Articles | Volume 18, issue 4
https://doi.org/10.5194/cp-18-793-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-793-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Insights from 20 years of temperature parallel measurements in Mauritius around the turn of the 20th century
Samuel O. Awe
Irish Climate Analysis and Research Units (ICARUS), Department of
Geography, Maynooth University, Maynooth, Ireland
Martin Mahony
School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Edley Michaud
Mauritius Meteorological Society, Quatres Bornes, Mauritius
Conor Murphy
Irish Climate Analysis and Research Units (ICARUS), Department of
Geography, Maynooth University, Maynooth, Ireland
Simon J. Noone
Irish Climate Analysis and Research Units (ICARUS), Department of
Geography, Maynooth University, Maynooth, Ireland
Victor K. C. Venema
Meteorological Institute, University of Bonn, Bonn, Germany
Thomas G. Thorne
independent researcher: Co. Kildare, Ireland
Irish Climate Analysis and Research Units (ICARUS), Department of
Geography, Maynooth University, Maynooth, Ireland
Related authors
No articles found.
Lisa Claire Orme, Francis Ludlow, Natasha Langton, Jenny Kristina Sjӧstrӧm, Malin Kylander, Conor Murphy, Sean Pyne-O'Donnell, Jonathan Turner, Nannan Li, Sarah Jessica Davies, Fraser Mitchell, and John Alphonsus Matthews
EGUsphere, https://doi.org/10.5194/egusphere-2025-3737, https://doi.org/10.5194/egusphere-2025-3737, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The link between storms and volcanic eruptions in northwest Europe is investigated. Past storminess was reconstructed using sand deposits in a coastal peatbog from western Ireland. Together with similar records from northwest Europe this shows six periods of high storminess in the last 2500 years, coinciding roughly with the largest eruptions of this time. A record of past windiness for Ireland (600–1616CE) created from the “Irish Annals” supports enhanced storminess for 3 years after eruptions.
Masatomo Fujiwara, Bomin Sun, Anthony Reale, Domenico Cimini, Salvatore Larosa, Lori Borg, Christoph von Rohden, Michael Sommer, Ruud Dirksen, Marion Maturilli, Holger Vömel, Rigel Kivi, Bruce Ingleby, Ryan J. Kramer, Belay Demoz, Fabio Madonna, Fabien Carminati, Owen Lewis, Brett Candy, Christopher Thomas, David Edwards, Noersomadi, Kensaku Shimizu, and Peter Thorne
Atmos. Meas. Tech., 18, 2919–2955, https://doi.org/10.5194/amt-18-2919-2025, https://doi.org/10.5194/amt-18-2919-2025, 2025
Short summary
Short summary
We assess and illustrate the benefits of high-altitude attainment of balloon-borne radiosonde soundings up to and beyond 10 hPa level from various aspects. We show that the extra costs and technical challenges involved in consistent attainment of high ascents are more than outweighed by the benefits for a broad variety of real-time and delayed-mode applications. Consistent attainment of high ascents should therefore be pursued across the balloon observational network.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025, https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Short summary
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policymakers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
Derrick Muheki, Bas Vercruysse, Krishna Kumar Thirukokaranam Chandrasekar, Christophe Verbruggen, Julie M. Birkholz, Koen Hufkens, Hans Verbeeck, Pascal Boeckx, Seppe Lampe, Ed Hawkins, Peter Thorne, Dominique Kankonde Ntumba, Olivier Kapalay Moulasa, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2024-3779, https://doi.org/10.5194/egusphere-2024-3779, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Archives worldwide host vast records of observed weather data crucial for understanding climate variability. However, most of these records are still in paper form, limiting their use. To address this, we developed MeteoSaver, an open-source tool, to transcribe these records to machine-readable format. Applied to ten handwritten temperature sheets, it achieved a median accuracy of 74%. This tool offers a promising solution to preserve records from archives and unlock historical weather insights.
