Articles | Volume 18, issue 9
https://doi.org/10.5194/cp-18-2021-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-2021-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ice core evidence for major volcanic eruptions at the onset of Dansgaard–Oeschger warming events
Johannes Lohmann
CORRESPONDING AUTHOR
Physics of Ice, Climate and Earth, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Anders Svensson
Physics of Ice, Climate and Earth, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Related authors
Johannes Lohmann, Jiamei Lin, Bo M. Vinther, Sune O. Rasmussen, and Anders Svensson
Clim. Past, 20, 313–333, https://doi.org/10.5194/cp-20-313-2024, https://doi.org/10.5194/cp-20-313-2024, 2024
Short summary
Short summary
We present the first attempt to constrain the climatic impact of volcanic eruptions with return periods of hundreds of years by the oxygen isotope records of Greenland and Antarctic ice cores covering the last glacial period. A clear multi-annual volcanic cooling signal is seen, but its absolute magnitude is subject to the unknown glacial sensitivity of the proxy. Different proxy signals after eruptions during cooler versus warmer glacial stages may reflect a state-dependent climate response.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Jiamei Lin, Anders Svensson, Christine S. Hvidberg, Johannes Lohmann, Steffen Kristiansen, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Sune Olander Rasmussen, Eliza Cook, Helle Astrid Kjær, Bo M. Vinther, Hubertus Fischer, Thomas Stocker, Michael Sigl, Matthias Bigler, Mirko Severi, Rita Traversi, and Robert Mulvaney
Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, https://doi.org/10.5194/cp-18-485-2022, 2022
Short summary
Short summary
We employ acidity records from Greenland and Antarctic ice cores to estimate the emission strength, frequency and climatic forcing for large volcanic eruptions from the last half of the last glacial period. A total of 25 volcanic eruptions are found to be larger than any eruption in the last 2500 years, and we identify more eruptions than obtained from geological evidence. Towards the end of the glacial period, there is a notable increase in volcanic activity observed for Greenland.
Johannes Lohmann, Daniele Castellana, Peter D. Ditlevsen, and Henk A. Dijkstra
Earth Syst. Dynam., 12, 819–835, https://doi.org/10.5194/esd-12-819-2021, https://doi.org/10.5194/esd-12-819-2021, 2021
Short summary
Short summary
Tipping of one climate subsystem could trigger a cascade of subsequent tipping points and even global-scale climate tipping. Sequential shifts of atmosphere, sea ice and ocean have been recorded in proxy archives of past climate change. Based on this we propose a conceptual model for abrupt climate changes of the last glacial. Here, rate-induced tipping enables tipping cascades in systems with relatively weak coupling. An early warning signal is proposed that may detect such a tipping.
Johannes Lohmann and Anders Svensson
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-160, https://doi.org/10.5194/cp-2020-160, 2020
Manuscript not accepted for further review
Short summary
Short summary
Major volcanic eruptions are known to cause considerable short-term impacts on the global climate. Their influence on long-term climate variability and regime shifts is less well understood. Here we show that very large, bipolar eruptions occurred more frequently than expected by chance just before abrupt climate change events in the last glacial period (the Dansgaard-Oeschger events). Thus, such large eruptions may in some cases act as short-term triggers to abrupt regime shifts of the climate.
Margaret Mallory Harlan, Jodi Fox, Helle Astrid Kjær, Tessa R. Vance, Anders Svensson, and Eliza Cook
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-64, https://doi.org/10.5194/cp-2024-64, 2024
Revised manuscript under review for CP
Short summary
Short summary
We identify two tephra horizons in the Mount Brown South (MBS) ice core originating from the mid-1980s eruptive period of Mt. Erebus and the 1991 eruption of Cerro Hudson. They represent an important addition to East Antarctic tephrochronology, with implications for understanding atmospheric dynamics and ice core chronologies. This work underpins the importance of the MBS ice core as a new tephrochronological archive in an underrepresented region of coastal East Antarctica.
Margaret Harlan, Helle Astrid Kjær, Aylin de Campo, Anders Svensson, Thomas Blunier, Vasileios Gkinis, Sarah Jackson, Christopher Plummer, and Tessa Vance
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-335, https://doi.org/10.5194/essd-2024-335, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This paper provides high-resolution chemistry and impurity measurements from the Mount Brown South ice core in East Antarctica, from 873 to 2009 CE. Measurements include sodium, ammonium, hydrogen peroxide, electrolytic conductivity, and insoluble microparticles. Data are provided on three scales: 1 mm and 3 cm averaged depth resolution and decadally averaged. The paper also describes the continuous flow analysis systems used to collect the data as well as uncertainties and data quality.
