Articles | Volume 17, issue 1
https://doi.org/10.5194/cp-17-451-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-451-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term global ground heat flux and continental heat storage from geothermal data
Francisco José Cuesta-Valero
Climate & Atmospheric Sciences Institute, St. Francis Xavier University, Antigonish, NS, Canada
Environmental Sciences Program, Memorial University of Newfoundland, St. John's, NL, Canada
Almudena García-García
Climate & Atmospheric Sciences Institute, St. Francis Xavier University, Antigonish, NS, Canada
Environmental Sciences Program, Memorial University of Newfoundland, St. John's, NL, Canada
Climate & Atmospheric Sciences Institute, St. Francis Xavier University, Antigonish, NS, Canada
Department of Earth Sciences, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
J. Fidel González-Rouco
Departamento de Física de la Tierra y
Astrofísica, Universidad Complutense de Madrid, 28040 Madrid, Spain
Elena García-Bustamante
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
Related authors
Félix García-Pereira, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, Norman Julius Steinert, Elena García-Bustamante, Philip de Vrese, Johann Jungclaus, Stephan Lorenz, Stefan Hagemann, Francisco José Cuesta-Valero, Almudena García-García, and Hugo Beltrami
Earth Syst. Dynam., 15, 547–564, https://doi.org/10.5194/esd-15-547-2024, https://doi.org/10.5194/esd-15-547-2024, 2024
Short summary
Short summary
According to climate model estimates, the land stored 2 % of the system's heat excess in the last decades, while observational studies show it was around 6 %. This difference stems from these models using land components that are too shallow to constrain land heat uptake. Deepening the land component does not affect the surface temperature. This result can be used to derive land heat uptake estimates from different sources, which are much closer to previous observational reports.
Félix García-Pereira, Jesús Fidel González-Rouco, Thomas Schmid, Camilo Melo-Aguilar, Cristina Vegas-Cañas, Norman Julius Steinert, Pedro José Roldán-Gómez, Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Philipp de Vrese
SOIL, 10, 1–21, https://doi.org/10.5194/soil-10-1-2024, https://doi.org/10.5194/soil-10-1-2024, 2024
Short summary
Short summary
This work addresses air–ground temperature coupling and propagation into the subsurface in a mountainous area in central Spain using surface and subsurface data from six meteorological stations. Heat transfer of temperature changes at the ground surface occurs mainly by conduction controlled by thermal diffusivity of the subsurface, which varies with depth and time. A new methodology shows that near-surface diffusivity and soil moisture content changes with time are closely related.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Geosci. Model Dev., 15, 413–428, https://doi.org/10.5194/gmd-15-413-2022, https://doi.org/10.5194/gmd-15-413-2022, 2022
Short summary
Short summary
We study the sensitivity of a regional climate model to resolution and soil scheme changes. Our results show that the use of finer resolutions mainly affects precipitation outputs, particularly in summer due to changes in convective processes. Finer resolutions are associated with larger biases compared with observations. Changing the land surface model scheme affects the simulation of near-surface temperatures, yielding the lowest biases in mean temperature with the most complex soil scheme.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Joel Finnis
Earth Syst. Dynam., 12, 581–600, https://doi.org/10.5194/esd-12-581-2021, https://doi.org/10.5194/esd-12-581-2021, 2021
Short summary
Short summary
The current radiative imbalance at the top of the atmosphere is increasing the heat stored in the oceans, atmosphere, continental subsurface and cryosphere, with consequences for societies and ecosystems (e.g. sea level rise). We performed the first assessment of the ability of global climate models to represent such heat storage in the climate subsystems. Models are able to reproduce the observed atmosphere heat content, with biases in the simulation of heat content in the rest of components.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, Fidel González-Rouco, Elena García-Bustamante, and Joel Finnis
Geosci. Model Dev., 13, 5345–5366, https://doi.org/10.5194/gmd-13-5345-2020, https://doi.org/10.5194/gmd-13-5345-2020, 2020
Félix García-Pereira, Jesús Fidel González-Rouco, Nagore Meabe-Yanguas, Philipp de Vrese, Norman Julius Steinert, Johann Jungclaus, and Stephan Lorenz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2126, https://doi.org/10.5194/egusphere-2025-2126, 2025
Short summary
Short summary
This work shows that changing the hydrological state of permafrost produces differences of up to 3 °C in the annual ground temperature, 1–2 m in the active layer thickness, and 5 million km2 in the permafrost extent. Including a deeper vertical thermal scheme reduces the extent decline by more than 2 million km2 in the highest radiative emission scenario. This is shown for the first time in fully-coupled experiments with an Earth System Model.