Philippe Marbaix, Alexandre K. Magnan, Veruska Muccione, Peter W. Thorne, and Zinta Zommers
Earth Syst. Sci. Data, 17, 317–349, https://doi.org/10.5194/essd-17-317-2025, https://doi.org/10.5194/essd-17-317-2025, 2025
Short summary
Short summary
Since 2001, the Intergovernmental Panel on Climate Change (IPCC) has used burning-ember diagrams to show how risks increase with global warming. We bring these data into a harmonized framework available through an online Climate Risks Embers Explorer. Without high levels of adaptation, most risks reach a high level around 2 to 2.3 °C of global warming. Improvements in future reports could include systematic collection of explanatory information and broader coverage of regions and adaptation.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Katherine Dooley, Ciaran Kelly, Natascha Seifert, Therese Myslinski, Sophie O'Kelly, Rushna Siraj, Ciara Crosby, Jack Kevin Dunne, Kate McCauley, James Donoghue, Eoin Gaddren, Daniel Conway, Jordan Cooney, Niamh McCarthy, Eoin Cullen, Simon Noone, Conor Murphy, and Peter Thorne
Clim. Past, 19, 1–22, https://doi.org/10.5194/cp-19-1-2023, https://doi.org/10.5194/cp-19-1-2023, 2023
Short summary
Short summary
The highest currently recognised air temperature (33.3 °C) ever recorded in the Republic of Ireland was logged at Kilkenny Castle in 1887. This paper reassesses the plausibility of the record using various methods such as inter-station reassessment and 20CRv3 reanalysis. As a result, Boora 1976 at 32.5 °C is presented as a more reliable high-temperature record for the Republic of Ireland. The final decision however rests with the national meteorological service, Met Éireann.
Amin Shoari Nejad, Andrew C. Parnell, Alice Greene, Peter Thorne, Brian P. Kelleher, Robert J. N. Devoy, and Gerard McCarthy
Ocean Sci., 18, 511–522, https://doi.org/10.5194/os-18-511-2022, https://doi.org/10.5194/os-18-511-2022, 2022
Short summary
Short summary
We have collated multiple sources of tide gauge data for Dublin Port, and subsequently corrected them for bias. We have then shown that these corrected mean sea level measurements agree with nearby tide gauges to a far higher degree than the raw data. A longer-term comparison with Brest and Newlyn also indicates overall agreement. Our final adjusted dataset estimated the rate of sea level rise to be 1.1 mm/yr between 1953 and 2016 and 7 mm/yr between 1997 and 2016 at Dublin Port.
Hadush Meresa, Conor Murphy, Rowan Fealy, and Saeed Golian
Hydrol. Earth Syst. Sci., 25, 5237–5257, https://doi.org/10.5194/hess-25-5237-2021, https://doi.org/10.5194/hess-25-5237-2021, 2021
Short summary
Short summary
The assessment of future impacts of climate change is associated with a cascade of uncertainty linked to the modelling chain employed in assessing local-scale changes. Understanding and quantifying this cascade is essential for developing effective adaptation actions. We find that not only do the contributions of different sources of uncertainty vary by catchment, but that the dominant sources of uncertainty can be very different on a catchment-by-catchment basis.
Seán Donegan, Conor Murphy, Shaun Harrigan, Ciaran Broderick, Dáire Foran Quinn, Saeed Golian, Jeff Knight, Tom Matthews, Christel Prudhomme, Adam A. Scaife, Nicky Stringer, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 4159–4183, https://doi.org/10.5194/hess-25-4159-2021, https://doi.org/10.5194/hess-25-4159-2021, 2021
Short summary
Short summary
We benchmarked the skill of ensemble streamflow prediction (ESP) for a diverse sample of 46 Irish catchments. We found that ESP is skilful in the majority of catchments up to several months ahead. However, the level of skill was strongly dependent on lead time, initialisation month, and individual catchment location and storage properties. We also conditioned ESP with the winter North Atlantic Oscillation and show that improvements in forecast skill, reliability, and discrimination are possible.
Louise J. Slater, Bailey Anderson, Marcus Buechel, Simon Dadson, Shasha Han, Shaun Harrigan, Timo Kelder, Katie Kowal, Thomas Lees, Tom Matthews, Conor Murphy, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021, https://doi.org/10.5194/hess-25-3897-2021, 2021
Short summary
Short summary
Weather and water extremes have devastating effects each year. One of the principal challenges for society is understanding how extremes are likely to evolve under the influence of changes in climate, land cover, and other human impacts. This paper provides a review of the methods and challenges associated with the detection, attribution, management, and projection of nonstationary weather and water extremes.