Johannes Lohmann, Jiamei Lin, Bo M. Vinther, Sune O. Rasmussen, and Anders Svensson
Clim. Past, 20, 313–333, https://doi.org/10.5194/cp-20-313-2024, https://doi.org/10.5194/cp-20-313-2024, 2024
Short summary
Short summary
We present the first attempt to constrain the climatic impact of volcanic eruptions with return periods of hundreds of years by the oxygen isotope records of Greenland and Antarctic ice cores covering the last glacial period. A clear multi-annual volcanic cooling signal is seen, but its absolute magnitude is subject to the unknown glacial sensitivity of the proxy. Different proxy signals after eruptions during cooler versus warmer glacial stages may reflect a state-dependent climate response.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Marie Bouchet, Amaëlle Landais, Antoine Grisart, Frédéric Parrenin, Frédéric Prié, Roxanne Jacob, Elise Fourré, Emilie Capron, Dominique Raynaud, Vladimir Ya Lipenkov, Marie-France Loutre, Thomas Extier, Anders Svensson, Etienne Legrain, Patricia Martinerie, Markus Leuenberger, Wei Jiang, Florian Ritterbusch, Zheng-Tian Lu, and Guo-Min Yang
Clim. Past, 19, 2257–2286, https://doi.org/10.5194/cp-19-2257-2023, https://doi.org/10.5194/cp-19-2257-2023, 2023
Short summary
Short summary
A new federative chronology for five deep polar ice cores retrieves 800 000 years of past climate variations with improved accuracy. Precise ice core timescales are key to studying the mechanisms linking changes in the Earth’s orbit to the diverse climatic responses (temperature and atmospheric greenhouse gas concentrations). To construct the chronology, new measurements from the oldest continuous ice core as well as glaciological modeling estimates were combined in a statistical model.
Sune Olander Rasmussen, Dorthe Dahl-Jensen, Hubertus Fischer, Katrin Fuhrer, Steffen Bo Hansen, Margareta Hansson, Christine S. Hvidberg, Ulf Jonsell, Sepp Kipfstuhl, Urs Ruth, Jakob Schwander, Marie-Louise Siggaard-Andersen, Giulia Sinnl, Jørgen Peder Steffensen, Anders M. Svensson, and Bo M. Vinther
Earth Syst. Sci. Data, 15, 3351–3364, https://doi.org/10.5194/essd-15-3351-2023, https://doi.org/10.5194/essd-15-3351-2023, 2023
Short summary
Short summary
Timescales are essential for interpreting palaeoclimate data. The data series presented here were used for annual-layer identification when constructing the timescales named the Greenland Ice-Core Chronology 2005 (GICC05) and the revised version GICC21. Hopefully, these high-resolution data sets will be useful also for other purposes.
Giulia Sinnl, Florian Adolphi, Marcus Christl, Kees C. Welten, Thomas Woodruff, Marc Caffee, Anders Svensson, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 19, 1153–1175, https://doi.org/10.5194/cp-19-1153-2023, https://doi.org/10.5194/cp-19-1153-2023, 2023
Short summary
Short summary
The record of past climate is preserved by several archives from different regions, such as ice cores from Greenland or Antarctica or speleothems from caves such as the Hulu Cave in China. In this study, these archives are aligned by taking advantage of the globally synchronous production of cosmogenic radionuclides. This produces a new perspective on the global climate in the period between 20 000 and 25 000 years ago.
Nicolas Stoll, Julien Westhoff, Pascal Bohleber, Anders Svensson, Dorthe Dahl-Jensen, Carlo Barbante, and Ilka Weikusat
The Cryosphere, 17, 2021–2043, https://doi.org/10.5194/tc-17-2021-2023, https://doi.org/10.5194/tc-17-2021-2023, 2023
Short summary
Short summary
Impurities in polar ice play a role regarding its climate signal and internal deformation. We bridge different scales using different methods to investigate ice from the Last Glacial Period derived from the EGRIP ice core in Greenland. We characterise different types of cloudy bands, i.e. frequently occurring milky layers in the ice, and analyse their chemistry with Raman spectroscopy and 2D imaging. We derive new insights into impurity localisation and deposition conditions.
Zhiheng Du, Jiao Yang, Lei Wang, Ninglian Wang, Anders Svensson, Zhen Zhang, Xiangyu Ma, Yaping Liu, Shimeng Wang, Jianzhong Xu, and Cunde Xiao
Earth Syst. Sci. Data, 14, 5349–5365, https://doi.org/10.5194/essd-14-5349-2022, https://doi.org/10.5194/essd-14-5349-2022, 2022
Short summary
Short summary
A dataset of the radiogenic strontium and neodymium isotopic compositions from the three poles (the third pole, the Arctic, and Antarctica) were integrated to obtain new findings. The dataset enables us to map the standardized locations in the three poles, while the use of sorting criteria related to the sample type permits us to trace the dust sources and sinks. The purpose of this dataset is to try to determine the variable transport pathways of dust at three poles.
Helle Astrid Kjær, Patrick Zens, Samuel Black, Kasper Holst Lund, Anders Svensson, and Paul Vallelonga
Clim. Past, 18, 2211–2230, https://doi.org/10.5194/cp-18-2211-2022, https://doi.org/10.5194/cp-18-2211-2022, 2022
Short summary
Short summary
Six shallow cores from northern Greenland spanning a distance of 426 km were retrieved during a traversal in 2015. We identify several recent acid horizons associated with Icelandic eruptions and eruptions in the Barents Sea region and obtain a robust forest fire proxy associated primarily with Canadian forest fires. We also observe an increase in the large dust particle fluxes that we attribute to an activation of Greenland local sources in recent years (1998–2015).
Giulia Sinnl, Mai Winstrup, Tobias Erhardt, Eliza Cook, Camilla Marie Jensen, Anders Svensson, Bo Møllesøe Vinther, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 18, 1125–1150, https://doi.org/10.5194/cp-18-1125-2022, https://doi.org/10.5194/cp-18-1125-2022, 2022
Short summary
Short summary
A new Greenland ice-core timescale, covering the last 3800 years, was produced using the machine learning algorithm StratiCounter. We synchronized the ice cores using volcanic eruptions and wildfires. We compared the new timescale to the tree-ring timescale, finding good alignment both between the common signatures of volcanic eruptions and of solar activity. Our Greenlandic timescales is safe to use for the Late Holocene, provided one uses our uncertainty estimate.