Félix García-Pereira, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, Norman Julius Steinert, Elena García-Bustamante, Philip de Vrese, Johann Jungclaus, Stephan Lorenz, Stefan Hagemann, Francisco José Cuesta-Valero, Almudena García-García, and Hugo Beltrami
Earth Syst. Dynam., 15, 547–564, https://doi.org/10.5194/esd-15-547-2024, https://doi.org/10.5194/esd-15-547-2024, 2024
Short summary
Short summary
According to climate model estimates, the land stored 2 % of the system's heat excess in the last decades, while observational studies show it was around 6 %. This difference stems from these models using land components that are too shallow to constrain land heat uptake. Deepening the land component does not affect the surface temperature. This result can be used to derive land heat uptake estimates from different sources, which are much closer to previous observational reports.
Félix García-Pereira, Jesús Fidel González-Rouco, Thomas Schmid, Camilo Melo-Aguilar, Cristina Vegas-Cañas, Norman Julius Steinert, Pedro José Roldán-Gómez, Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Philipp de Vrese
SOIL, 10, 1–21, https://doi.org/10.5194/soil-10-1-2024, https://doi.org/10.5194/soil-10-1-2024, 2024
Short summary
Short summary
This work addresses air–ground temperature coupling and propagation into the subsurface in a mountainous area in central Spain using surface and subsurface data from six meteorological stations. Heat transfer of temperature changes at the ground surface occurs mainly by conduction controlled by thermal diffusivity of the subsurface, which varies with depth and time. A new methodology shows that near-surface diffusivity and soil moisture content changes with time are closely related.
Pedro José Roldán-Gómez, Jesús Fidel González-Rouco, Jason E. Smerdon, and Félix García-Pereira
Clim. Past, 19, 2361–2387, https://doi.org/10.5194/cp-19-2361-2023, https://doi.org/10.5194/cp-19-2361-2023, 2023
Short summary
Short summary
Analyses of reconstructed data suggest that the precipitation and availability of water have evolved in a similar way during the Last Millennium in different regions of the world, including areas of North America, Europe, the Middle East, southern Asia, northern South America, East Africa and the Indo-Pacific. To confirm this link between distant regions and to understand the reasons behind it, the information from different reconstructed and simulated products has been compiled and analyzed.
Philipp de Vrese, Goran Georgievski, Jesus Fidel Gonzalez Rouco, Dirk Notz, Tobias Stacke, Norman Julius Steinert, Stiig Wilkenskjeld, and Victor Brovkin
The Cryosphere, 17, 2095–2118, https://doi.org/10.5194/tc-17-2095-2023, https://doi.org/10.5194/tc-17-2095-2023, 2023
Short summary
Short summary
The current generation of Earth system models exhibits large inter-model differences in the simulated climate of the Arctic and subarctic zone. We used an adapted version of the Max Planck Institute (MPI) Earth System Model to show that differences in the representation of the soil hydrology in permafrost-affected regions could help explain a large part of this inter-model spread and have pronounced impacts on important elements of Earth systems as far to the south as the tropics.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Geosci. Model Dev., 15, 413–428, https://doi.org/10.5194/gmd-15-413-2022, https://doi.org/10.5194/gmd-15-413-2022, 2022
Short summary
Short summary
We study the sensitivity of a regional climate model to resolution and soil scheme changes. Our results show that the use of finer resolutions mainly affects precipitation outputs, particularly in summer due to changes in convective processes. Finer resolutions are associated with larger biases compared with observations. Changing the land surface model scheme affects the simulation of near-surface temperatures, yielding the lowest biases in mean temperature with the most complex soil scheme.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Joel Finnis