Cited articles
Acquaotta, F., Fratianni, S., and Venema, V.: Assessment of parallel precipitation measurements networks in Piedmont, Italy, Int. J. Climatol., 36, 3963–3974, https://doi.org/10.1002/joc.4606, 2016.
Aguilar, E., Auer, I., Brunet, M., Peterson, T. C., and Wieringa, J.:
Guidelines on climate metadata and homogenization. World Meteorological
Organization, WMO-TD No. 1186, WCDMP No. 53, Geneva, Switzerland, p. 55, https://library.wmo.int/index.php?lvl=notice_display&id=11635#.Yk8SJ25KiFw (last access: 7 April 2022), 2003.
Allan, R., Brohan, P., Compo, G. P., Stone, R., Luterbacher, J., and Bronnimann, S.: The International Atmospheric Circulation Reconstructions
over the Earth (ACRE) initiative, B. Am. Meteorol. Soc., 92, 1421–1425, https://doi.org/10.1175/2011BAMS3218.1, 2011.
Anon: Weather watchers and their work, The Strand Magazine, London, 3,
182–189, 1892.
Ashcroft, L., Karoly, D., and Gergis, J.: Temperature variations of southeastern Australia, 1860–2011, Aust. Meteorol. Ocean., 62, 227–245, 2012.
Ashcroft, L., Trewin, B., Benoy, M., Ray, D., and Courtney, C.: The world's longest known
parallel temperature dataset: a comparison between daily Glaisher and
Stevenson Screen temperature data at Adelaide, Australia,
1887–1947, Int. J. Climatol., 42, 2670–2687, https://doi.org/10.1002/joc.7385, 2021.
Auchmann, R. and Brönnimann, S.: A physics-based correction model for
homogenizing sub-daily temperature series, J. Geophys. Res.-Atmos., 117, D17119, https://doi.org/10.1029/2012JD018067, 2012.
Bamford, A. J.: On the exposure of thermometers in Ceylon, Ceylon J. Sci., Sect. E, I, 153–167, +3 plates, 1928.
Böhm, R., Jones, P. D., Hiebl, J., Frank, D., Brunetti, M., and Maugeri, M.: The early instrumental warm-bias: a solution for long
central European temperature series 1760–2007, Climatic Change, 101, 41–67,
https://doi.org/10.1007/s10584-009-9649-4, 2010.
Brunet, M., Asin, J., Sigro, J., Banon, M., Garcia, F., Aguilar, E., Palenzuela, J., Peterson T. C., and Jones P. D.: The minimization of the screen bias from ancient Western
Mediterranean air temperature records: an exploratory statistical analysis,
Int. J. Climatol., 31, 1879–1895, https://doi.org/10.1002/joc.2192, 2011.
Buisan, S. T., Azorin-Molina, C., and Jimenez, Y.: Impact of two different
sized Stevenson screens on air temperature measurements, Int. J. Climatol.,
35, 4408–4416, https://doi.org/10.1002/joc.4287, 2015.
Burt, S.: Referee comment on “Insights from 20 years of temperature parallel measurements in Mauritius around the turn of the 20th Century” by Samuel O. Awe et al., Clim. Past Discuss., https://doi.org/10.5194/cp-2021-127-RC1, 2021.
Camuffo, D.: Errors in Early Temperature Series Arising from Changes in
Style of Measuring Time, Sampling Schedule and Number of Observations,
Climatic Change, 53, 331–352, https://doi.org/10.1023/A:1014962623762, 2002.
Chimani, B., Venema, V., Lexer, A., Andre, K., Auer, I., and Nemec, J.:
Inter-comparison of methods to homogenize daily relative humidity,
Int. J. Climatol., 38, 3106–3122, https://doi.org/10.1002/joc.5488, 2018.
Conrad, V. and Pollak, C.: Methods in climatology, Harvard University Press,
Cambridge, MA, p. 459, https://doi.org/10.4159/harvard.9780674187856, 1950.
Cook, T.: Toward a reassessment of daily temperature range trends, Eos, 97, https://doi.org/10.1029/2016EO052735, 2016.
Council of the Royal Meteorological Society: Report of the council for the
year 1883: Appendix 1, Report of the thermometer screen committee, Q. J.
Roy. Meteor. Soc., 10, 92–94, 1884.
Drummond, A. J.: Kew Observatory, Weather, 2, 69–76, 1947.
