://doi.org/10.1017/S1089332600002539, 2012.
Reynaud-Vaganay, S., Gattuso, J.-P., Cuif, J.-P., Jaubert, J., and Juillet-Leclerc, A.: A novel culture technique for scleractinian corals:
application to investigate changes in skeletal δ18O as a function of temperature, Mar. Ecol. Prog. Ser., 180, 121–130, https://doi.org/10.3354/meps180121, 1999.
Richter, I. and Xie, S.-P.: Moisture transport from the Atlantic to the
Pacific basin and its response to North Atlantic cooling and global warming,
Clim. Dynam., 35, 551–566, https://doi.org/10.1007/s00382-009-0708-3, 2010.
Roberts, C. D., LeGrande, A. N., and Tripati, A. K.: Sensitivity of seawater
oxygen isotopes to climatic and tectonic boundary conditions in an early
Paleogene simulation with GISS ModelE-R, Paleoceanography, 26, PA4203, https://doi.org/10.1029/2010PA002025, 2011.
Rohling, E. J.: Oxygen isotope composition of seawater, in: The Encyclopedia
of Quaternary Science, Elsevier, Amsterdam, 915–922, ISBN 978-0-444-53642-6, 2013.
Rohling, E. J., Yu, J., Heslop, D., Foster, G. L., Opdyke, B., and Roberts,
A. P.: Sea level and deep-sea temperature reconstructions suggest quasi-stable states and critical transitions over the past 40 million years,
Sci. Adv., 7, eabf5326, https://doi.org/10.1126/sciadv.abf5326, 2021.
Rosenheim, B. E., Swart, P. K., and Willenz, P.: Calibration of sclerosponge
oxygen isotope records to temperature using high-resolution δ18O data, Geochim. Cosmochim. Ac., 73, 5308–5319, https://doi.org/10.1016/j.gca.2009.05.047, 2009.
Shackleton, N. J.: Attainment of isotopic equilibrium between ocean water
and the benthonic foraminifera genus Unigerina: isotopic changes in the ocean during the last glacial, 219, Centre Natl. Rech. Sci. Coll. Inter., 203–209, https://epic.awi.de/id/eprint/32862/ (last access: 7 June 2023), 1974.
Sharp, Z.: Principles of Stable Isotope Geochemistry, 2nd Edn., University of
New Mexico Open Textbooks, 416 pp., https://doi.org/10.25844/h9q1-0p82, 2017.
Singh, H. K. A., Donohoe, A., Bitz, C. M., Nusbaumer, J., and Noone, D. C.:
Greater aerial moisture transport distances with warming amplify interbasin
salinity contrasts, Geophys. Res. Lett., 43, 8677–8684, https://doi.org/10.1002/2016GL069796, 2016.
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E.: Effect of seawater
carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature,
390, 497–500, https://doi.org/10.1038/37333, 1997.
Storm-Suke, A., Dempson, J. B., Reist, J. D., and Power, M.: A field-derived
oxygen isotope fractionation equation for Salvelinus species, Rapid Commun. Mass Spectrom., 21, 4109–4116, https://doi.org/10.1002/rcm.3320, 2007.
Thorrold, S. R., Campana, S. E., Jones, C. M., and Swart, P. K.: Factors
determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish, Geochim. Cosmochim. Ac., 61, 2909–2919, https://doi.org/10.1016/S0016-7037(97)00141-5, 1997.
Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., and Poulsen, C. J.: Glacial cooling and climate sensitivity revisited, Nature,
584, 569–573, https://doi.org/10.1038/s41586-020-2617-x, 2020.
Tindall, J., Flecker, R., Valdes, P., Schmidt, D. N., Markwick, P., and Harris, J.: Modelling the oxygen isotope distribution of ancient seawater
using a coupled ocean–atmosphere GCM: Implications for reconstructing early
Eocene climate, Earth Planet. Sc. Lett., 292, 265–273, https://doi.org/10.1016/j.epsl.2009.12.049, 2010.
Tremaine, D. M., Froelich, P. N., and Wang, Y.: Speleothem calcite farmed in
situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system, Geochim. Cosmochim. Ac., 75, 4929–4950, https://doi.org/10.1016/j.gca.2011.06.005, 2011.
Tyrrell, T. and Zeebe, R. E.: History of carbonate ion concentration over the last 100 million years, Geochim. Cosmochim. Ac., 68, 3521–3530,
https://doi.org/10.1016/j.gca.2004.02.018, 2004.
Veizer, J. and Prokoph, A.: Temperatures and oxygen isotopic composition of
Phanerozoic oceans, Earth-Sci. Rev., 146, 92–104, https://doi.org/10.1016/j.earscirev.2015.03.008, 2015.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., Vleeschouwer, D. D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D.,
Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An
astronomically dated record of Earth's climate and its predictability over
the last 66 million years, Science, 369, 1383–1387, https://doi.org/10.1126/science.aba6853, 2020.
White, R. M. P., Dennis, P. F., and Atkinson, T. C.: Experimental calibration and field investigation of the oxygen isotopic fractionation between biogenic aragonite and water, Rapid Commun. Mass Spectrom., 13, 1242–1247,
https://doi.org/10.1002/(SICI)1097-0231(19990715)13:13<1242::AID-RCM627>3.0.CO;2-F, 1999.
Willmes, M., Lewis, L. S., Davis, B. E., Loiselle, L., James, H. F., Denny,
C., Baxter, R., Conrad, J. L., Fangue, N. A., Hung, T.-C., Armstrong, R. A.,
Williams, I. S., Holden, P., and Hobbs, J. A.: Calibrating temperature
reconstructions from fish otolith oxygen isotope analysis for California's
critically endangered Delta Smelt, Rapid Commun. Mass Spectrom., 33, 1207–1220, https://doi.org/10.1002/rcm.8464, 2019.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science, 292,
686–693, https://doi.org/10.1126/science.1059412, 2001.
Zachos, J. C., Stott, L. D., and Lohmann, K. C.: Evolution of Early Cenozoic
marine temperatures, Paleoceanography, 9, 353–387, https://doi.org/10.1029/93PA03266, 1994.
Zeebe, R. E. and Tyrrell, T.: History of carbonate ion concentration over
the last 100 million years II: Revised calculations and new data, Geochim.
Cosmochim. Ac., 257, 373–392, https://doi.org/10.1016/j.gca.2019.02.041, 2019.
Zhou, J., Poulsen, C. J., Pollard, D., and White, T. S.: Simulation of
modern and middle Cretaceous marine δ18O with an ocean-atmosphere general circulation model, Paleoceanography, 23, PA3223, https://doi.org/10.1029/2008PA001596, 2008.
Zhu, J., Poulsen, C. J., Otto-Bliesner, B. L., Liu, Z., Brady, E. C., and
Noone, D. C.: Simulation of early Eocene water isotopes using an Earth
system model and its implication for past climate reconstruction, Earth Planet. Sc. Lett., 537, 116164, https://doi.org/10.1016/j.epsl.2020.116164, 2020.
Ziveri, P., Thoms, S., Probert, I., Geisen, M., and Langer, G.: A universal
carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms, Biogeosciences, 9, 1025–1032,
https://doi.org/10.5194/bg-9-1025-2012, 2012.
Short summary
One of the most common ways of reconstructing temperatures in the geologic past is by analyzing oxygen isotope ratios in fossil shells. However, converting these data to temperatures can be a technically complicated task. Here, we present a new online tool that automates this task.
One of the most common ways of reconstructing temperatures in the geologic past is by analyzing...