Earth Syst. Dynam., 12, 581–600, https://doi.org/10.5194/esd-12-581-2021, https://doi.org/10.5194/esd-12-581-2021, 2021
Short summary
Short summary
The current radiative imbalance at the top of the atmosphere is increasing the heat stored in the oceans, atmosphere, continental subsurface and cryosphere, with consequences for societies and ecosystems (e.g. sea level rise). We performed the first assessment of the ability of global climate models to represent such heat storage in the climate subsystems. Models are able to reproduce the observed atmosphere heat content, with biases in the simulation of heat content in the rest of components.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, Fidel González-Rouco, Elena García-Bustamante, and Joel Finnis
Geosci. Model Dev., 13, 5345–5366, https://doi.org/10.5194/gmd-13-5345-2020, https://doi.org/10.5194/gmd-13-5345-2020, 2020
Andrea N. Hahmann, Tija Sīle, Björn Witha, Neil N. Davis, Martin Dörenkämper, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Bjarke T. Olsen, and Stefan Söderberg
Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, https://doi.org/10.5194/gmd-13-5053-2020, 2020
Short summary
Short summary
Wind energy resource assessment routinely uses numerical weather prediction model output. We describe the evaluation procedures used for picking the suitable blend of model setup and parameterizations for simulating European wind climatology with the WRF model. We assess the simulated winds against tall mast measurements using a suite of metrics, including the Earth Mover's Distance, which diagnoses the performance of each ensemble member using the full wind speed and direction distribution.
Martin Dörenkämper, Bjarke T. Olsen, Björn Witha, Andrea N. Hahmann, Neil N. Davis, Jordi Barcons, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Mariano Sastre-Marugán, Tija Sīle, Wilke Trei, Mark Žagar, Jake Badger, Julia Gottschall, Javier Sanz Rodrigo, and Jakob Mann
Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, https://doi.org/10.5194/gmd-13-5079-2020, 2020
Short summary
Short summary
This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the microscale downscaling for generating the climatology. A comprehensive evaluation of each component of the NEWA model chain is presented using observations from a large set of tall masts located all over Europe.
Cited articles
Barkaoui, A. E., Correia, A., Zarhloule, Y., Rimi, A., Carneiro, J., Boughriba, M., and Verdoya, M.: Reconstruction of remote climate change from borehole temperature measurement in the eastern part of Morocco, Climatic Change, 118, 431–441, https://doi.org/10.1007/s10584-012-0638-7, 2013. a
Beck, A.: Climatically perturbed temperature gradients and their effect on
regional and continental heat-flow means, Tectonophysics, 41, 17–39,
https://doi.org/10.1016/0040-1951(77)90178-0, 1977. a
Beltrami, H.: Surface heat flux histories from inversion of geothermal data:
Energy balance at the Earth's surface, J. Geophys. Res.-Sol. Ea., 106, 21979–21993, https://doi.org/10.1029/2000JB000065, 2001. a, b, c
Beltrami, H.: Earth's Long-Term Memory, Science, 297, 206–207, https://doi.org/10.1126/science.1074027, 2002b. a, b
Beltrami, H. and Bourlon, E.: Ground warming patterns in the Northern
Hemisphere during the last five centuries, Earth Planet. Sc.
Lett., 227, 169–177, https://doi.org/10.1016/j.epsl.2004.09.014,
2004. a, b
Beltrami, H., Jessop, A. M., and Mareschal, J.-C.: Ground temperature histories in eastern and central Canada from geothermal measurements: evidence of climatic change, Global Planet. Change, 6, 167–183,
https://doi.org/10.1016/0921-8181(92)90033-7, 1992. a
Beltrami, H., Bourlon, E., Kellman, L., and González-Rouco, J. F.: Spatial patterns of ground heat gain in the Northern Hemisphere, Geophys. Res. Lett., 33, l06717, https://doi.org/10.1029/2006GL025676, 2006. a, b
Beltrami, H., Matharoo, G. S., and Smerdon, J. E.: Ground surface temperature
and continental heat gain: uncertainties from underground, Environ.