Field, J. H.: On exposures of thermometers in India, lndia Meteorol. Mem.,
XIV, 21–73, 1920.
Galvin, J. F. P.: Kew Observatory, Weather, 58, 478–484, 2003.
Gubler, S., Hunziker, S., Begert, M., Croci-Maspoli, M., Bronnimann, S., Schwierz, C., Orla, C., and Rosas, G.: The influence of station density on climate data homogenization, Int. J. Climatol., 37, 4670–4683, https://doi.org/10.1002/joc.5114, 2017.
Gulev, S. K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues, X. M., Gerland, S., Gong, D., Kaufman, D. S., Nnamachi, H. C., Quass, J., Rivera, J. A, Sathyendranath, S., Smith, S. L., Trewin, B., Von Schuckmann, K., and Vose, R. S.: Changing State of the Climate System, in: Climate Change
2021: The Physical Science Basis, Contribution of Working Group I to the
Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekci, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, UK, New York, NY, USA, in press, 2021.
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Bronnimann, S., Abdul-Rahman Charabi, Y., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Sode, B. J., Thorne, P. W., Wild, M., and Zhai, P.: Observations: Atmosphere and Surface, in: Climate
Change 2013: The Physical Science Basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.
K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA, 159–254,
https://doi.org/10.1017/CBO9781107415324.008, 2013.
Hawkins, E., Ortega, P., Suckling, E., Schurer, A., Hegerl, G., Jones, P., Joshi, M., Osborn, T. J., Masson-Delmotte, V., Mignot, J., Thorne, P., and van Oldenborgh, G. J.: Estimating Changes in Global Temperature since the
Preindustrial Period, B. Am. Meteorol. Soc., 98, 1841–1856, https://doi.org/10.1175/BAMS-D-16-0007.1, 2017.
Hubbard, K. G., Lin, X., and Walter-Shea, E. A.: The Effectiveness of the ASOS, MMTS, Gill, and CRS Air Temperature Radiation Shields, J. Atmos. Ocean.
Tech., 18, 851–864, https://doi.org/10.1175/1520-0426(2001)018<0851:TEOTAM>2.0.CO;2, 2001.
Kaspar, F., Hannak, L., and Schreiber, K.-J.: Climate reference stations in Germany: Status, parallel measurements and homogeneity of temperature time series, Adv. Sci. Res., 13, 163–171, https://doi.org/10.5194/asr-13-163-2016, 2016.
Knowles Middleton, W. E.: A history of the thermometer and its uses in
meteorology, The Johns Hopkins Press, Baltimore, https://doi.org/10.1002/qj.49709440024, 1966.
Lancombe, M., Bousri, D, Leroy, M., and Mezred, M.: Instruments and observing methods report no. 106: WMO
field intercomparison of thermometer screens/shields and humidity measuring
instruments, Ghardaïa, Algeria, November 2008–October 2009.
Instruments and Observing Methods Report No. 106, WMO/TD-No. 1579, Geneva,
Switzerland, https://library.wmo.int/index.php?lvl=notice_display&id=15530#.YlSX327MJzU (last access: 11 April 2022), 2011.
Lin, X., Hubbard, K. G., and Walter-Shea, E. A.: Radiation loading model for
evaluating air temperature errors with a non-aspirated radiation shield,
T. ASAE, 44, 1299–1306, 2001.
Lindau, R. and Venema, V. K. C.: The joint influence of break and noise variance on the break detection capability in time series homogenization, Adv. Stat. Clim. Meteorol. Oceanogr., 4, 1–18, https://doi.org/10.5194/ascmo-4-1-2018, 2018a.
Lindau, R. and Venema, V. K. C.: On the Reduction of Trend Errors by the ANOVA Joint Correction Scheme Used in Homogenization of Climate Station Records, Int. J. Climatol., 38, 5255–5271, https://doi.org/10.1002/joc.5728, 2018b.
Lindén, J., Grimmond, C. S. B., and Esper, J.: Urban warming in villages, Adv. Sci. Res., 12, 157–162, https://doi.org/10.5194/asr-12-157-2015, 2015.
Mahony, M.: The “genie of the storm”: Cyclonic reasoning and the spaces of
weather observation in the southern Indian Ocean, 1851–1925, Brit. J. Hist. Sci., 51, 607–633, https://doi.org/10.1017/S0007087418000766, 2018.