Julien Westhoff, Giulia Sinnl, Anders Svensson, Johannes Freitag, Helle Astrid Kjær, Paul Vallelonga, Bo Vinther, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Ilka Weikusat
Clim. Past, 18, 1011–1034, https://doi.org/10.5194/cp-18-1011-2022, https://doi.org/10.5194/cp-18-1011-2022, 2022
Short summary
Short summary
We present a melt event record from an ice core from central Greenland, which covers the past 10 000 years. Our record displays warm summer events, which can be used to enhance our understanding of the past climate. We compare our data to anomalies in tree ring width, which also represents summer temperatures, and find a good correlation. Furthermore, we investigate an outstandingly warm event in the year 986 AD or 991 AD, which has not been analyzed before.
Jiamei Lin, Anders Svensson, Christine S. Hvidberg, Johannes Lohmann, Steffen Kristiansen, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Sune Olander Rasmussen, Eliza Cook, Helle Astrid Kjær, Bo M. Vinther, Hubertus Fischer, Thomas Stocker, Michael Sigl, Matthias Bigler, Mirko Severi, Rita Traversi, and Robert Mulvaney
Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, https://doi.org/10.5194/cp-18-485-2022, 2022
Short summary
Short summary
We employ acidity records from Greenland and Antarctic ice cores to estimate the emission strength, frequency and climatic forcing for large volcanic eruptions from the last half of the last glacial period. A total of 25 volcanic eruptions are found to be larger than any eruption in the last 2500 years, and we identify more eruptions than obtained from geological evidence. Towards the end of the glacial period, there is a notable increase in volcanic activity observed for Greenland.
Helle Astrid Kjær, Lisa Lolk Hauge, Marius Simonsen, Zurine Yoldi, Iben Koldtoft, Maria Hörhold, Johannes Freitag, Sepp Kipfstuhl, Anders Svensson, and Paul Vallelonga
The Cryosphere, 15, 3719–3730, https://doi.org/10.5194/tc-15-3719-2021, https://doi.org/10.5194/tc-15-3719-2021, 2021
Short summary
Short summary
Ice core analyses are often done in home laboratories after costly transport of samples from the field. This limits the amount of sample that can be analysed.
Here, we present the first truly field-portable continuous flow analysis (CFA) system for the analysis of impurities in snow, firn and ice cores while still in the field: the lightweight in situ analysis (LISA) box.
LISA is demonstrated in Greenland to reconstruct accumulation, conductivity and peroxide in snow cores.
Johannes Lohmann, Daniele Castellana, Peter D. Ditlevsen, and Henk A. Dijkstra
Earth Syst. Dynam., 12, 819–835, https://doi.org/10.5194/esd-12-819-2021, https://doi.org/10.5194/esd-12-819-2021, 2021
Short summary
Short summary
Tipping of one climate subsystem could trigger a cascade of subsequent tipping points and even global-scale climate tipping. Sequential shifts of atmosphere, sea ice and ocean have been recorded in proxy archives of past climate change. Based on this we propose a conceptual model for abrupt climate changes of the last glacial. Here, rate-induced tipping enables tipping cascades in systems with relatively weak coupling. An early warning signal is proposed that may detect such a tipping.
Helle Astrid Kjær, Patrick Zens, Ross Edwards, Martin Olesen, Ruth Mottram, Gabriel Lewis, Christian Terkelsen Holme, Samuel Black, Kasper Holst Lund, Mikkel Schmidt, Dorthe Dahl-Jensen, Bo Vinther, Anders Svensson, Nanna Karlsson, Jason E. Box, Sepp Kipfstuhl, and Paul Vallelonga
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-337, https://doi.org/10.5194/tc-2020-337, 2021
Manuscript not accepted for further review
Short summary
Short summary
We have reconstructed accumulation in 6 firn cores and 8 snow cores in Northern Greenland and compared with a regional Climate model over Greenland. We find the model underestimate precipitation especially in north-eastern part of the ice cap- an important finding if aiming to reconstruct surface mass balance.
Temperatures at 10 meters depth at 6 sites in Greenland were also determined and show a significant warming since the 1990's of 0.9 to 2.5 °C.
Johannes Lohmann and Anders Svensson
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-160, https://doi.org/10.5194/cp-2020-160, 2020
Manuscript not accepted for further review
Short summary
Short summary
Major volcanic eruptions are known to cause considerable short-term impacts on the global climate. Their influence on long-term climate variability and regime shifts is less well understood. Here we show that very large, bipolar eruptions occurred more frequently than expected by chance just before abrupt climate change events in the last glacial period (the Dansgaard-Oeschger events). Thus, such large eruptions may in some cases act as short-term triggers to abrupt regime shifts of the climate.