Res. Lett., 10, 014009, https://doi.org/10.1088/1748-9326/10/1/014009,
2015a. a, b, c, d
Beltrami, H., Matharoo, G. S., and Smerdon, J. E.: Impact of borehole depths on
reconstructed estimates of ground surface temperature histories and energy
storage, J. Geophys. Res.-Earth, 120, 763–778,
https://doi.org/10.1002/2014JF003382, 2014JF003382, 2015b. a, b, c
Beltrami, H., Matharoo, G. S., Smerdon, J. E., Illanes, L., and Tarasov, L.:
Impacts of the Last Glacial Cycle on ground surface temperature
reconstructions over the last millennium, Geophys. Res. Lett., 44,
355–364, https://doi.org/10.1002/2016GL071317, 2017. a, b
Bodri, L. and Cermak, V.: Borehole temperatures, climate change and the
pre-observational surface air temperature mean: allowance for hydraulic
conditions, Global Planet. Change, 45, 265–276,
https://doi.org/10.1016/j.gloplacha.2004.09.001, 2005. a
Bullard, E. C. and Schonland, B. F. J.: Heat flow in South Africa, P. Roy. Soc. Lond. A Mat., 173, 474–502, https://doi.org/10.1098/rspa.1939.0159,1939. a
Campbell, B. M., Vermeulen, S. J., Aggarwal, P. K., Corner-Dolloff, C.,
Girvetz, E., Loboguerrero, A. M., Ramirez-Villegas, J., Rosenstock, T.,
Sebastian, L., Thornton, P. K., and Wollenberg, E.: Reducing risks to food
security from climate change, Global Food Security, 11, 34–43,
https://doi.org/10.1016/j.gfs.2016.06.002, 2016. a
Cermak, V.: Underground temperature and inferred climatic temperature of the
past millenium, Palaeogeography, Palaeoclimatology, Palaeoecology, 10, 1–19, https://doi.org/10.1016/0031-0182(71)90043-5, 1971. a
Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J.: Improved estimates of ocean heat content from 1960 to 2015, Sci. Adv.,
3, e1601545, https://doi.org/10.1126/sciadv.1601545, 2017. a
Cheng, L., Abraham, J., Hausfather, Z., and Trenberth, K. E.: How fast are the oceans warming?, Science, 363, 128–129, https://doi.org/10.1126/science.aav7619, 2019. a
Chouinard, C. and Mareschal, J.-C.: Ground surface temperature history in
southern Canada: Temperatures at the base of the Laurentide ice sheet and
during the Holocene, Earth Planet. Sci. Lett., 277, 280–289,
https://doi.org/10.1016/j.epsl.2008.10.026, 2009. a
Church, J. A., White, N. J., Konikow, L. F., Domingues, C. M., Cogley, J. G.,
Rignot, E., Gregory, J. M., van den Broeke, M. R., Monaghan, A. J., and
Velicogna, I.: Revisiting the Earth's sea-level and energy budgets from 1961 to 2008, Geophys. Res. Lett., 38, l18601,
https://doi.org/10.1029/2011GL048794, 2011. a, b
Clauser, C. and Mareschal, J.-C.: Ground temperature history in central Europe from borehole temperature data, Geophys. J. Int., 121, 805–817, https://doi.org/10.1111/j.1365-246X.1995.tb06440.x, 1995. a
Collins, M., Booth, B. B. B., Bhaskaran, B., Harris, G. R., Murphy, J. M.,
Sexton, D. M. H., and Webb, M. J.: Climate model errors, feedbacks and
forcings: a comparison of perturbed physics and multi-model ensembles,
Clim. Dyn., 36, 1737–1766, https://doi.org/10.1007/s00382-010-0808-0, 2011. a
Cuesta-Valero, F. J., García-García, A., Beltrami, H., and Smerdon,
J. E.: First assessment of continental energy storage in CMIP5 simulations,
Geophys. Res. Lett., 43, 2016GL068496, https://doi.org/10.1002/2016GL068496,
2016. a, b
Cuesta-Valero, F. J., García-García, A., Beltrami, H., Zorita, E., and Jaume-Santero, F.: Long-term Surface Temperature (LoST) database as a complement for GCM preindustrial simulations, Clim. Past, 15, 1099–1111, https://doi.org/10.5194/cp-15-1099-2019, 2019. a, b, c
Cuesta-Valero, F. J., Beltrami, H., García-García, A., González-Rourco, J. F., and García-Bustamante, E.: Xibalbá: Underground Temperature Database, Figshare, https://doi.org/https://doi.org/10.6084/m9.figshare.13516487, 2021. a, b
Davis, M. G., Harris, R. N., and Chapman, D. S.: Repeat temperature
measurements in boreholes from northwestern Utah link ground and air
temperature changes at the decadal time scale, J. Geophys.