Mawley, E.: Report on temperatures in two different patterns of Stevenson
screens, Q. J. Roy. Meteor. Soc., 10, 1–7, 1884.
Menne, M. J. and Williams, C. N.: Homogenization of Temperature
Series via Pairwise Comparisons, J. Climate, 22, 1700–1717, https://doi.org/10.1175/2008JCLI2263.1, 2009.
Michaud, E.: Meteorologist's profile – Charles Meldrum, Weather, 55, 15–17,
2000.
Nicholls, N., Tapp, R., Burrows, K., and Richards, D.: Historical thermometer
exposures in Australia, Int. J. Climatol., 16, 705–710, https://doi.org/10.1002/(SICI)1097-0088(199606)16:6<705::AID-JOC30>3.0.CO;2-S,
1996.
Noone, S., Atkinson, C., Berry, D. I., Dunn, R. J. H., Freeman, E., Perez Gonzalez, I., Kennedy, J. J., Kent, E. C., Kettle, A., McNeill, S., Menne, M., Stephens, A., Thorne, P. W., Tucker, W., Voces, C., and Willett, K. M.: Progress towards a holistic land and marine surface
meteorological database and a call for additional contributions, Geosci. Data J., 8, 103–120, https://doi.org/10.1002/gdj3.109, 2021.
Osborn, T. J., Jones, P. D., Lister, D. H., Morice, C. P., Simpson, I. R., Winn, J. P., Hogan, E., and Harris, I. C.: Land surface air temperature variations across the globe updated to 2019: the CRUTEM5 dataset, J. Geophys. Res.-Atmos., 126, e2019JD032352, https://doi.org/10.1029/2019JD032352, 2021.
Parker, D. E.: Effects of changing exposure of thermometers at land stations,
Int. J. Climatol., 14, 1–31, https://doi.org/10.1002/joc.3370140102, 1994.
Quayle, R. G., Easterling, D. R., Karl, T. R., and Hughes, P. Y.: Effects of Recent Thermometer Changes in the
Cooperative Station Network, B. Am. Meteorol. Soc., 72, 1718–23, http://www.jstor.org/stable/26228755 (last access: 11 April 2022), 1991.
Rennie, J. J., Lawrimore, J. H., Gleason, B. E., Thorne, P. W., Moricce, C. P., Menne, M. J., Williams, C. N., Gambi de Almedia, W., Christy, J. R., Flannery, M., Ishihara, M., Kamiguchi, K., Klein Tank, A. M. G., Mhanda, A., Lister, D. H., Razuvaev, V., Renom, M., Rusticucci, M., Tandy, J., Worley, S. J., Venema, V., Angel, W., Brunet, M., Dattore, B., Diamond, H., Lazzara, M. A., Le Blancq, F., Luterbacher, J., Machel, H., Revadekar, J., Vose, R. S., and Yin, X.: The international surface temperature initiative
global land surface databank: monthly temperature data release description
and methods, Geosci. Data J., 1, 75–102, https://doi.org/10.1002/gdj3.8, 2014.
Rouphail, R. M.: Cyclonic ecology: Sugar, Cyclone Science and the Limits of
Empire in Mauritius and the Indian Ocean World, 1870s–1930s, Isis, 110,
48–68, 2019.
Royal Society: Report of the Meteorological Committee of the Royal Society
for the year ending 31 December 1867, 27–54, HMSO, 1868.
Sapsford, H.: Exposure of thermometers in Samoa. N. 2, J. Sci. Technol, 22, 136B–143B, 1940.
Stevenson, T. C. E.: New Description of Box for Holding Thermometers, Journal
of the Scottish Meteorological Society, 1, 122 pp., June 1864.
Thorne, P. W.: Mauritius Royal Alfred Observatory parallel temperature measurements 1884–1903, original file in ∘Fahrenheit, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.935684, 2021a.
Thorne, P. W.: Mauritius Royal Alfred Observatory parallel temperature measurements 1884–1903, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.935683, 2021b.
Thorne, P. W.: Mauritius analysis code, Zenodo [code], https://doi.org/10.5281/zenodo.6451187, 2022.