Seyedhamidreza Mojtabavi, Frank Wilhelms, Eliza Cook, Siwan M. Davies, Giulia Sinnl, Mathias Skov Jensen, Dorthe Dahl-Jensen, Anders Svensson, Bo M. Vinther, Sepp Kipfstuhl, Gwydion Jones, Nanna B. Karlsson, Sergio Henrique Faria, Vasileios Gkinis, Helle Astrid Kjær, Tobias Erhardt, Sarah M. P. Berben, Kerim H. Nisancioglu, Iben Koldtoft, and Sune Olander Rasmussen
Clim. Past, 16, 2359–2380, https://doi.org/10.5194/cp-16-2359-2020, https://doi.org/10.5194/cp-16-2359-2020, 2020
Short summary
Short summary
We present a first chronology for the East Greenland Ice-core Project (EGRIP) over the Holocene and last glacial termination. After field measurements and processing of the ice-core data, the GICC05 timescale is transferred from the NGRIP core to the EGRIP core by means of matching volcanic events and common patterns (381 match points) in the ECM and DEP records. The new timescale is named GICC05-EGRIP-1 and extends back to around 15 kyr b2k.
Cited articles
Abbott, P. M., Niemeier, U., Timmreck, C., Riede, F., McConnell, J. R., Severi,
M., Fischer, H., Svensson, A., Toohey, M., Reinig, F., and Sigl, M.:
Volcanic climate forcing preceding the inception of the Younger Dryas:
Implications for tracing the Laacher See eruption, Quaternary Sci. Rev., 274,
107260, https://doi.org/10.1016/j.quascirev.2021.107260, 2021. a
Baldini, J. U. L., Brown, J. N., and McElwaine, J. N.: Was millennial scale
climate change during the Last Glacial triggered by explosive volcanism?,
Sci. Rep., 5, 17442, https://doi.org/10.1038/srep17442, 2015. a, b, c
Baldini, J. U. L., Brown, R. J., and Mawdsley, N.: Evaluating the link between the sulfur-rich Laacher See volcanic eruption and the Younger Dryas climate anomaly, Clim. Past, 14, 969–990, https://doi.org/10.5194/cp-14-969-2018, 2018. a
Bay, R. C., Bramall, N., Buford Price, P., Clow, G. D., Hawley, R. L., Udisti,
R., and Castellano, E.: Globally synchronous ice core volcanic tracers and
abrupt cooling during the last glacial period, J. Geoph. Res., 111,
D11108, https://doi.org/10.1029/2005JD006306, 2006. a, b
Black, B. A., Lamarque, J.-F., Marsh, D. R., Schmidt, A., and Bardeen, C. G.:
Global climate disruption and regional climate shelters after the Toba
supereruption, P. Natl. Acad. Sci. USA, 118, e2013046118, https://doi.org/10.1073/pnas.2013046118, 2021. a, b
Brown, N. and Galbraith, E. D.: Hosed vs. unhosed: interruptions of the Atlantic Meridional Overturning Circulation in a global coupled model, with and without freshwater forcing, Clim. Past, 12, 1663–1679, https://doi.org/10.5194/cp-12-1663-2016, 2016. a
Buizert, C. and Schmittner, A.: Southern Ocean control of glacial AMOC
stability and Dansgaard-Oeschger interstadial duration, Paleoceanography,
30, 1595–1612, 2015. a
Capron, E., Rasmussen, S. O., Popp, T. J., Erhardt, T., Fischer, H., Landais,
A., Pedro, J. B., Vettoretti, G., Grinsted, A., Gkinis, V., Vaughn, B.,
Svensson, A., Vinther, B. M., and White, J. W. C.: The anatomy of past
abrupt warmings recorded in Greenland ice, Nat. Commun., 12, 2106, https://doi.org/10.1038/s41467-021-22241-w, 2021. a
Cooper, C. L., Swindles, G. T., Savov, I. P., Schmidt, A., and Bacon, K. L.:
Evaluating the relationship between climate change and volcanism, Earth Sci.
Rev., 177, 238–247,, 2018. a
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for general instability of past climate from a
250-kyr ice-core record, Nature, 364, 218–220, 1993. a
De la Cruz-Reyna, S.: Poisson-distributed patterns of explosive eruptive
activity, Bull. Volcanol., 54, 57–67, 1991. a
Ditlevsen, P. D., Kristensen, M. S., and Andersen, K. K.: The Recurrence Time
of Dansgaard–Oeschger Events and Limits on the Possible Periodic Component,
J. Climate, 18, 2594–2603, 2005. a
Edwards, J., Anchukaitis, K. J., Zambri, B., Andreu-Hayles, L., Oelkers, R.,
D'Arrigo, R., and von Arx, G.: Intra-Annual Climate Anomalies in
Northwestern North America Following the 1783–1784 CE Laki Eruption, J.