Res.-Sol. Ea., 115, B05203, https://doi.org/10.1029/2009JB006875, 2010. a
Demezhko, D. Y. and Gornostaeva, A. A.: Late Pleistocene–Holocene ground surface heat flux changes reconstructed from borehole temperature data (the Urals, Russia), Clim. Past, 11, 647–652, https://doi.org/10.5194/cp-11-647-2015, 2015. a
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U., DeConto,
R., Horton, B. P., Rahmstorf, S., and Raymo, M. E.: Sea-level rise due to
polar ice-sheet mass loss during past warm periods, Science, 349, aaa4019,
https://doi.org/10.1126/science.aaa4019, 2015. a
Fernández-Donado, L., González-Rouco, J. F., Raible, C. C., Ammann, C. M., Barriopedro, D., García-Bustamante, E., Jungclaus, J. H., Lorenz, S. J., Luterbacher, J., Phipps, S. J., Servonnat, J., Swingedouw, D., Tett, S. F. B., Wagner, S., Yiou, P., and Zorita, E.: Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium, Clim. Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013, 2013. a, b
García-García, A., Cuesta-Valero, F. J., Beltrami, H., and Smerdon,
J. E.: Simulation of air and ground temperatures in PMIP3/CMIP5 last
millennium simulations: implications for climate reconstructions from
borehole temperature profiles, Environ. Res. Lett., 11, 044022,
https://doi.org/10.1088/1748-9326/11/4/044022, 2016. a, b, c
Gleckler, P. J., Durack, P. J., Stouffer, R. J., Johnson, G. C., and Forest,
C. E.: Industrial-era global ocean heat uptake doubles in recent decades,
Nat. Clim. Change, 6, 394–398,
https://doi.org/10.1038/nclimate2915, 2016. a
González-Rouco, J. F., Beltrami, H., Zorita, E., and von Storch, H.:
Simulation and inversion of borehole temperature profiles in surrogate
climates: Spatial distribution and surface coupling, Geophys. Res.
Lett., 33, l01703, https://doi.org/10.1029/2005GL024693, 2006. a, b
Hansen, J., Sato, M., Kharecha, P., and von Schuckmann, K.: Earth's energy imbalance and implications, Atmos. Chem. Phys., 11, 13421–13449, https://doi.org/10.5194/acp-11-13421-2011, 2011. a, b
Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated high-resolution
grids of monthly climatic observations – the CRU TS3.10 Dataset,
Int. J. Clim., 34, 623–642, https://doi.org/10.1002/joc.3711,
2014. a
Harris, R. N. and Chapman, D. S.: Mid-latitude (30∘–60∘
N) climatic warming inferred by combining borehole temperatures with surface air temperatures, Geophys. Res. Lett., 28, 747–750,
https://doi.org/10.1029/2000GL012348, 2001. a, b
Harrison, S. P., Bartlein, P. J., Izumi, K., Li, G., Annan, J., Hargreaves, J., Braconnot, P., and Kageyama, M.: Evaluation of CMIP5 palaeo-simulations to improve climate projections, Nat. Clim. Change, 5, 735–743,
https://doi.org/10.1038/nclimate2649, 2015. a
Hartmann, A. and Rath, V.: Uncertainties and shortcomings of ground surface
temperature histories derived from inversion of temperature logs, J. Geophys. Eng., 2, 299–311, https://doi.org/10.1088/1742-2132/2/4/S02,
2005. a, b, c, d
Hawkins, E., Ortega, P., Suckling, E., Schurer, A., Hegerl, G., Jones, P.,
Joshi, M., Osborn, T. J., Masson-Delmotte, V., Mignot, J., Thorne, P., and
van Oldenborgh, G. J.: Estimating Changes in Global Temperature since the
Preindustrial Period, B. Am. Meteorol. Soc., 98,