Thorne, P. W., Donat, M. G., Dunn, R. J. H., Williams, C. N., Alexander, L. V., Caesar, J., Durre, I., Harris, I., Hausfather, Z., Jones, P. D., Menne, M. J., Rohde, R., Vose, R. S., Davy, R., Klein-Tank, A. M. G., Lawrimore, J. H., Peterson, T. C., and Rennie, J. J.: Reassessing changes in Diurnal Temperature Range:
Intercomparison and evaluation of existing global dataset estimates,
J. Geophys. Res.-Atmos., 121, 5138–5158, https://doi.org/10.1002/2015JD024584, 2016.
Thorne, P. W., Allan, R. J., Ashcroft, L., Brohan, P., Dunn, R. J. H., Menne, M. J., Pearce, P. R., Picas, J., Willett, K. M., Benoy, M., Bronnimann, S., Canziani, P. O., Coll, J., Crouthamel, R., Compo, G. P., Cuppett, D., Curley, M., Duffy, C., Gillespie, I., Guijarro, J., Jourdain, S., Kent, E. C., Kubota, H., Legg, T. P., Li, G., Matsumoto, J., Murphy, C., Rayner, N. A., Rennie, J. J., Rustemeir, E., Slivinski, L. C., Slonosky, V., Squintu, A., Tinz, B., Valente, M. A., Walsh, S., Wang, X. L., Westcott, N., Wood, K., Woodruff, S. D., and Worley, S. J.: Towards an integrated set of surface meteorological observations for climate science and applications, B. Am. Meteorol. Soc., 98, 2689–2702, https://doi.org/10.1175/BAMS-D-16-0165.1, 2017.
Trewin, B.: Exposure, instrumentation, and observing practice effects on
land temperature measurements, WIREs Clim. Change, 1, 490–506, https://doi.org/10.1002/wcc.46, 2010.
Venema, V. K. C., Auchmann, R., Aguilar, E., Auer, I., Azorin-Molina, C., Brandsma, T., Brunetti, M., Delitala, A., Dienst, M., Domonkos, P., Erell, E., Gilabert, A., Lin, X., Linden, J., Lundstadt, E., Milewska, E., Nordli, O., Prohom, M, Rennie, J., Stepanek, P., Trewin, B., Vincent, L., Willett, K., and Wolff, M.: A global database with parallel measurements to
study non-climatic changes, Joint 25th AMOS National Conference and 12th
International Conference for Southern Hemisphere Meteorology and
Oceanography, UNSW, Sydney, Australia, 5–9 February 2018, AMOS-ICSHMO 2018, https://uni-bonn.viven.org//articles/2018/2018_AMOS_POST.pdf (last access: 12 April 2022), 2018.
Venema, V. K. C., Trewin, B., Wang, X. L., Szentimrey, T, Lakatos, M., Aguilar, E., Auer, I., Guijarro, J. A., Menne, M., Oria, C., Louamba, W. S. R. L., Rasul, G., Argriou, A., Hechler, P., Vertacnik, G., and Yousef, Y.: Guidelines on Homogenization, WMO report WMO-No. 1245, Geneva, Switzerland, ISBN 978-92-63-11245-3, 2020.
Williams, C. N., Menne, M. J., and Thorne, P. W.: Benchmarking the performance of pairwise homogenization of surface temperatures in the United States, J. Geophys. Res., 117, D05116, https://doi.org/10.1029/2011JD016761, 2012.
WMO: WMO Guidelines on the Calculation of Climate Normals, WMO,
https://library.wmo.int/index.php?lvl=notice_display&id=20130#.Ye_Dh1j7RzU (last access: 25 January 2022), 2017.
Yosef, Y., Aguilar, E., and Alpert, P.: Detecting and adjusting artificial biases of long-term temperature records in Israel, Int. J. Climatol., 38, 3273–3289, https://doi.org/10.1002/joc.5500, 2018.
Short summary
We unearth and analyse 2 decades of highly valuable measurements made on Mauritius at the Royal Alfred Observatory, where several distinct thermometer combinations were in use and compared, at the turn of the 20th century. This series provides unique insights into biases in early instrumental temperature records. Differences are substantial and for some instruments exhibit strong seasonality. This reinforces the critical importance of understanding early instrumental series biases.
We unearth and analyse 2 decades of highly valuable measurements made on Mauritius at the Royal...