Geophys. Res.-Atmos., 126, e2020JD033544, https://doi.org/10.1029/2020JD033544, 2021. a
Erhardt, T., Capron, E., Rasmussen, S. O., Schüpbach, S., Bigler, M., Adolphi, F., and Fischer, H.: Decadal-scale progression of the onset of Dansgaard–Oeschger warming events, Clim. Past, 15, 811–825, https://doi.org/10.5194/cp-15-811-2019, 2019. a
Gao, C., Oman, L., Robock, A., and Stenchikov, G. L.: Atmospheric volcanic
loading derived from bipolar ice cores: Accounting for the spatial
distribution of volcanic deposition, J. Geophys. Res., 112, D09109, https://doi.org/10.1029/2006JD007461, 2007. a
Gkinis, V., Simonsen, S. B., Buchardt, S. L., White, J. W. C., and Vinther,
B. M.: Water isotope diffusion rates from the NorthGRIP ice core for the
last 16,000 years – Glaciological and paleoclimatic implications, Earth
Planet Sci. Lett., 405, 132–141, 2014. a
Gkinis, V., Vinther, B. M., Quistgaard, T., Popp, T., Faber, A.-K., Holme, C. T., Jensen, C. M., Lanzky, M., Lütt, A. M., Mandrakis, V., Ørum, N. O., Pedersen, A.-S., Vaxevani, N., Weng, Y., Capron, E., Dahl-Jensen, D., Hörhold, M., Jones, T. R., Jouzel, J., Landais, A., Masson-Delmotte, V., Oerter, H., Rasmussen, S. O., Steen-Larsen, H. C., Steffensen, J. P., Sveinbjörnsdottir, A. E., Vaughn, B. H., and White, J.: NEEM ice core High Resolution (0.05 m) Water Isotope Ratios (18O/16O, 2H/1H) covering 8–129 ky b2k, Pangaea [data set], https://doi.org/10.1594/PANGAEA.925552, 2020. a
Gkinis, V., Vinther, B. M., and Popp, T. J.: A 120,000-year long climate record from a NW-Greenland deep
ice core at ultra-high resolution, Sci. Data, 8, 1–9, https://doi.org/10.1038/s41597-021-00916-9, 2021. a
Gregory, J. M., Dixon, K. W., Stouffer, R. J., Weaver, A. J., Driesschaert, E., Eby, M., Fichefet, T., Hasumi, H., Hu, A., Jungclaus, J. H., Kamenkovich, I. V., Levermann, A., Montoya, M., Murakami, S., Nawrath, S., Oka, A., Sokolov, A. P., and Thorpe, R. B.: A model intercomparison of changes in the Atlantic
thermohaline circulation in response to increasing atmospheric CO2
concentration, Geoph. Res. Lett., 32, L12703, https://doi.org/10.1029/2005GL023209, 2005. a
Häfner, D. and Jacobsen, R. L.: Veros, the versatile ocean simulator, in pure Python, powered by JAX, GitHub [data set], available at: https://github.com/dionhaefner/veros (last access: 25 August 2022), 2016. a
Häfner, D., Jacobsen, R. L., Eden, C., Kristensen, M. R. B., Jochum, M., Nuterman, R., and Vinter, B.: Veros v0.1 – a fast and versatile ocean simulator in pure Python, Geosci. Model Dev., 11, 3299–3312, https://doi.org/10.5194/gmd-11-3299-2018, 2018. a, b
Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A. M.,
and Keigwin, L. D.: North Atlantic ocean circulation and abrupt climate
change during the last glaciation, Science, 353, 470–474, 2016. a
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Gundestrup, N., Hammer, C. U.,
Andersen, U., Andersen, K. K., Hvidberg, C. S., Dahl-Jensen, D., Steffensen, J. P., Shoji, H., Sveinbjörnsdóttir, Á. E., White, J., Jouzel, J., and Fisher, D.: The δ18O record along the Greenland Ice Core Project deep
ice core and the problem of possible Eemian climatic instability, J. Geoph.
Res., 102, 26397–26410, 1997. a
Kawamura, K., Abe-Ouchi, A., Motoyama, H., et al.: State dependence of climatic instability over the past
720,000 years from Antarctic ice cores and climate modeling, Sci. Adv., 3,
e1600446, https://doi.org/10.1126/sciadv.1600446, 2017. a
Kindler, P., Guillevic, M., Baumgartner, M., Schwander, J., Landais, A., and Leuenberger, M.: Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core, Clim. Past, 10, 887–902, https://doi.org/10.5194/cp-10-887-2014, 2014. a
Klockmann, M., Mikolajewicz, U., and Marotzke, J.: Two AMOC States in Response
to Decreasing Greenhouse Gas Concentrations in the Coupled Climate Model
MPI-ESM, J. Climate, 31, 7969–7984, 2018. a
Klockmann, M., Mikolajewicz, U., Kleppin, H., and Marotzke, J.: Coupling of
the Subpolar Gyre and the Overturning Circulation During Abrupt Glacial
Climate Transitions, Geophys. Res. Lett., 47, e2020GL090361, https://doi.org/10.1029/2020GL090361, 2020. a
Kobashi, T., Menviel, L., Jeltsch-Thömmes, A., Vinther, B. M., Box, J. E.,
Muscheler, R., Nakaegawa, T., Pfister, P. L., Döring, M., Leuenberger,
M., Wanner, H., and Ohmura, A.: Volcanic influence on centennial to
millennial Holocene Greenland temperature change, Sci. Rep, 7, 1441, https://doi.org/10.1038/s41598-017-01451-7 , 2017. a
Lanciki, A., Cole-Dai, J., Thiemens, M. H., and Savarino, J.: Sulfur isotope
evidence of little or no stratospheric impact by the 1783 Laki volcanic
eruption, Geophys. Res. Lett., 39, L01806, https://doi.org/10.1029/2011GL050075, 2012. a
Li, C., Battisti, D. S., Schrag, D. P., and Tziperman, E.: Abrupt climate
shifts in Greenland due to displacements of the sea ice edge, Geophys. Res.
Lett., 32, L19702, https://doi.org/10.1029/2005GL023492, 2005. a, b
Lin, J., Svensson, A., Hvidberg, C. S., Lohmann, J., Kristiansen, S., Dahl-Jensen, D., Steffensen, J. P., Rasmussen, S. O., Cook, E., Kjær, H. A., Vinther, B. M., Fischer, H., Stocker, T., Sigl, M., Bigler, M., Severi, M., Traversi, R., and Mulvaney, R.: Magnitude, frequency and climate forcing of global volcanism during the last glacial period as seen in Greenland and Antarctic ice cores (60–9 ka), Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, 2022. a
Liu, W., Shi, F., Xiao, G., Xue, H., Yin, Q., Liu, F., Duan, A., Xiao, C., and
Guo, Z.: Bidecadal Temperature Anomalies Over the Tibetan Plateau and Arctic
in Response to the 1450s Volcanic Eruptions, J. Geophys. Res.-Atmos., 127,
e2021JD035769, https://doi.org/10.1029/2021JD035769, 2022. a
Lohmann, J. and Ditlevsen, P. D.: Random and externally controlled occurrences of Dansgaard–Oeschger events, Clim. Past, 14, 609–617, https://doi.org/10.5194/cp-14-609-2018, 2018. a
Lohmann, J. and Ditlevsen, P. D.: Risk of tipping the overturning circulation
due to increasing rates of ice melt, P. Natl. Acad. Sci. USA, 118, e2017989118, https://doi.org/10.1073/pnas.2017989118, 2021. a, b, c, d
Lynch-Stieglitz, J.: The Atlantic Meridional Overturning Circulation and
Abrupt Climate Change, Annu. Rev. Mar. Sci., 9, 83–104, 2017. a
Mann, M. E., Steinman, B. A., Brouillette, D. J., and Miller, S. K.:
Multidecadal climate oscillations during the past millennium driven by
volcanic forcing, Science, 371, 1014–1019, 2021. a
Mayewski, P. A., Meeker, L. D., Twickler, M. S., Whitlow, S., Yang, Q., Lyons,
W. B., and Prentice, M.: Major features and forcing of high-latitude
northern hemisphere atmospheric circulation using a 110,000-year-long
glaciochemical series, J. Geoph. Res., 102, 26345–26366, 1997. a
McConnell, J. R., Burke, A., Dunbar, N. W., Köhler, P., Thomas, J. L., Arienzo, M. M., Chellman, N. J., Maselli, O. J., Sigl, M., Adkins, J. F., Baggenstos, D., Burkhart, J. F., Brook, E. J., Buizert, C., Cole-Dai, J., Fudge, T. J., Knorr, G., Graf, H.-F., Grieman, M. M., Iverson, N., McGwire, K. C., Mulvaney, R., Paris, G., Rhodes, R. H., Saltzman, E. S., Severinghaus, J. P., Steffensen, J. P., Taylor, K. C., and Winckler, G.: Synchronous volcanic eruptions and abrupt climate
change 17.7 ka plausibly linked by stratospheric ozone depletion, P. Natl. Acad. Sci. USA,
114, 10035–10040, 2017. a
Mignot, J., Khodri, M., Frankignoul, C., and Servonnat, J.: Volcanic impact on the Atlantic Ocean over the last millennium, Clim. Past, 7, 1439–1455, https://doi.org/10.5194/cp-7-1439-2011, 2011. a
Mitsui, T. and Crucifix, M.: Influence of external forcings on abrupt
millennial‐scale climate changes: a statistical modelling study, Clim.
Dynam., 48, 2729, https://doi.org/10.1007/s00382-016-3235-z, 2017. a
Narcisi, B., Petit, J. R., and Langone, A.: Last glacial tephra layers in the
Talos Dome ice core (peripheral East Antarctic Plateau), with implications
for chronostratigraphic correlations and regional volcanic history, Quaternary
Sci. Rev., 165, 111–126, 2017. a
NGRIP Members: High-resolution record of Northern Hemisphere climate
extending into the last interglacial period, Nature, 431, 147–151, 2004a. a
NGRIP Members: High-resolution oxygen isotope and dust record of the NGRIP ice core, NGRIP members, Microsoft Excel [data set], http://iceandclimate.nbi.ku.dk/data/NGRIP_d18O_and_dust_5cm.xls (last access: 24 August 2022), 2004b. a
Pausata, F. S. R., Zanchettin, D., Karamperidou, C., Caballero, R., and
Battisti, D. S.: ITCZ shift and extratropical teleconnections drive ENSO
response to volcanic eruptions, Sci. Adv., 6, eaaz5006, https://doi.org/10.1126/sciadv.aaz5006, 2020. a, b
Pedro, J. B., Jochum, M., Buizert, C., He, F., Barker, S., and Rasmussen,
S. O.: Beyond the bipolar seesaw: Toward a process understanding of
interhemispheric coupling, Quaternary Sci. Rev., 192, 27–46, 2018. a
Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I.,
Knutti, R., Lohmann, G., Marsh, R., Mysak, L. A., Wang, Z., and Weaver,
A. J.: Thermohaline circulation hysteresis: A model intercomparison,
Geophys. Res. Lett., 32, L23605, https://doi.org/10.1029/2005GL023655, 2005. a
Rasmussen, S. O., Abbott, P. M., Blunier, T., Bourne, A. J., Brook, E., Buchardt, S. L., Buizert, C., Chappellaz, J., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S. M., Guillevic, M., Kipfstuhl, S., Laepple, T., Seierstad, I. K., Severinghaus, J. P., Steffensen, J. P., Stowasser, C., Svensson, A., Vallelonga, P., Vinther, B. M., Wilhelms, F., and Winstrup, M.: A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core, Clim. Past, 9, 2713–2730, https://doi.org/10.5194/cp-9-2713-2013, 2013. a, b
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H., Gkinis,
V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A stratigraphic framework for abrupt climatic changes
during the Last Glacial period based on three synchronized Greenland ice-core
records: refining and extending the INTIMATE event stratigraphy, Quaternary Sci.
Rev., 106, 14–28, 2014. a, b
Riechers, K. and Boers, N.: Significance of uncertain phasing between the onsets of stadial–interstadial transitions in different Greenland ice core proxies, Clim. Past, 17, 1751–1775, https://doi.org/10.5194/cp-17-1751-2021, 2021. a
Ruth, U., Wagenbach, D., Steffensen, J. P., and Bigler, M.: Continuous record
of microparticle concentration and size distribution in the central Greenland
NGRIP ice core during the last glacial period, J. Geophys. Res., 108,
4098, https://doi.org/10.1029/2002JD002376, 2003. a
Sadatzki, H., Dokken, T. M., Berben, S. M. P., Muschitiello, F., Stein, R.,
Fahl, K., Menviel, L., Timmermann, A., and Jansen, E.: Sea ice variability
in the southern Norwegian Sea during glacial Dansgaard-Oeschger climate
cycles, Sci. Adv., 5, eaau6174, https://doi.org/10.1126/sciadv.aau6174, 2019. a
Schleussner, C.-F., Divine, D., Donges, J. F., Miettinen, A., and Donner,
R. V.: Indications for a North Atlantic ocean circulation regime shift at
the onset of the Little Ice Age, Clim. Dynam., 45, 3623–3633, 2015. a
Schneider, D. P., Ammann, C. M., Otto-Bliesner, B. L., and Kaufman, D. S.:
Climate response to large, high-latitude and low-latitude volcanic eruptions
in the Community Climate System Model, J. Geoph. Res., 114, D15101, https://doi.org/10.1029/2008JD011222, 2009. a
Schulz, M.: The tempo of climate change during Dansgaard-Oeschger
interstadials and its potential to affect the manifestation of the 1470-year
climate cycle, Geophys. Res. Lett., 29, 1002, https://doi.org/10.1029/2001GL013277, 2002. a
Schüpbach, Fischer, H., and Bigler, M.: Greenland records of aerosol source and atmospheric
lifetime changes from the Eemian to the Holocene, Nat. Commun., 9, 1476,
https://doi.org/10.1038/s41467-018-03924-3, 2018. a
Schurer, A. P., Hegerl, G. C., Mann, M. E., Tett, S. F. B., and Phipps, S. J.:
Separating Forced from Chaotic Climate Variability over the Past
Millennium, J. Climate, 26, 6954–6973, 2013. a
Schurer, A. P., Tett, S. F. B., and Hegerl, G. C.: Small influence of solar
variability on climate over the past millennium, Nat. Geosci., 7, 104–108,
2014. a
Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J., Brook, E., Buchardt, S. L., Buizert, C., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S. M., Guillevic, M., Johnsen, S. J., Pedersen, D. S., Popp, T. J., Rasmussen, S. O., Severinghaus, J. P., Svensson, A., and Vinther, B. M.: Consistently dated records from the Greenland GRIP,
GISP2 and NGRIP ice cores for the past 104 ka reveal regional
millennial-scale δ18O gradients with possible Heinrich event
imprint, Quaternary Sci. Rev., 106, 29–46, 2014. a
Sigl, M., McConnell, J. R., Layman, L., Maselli, O., McGwire, K., Pasteris, D., Dahl-Jensen, D., Steffensen, J. P., Vinther, B., Edwards, R., Mulvaney, R., and Kipfstuhl, S.: A new bipolar ice core record of volcanism from WAIS Divide
and NEEM and implications for climate forcing of the last 2000 years, J.
Geophys. Res.-Atmos., 118, 1151–1169, 2013. a
Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F., Büntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F., Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M., Schüpbach, S., Steffensen, J. P., Vinther, B. M., and Woodruff, T. E.: Timing and climate forcing of volcanic eruptions for the past
2,500 years, Nature, 523, 543–549, 2015. a, b, c, d, e, f, g, h
Stenchikov, G., Delworth, T. L., Ramaswamy, V., Stouffer, R. J., Wittenberg,
A., and Zeng, F.: Volcanic signals in oceans, J. Geoph. Res., 114,
D16104, https://doi.org/10.1029/2008JD011673, 2009. a
Stuiver, M. and Grootes, P. M.: GISP2 Oxygen Isotope Ratios, Quaternary Res.,
53, 277–284, 2000. a
Sun, W., Wang, B., Liu, J., Chen, D., Gao, C., Ning, L., and Chen, L.: How
Northern High-Latitude Volcanic Eruptions in Different Seasons Affect ENSO,
J. Climate, 32, 3245–3262,, 2019. a
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008. a
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Rasmussen, S. O., Röthlisberger, R., Steffensen, J. P., and Vinther, B. M.: The Greenland Ice Core Chronology 2005, 15–42 ka. Part
2: comparison to other records, Quaternary Sci. Rev., 25, 3258–3267, 2006. a
Svensson, A., Dahl-Jensen, D., Steffensen, J. P., Blunier, T., Rasmussen, S. O., Vinther, B. M., Vallelonga, P., Capron, E., Gkinis, V., Cook, E., Kjær, H. A., Muscheler, R., Kipfstuhl, S., Wilhelms, F., Stocker, T. F., Fischer, H., Adolphi, F., Erhardt, T., Sigl, M., Landais, A., Parrenin, F., Buizert, C., McConnell, J. R., Severi, M., Mulvaney, R., and Bigler, M.: Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period, Clim. Past, 16, 1565–1580, https://doi.org/10.5194/cp-16-1565-2020, 2020. a
Swindles, G. T., Watson, E. J., Savov, I. P., Lawson, I. T., Schmidt, A.,
Hooper, A., Cooper, C. L., Connor, C. B., Gloor, M., and Carrivick, J. L.:
Climatic control on Icelandic volcanic activity during the mid-Holocene,
Geology, 47, 47–50,, 2018. a
Swingedouw, D., Ortega, P., Mignot, J., Guilyardi, E., Masson-Delmotte, V.,
Butler, P. G., Khodri, M., and Séférian, R.: Bidecadal North
Atlantic ocean circulation variability controlled by timing of volcanic
eruptions, Nat. Comm., 6, 6545, https://doi.org/10.1038/ncomms7545, 2015. a
Swingedouw, D., Mignot, J., Ortega, P., Khodri, M., Menegoz, M., Cassou, C.,
and Hanquiez, V.: Impact of explosive volcanic eruptions on the main climate
variability modes, Global Planet. Change, 150, 24–45, 2017. a
Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J.,
Lehner, F., and Knutti, R.: Past warming trend constrains future warming in
CMIP6 models, Sci. Adv., 6, eeaz9549, https://doi.org/10.1126/sciadv.aaz9549, 2020. a
Toohey, M., Krüger, K., Schmidt, H., Timmreck, C., Sigl, M., Stoffel, M.,
and Wilson, R.: Disproportionately strong climate forcing from extratropical
explosive volcanic eruptions, Nat. Geosci., 12, 100–107, 2019. a
Uppala, S. M., KÅllberg, P. W., and Simmons, A. J.: The ERA-40 re-analysis, Q. J. Roy. Meteor. Soc., 131,
2961–3012, 2005. a
van Dijk, E., Jungclaus, J., Lorenz, S., Timmreck, C., and Krüger, K.: Was there a volcanic-induced long-lasting cooling over the Northern Hemisphere in the mid-6th–7th century?, Clim. Past, 18, 1601–1623, https://doi.org/10.5194/cp-18-1601-2022, 2022. a, b
Weijer, W., Cheng, W., Drijfhout, S., Fedorov, A. V., Hu, A., Jackson, L. C.,
Liu, W., McDonagh, E. L., Mecking, J. V., and Zhang, J.: Stability of the
Atlantic Meridional Overturning Circulation: A Review and Synthesis, J.
Geophys. Res., 124, 5336–5375, 2019. a
White, J. W. C.: GISP2 Stable Isotopes (Deuterium, Deuterium Excess, and Oxygen), Artic Data Center [data set], https://arcticdata.io/catalog/view/doi:10.5065/D6JW8C0F (last access: 24 August 2022), 1995. a
Yang, L., Gao, Y., Gao, C., and Liu, F.: Climate Responses to Tambora-Size
Volcanic Eruption and the Impact of Warming Climate, Geophys. Res. Lett.,
49, e2021GL097477, https://doi.org/10.1029/2021GL097477, 2022. a
Zambri, B., Robock, A., Mills, M. J., and Schmidt, A.: Modeling the
1783–1784 Laki Eruption in Iceland: 2. Climate Impacts, J. Geophys. Res.-Atmos., 124, 6770–6790, 2019. a
Zhang, X., Barker, S., Knorr, G., Lohmann, G., Drysdale, R., Sun, Y., Hodell,
D., and Chen, F.: Direct astronomical influence on abrupt climate
variability, Nat. Geosci., 14, 819–826, 2021. a
Zhuo, Z., Kirchner, I., Pfahl, S., and Cubasch, U.: Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments, Atmos. Chem. Phys., 21, 13425–13442, https://doi.org/10.5194/acp-21-13425-2021, 2021. a, b
Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Grönvold, K., Germani,
M. S., Whitlow, S., Twickler, M. S., and Taylor, K.: Volcanic aerosol
records and tephrochronology of the Summit, Greenland, ice cores, J.
Geophys. Res., 102, 26625–26640, 1997. a
Co-editor-in-chief
Combining a new record of bipolar volcanism from Greenland and Antarctic ice cores with records of abrupt climate change derived from the same ice cores, this study provides the most convincing evidence yet of the influence of large volcanic eruptions on long term climate variability, namely Dansgaard-Oeschger warming events. This should garner significant popular interest.
Combining a new record of bipolar volcanism from Greenland and Antarctic ice cores with records...
Short summary
Major volcanic eruptions are known to cause considerable short-term impacts on the global climate. Their influence on long-term climate variability and regime shifts is less well-understood. Here we show that very large, bipolar eruptions occurred more frequently than expected by chance just before abrupt climate change events in the last glacial period (Dansgaard–Oeschger events). Thus, such large eruptions may in some cases act as short-term triggers for abrupt regime shifts of the climate.
Major volcanic eruptions are known to cause considerable short-term impacts on the global...