1841–1856, https://doi.org/10.1175/BAMS-D-16-0007.1, 2017. a
Hicks Pries, C. E., Castanha, C., Porras, R. C., and Torn, M. S.: The
whole-soil carbon flux in response to warming, Science, 355, 1420–1423,
https://doi.org/10.1126/science.aal1319, 2017. a
Hopcroft, P. O., Gallagher, K., and Pain, C. C.: Inference of past climate from borehole temperature data using Bayesian Reversible Jump Markov chain Monte Carlo, Geophys. J. Int., 171, 1430–1439,
https://doi.org/10.1111/j.1365-246X.2007.03596.x, 2007. a
Irving, D. B., Wijffels, S., and Church, J. A.: Anthropogenic Aerosols,
Greenhouse Gases, and the Uptake, Transport, and Storage of Excess Heat in
the Climate System, Geophys. Res. Lett., 46, 4894–4903,
https://doi.org/10.1029/2019GL082015, 2019. a, b
Jacob, T., Wahr, J., Pfeffer, W. T., and Swenson, S.: Recent contributions of
glaciers and ice caps to sea level rise, Nature, 482, 514–518,
https://doi.org/10.1038/nature10847, 2012. a
Johnson, G. C., Lyman, J. M., and Loeb, N. G.: Improving estimates of Earth's
energy imbalance, Nat. Clim. Change, 6, 639,
https://doi.org/10.1038/nclimate3043, 2016. a
Knutti, R., Sedláček, J., Sanderson, B. M., Lorenz, R., Fischer,
E. M., and Eyring, V.: A climate model projection weighting scheme accounting for performance and interdependence, Geophys. Res. Lett., 44,
1909–1918, https://doi.org/10.1002/2016GL072012, 2017. a
Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N.,
Peduzzi, P., Mechler, R., Bouwer, L. M., Arnell, N., Mach, K., Muir-Wood, R.,
Brakenridge, G. R., Kron, W., Benito, G., Honda, Y., Takahashi, K., and
Sherstyukov, B.: Flood risk and climate change: global and regional
perspectives, Hydrol. Sci. J., 59, 1–28,
https://doi.org/10.1080/02626667.2013.857411, 2014. a
Lachenbruch, A. H. and Marshall, B. V.: Changing Climate: Geothermal Evidence
from Permafrost in the Alaskan Arctic, Science, 234, 689–696,
https://doi.org/10.1126/science.234.4777.689, 1986. a
Lanczos, C.: Linear differential operators, Van Nostrand, New York, 1961. a
Lane, A. C.: Geotherms of Lake Superior Copper Country, GSA Bull., 34,
703–720, https://doi.org/10.1130/GSAB-34-703, 1923. a
Lembo, V., Folini, D., Wild, M., and Lionello, P.: Inter-hemispheric
differences in energy budgets and cross-equatorial transport anomalies during the 20th century, Clim. Dyn., 53, 115–135,
https://doi.org/10.1007/s00382-018-4572-x, 2019. a, b
Lesperance, M., Smerdon, J. E., and Beltrami, H.: Propagation of linear surface air temperature trends into the terrestrial subsurface, J.
Geophys. Res.-Atmos., 115, d21115, https://doi.org/10.1029/2010JD014377,
2010. a
Levitus, S., Antonov, J., and Boyer, T.: Warming of the world ocean,
1955–2003, Geophys. Res. Lett., 32, l02604, https://doi.org/10.1029/2004GL021592, 2005. a, b
Levy, K., Woster, A. P., Goldstein, R. S., and Carlton, E. J.: Untangling the
Impacts of Climate Change on Waterborne Diseases: a Systematic Review of
Relationships between Diarrheal Diseases and Temperature, Rainfall, Flooding, and Drought, Environ. Sci. Tech., 50, 4905–4922,
https://doi.org/10.1021/acs.est.5b06186, 2016. a
Lloyd, S. J., Kovats, R. S., and Chalabi, Z.: Climate Change, Crop Yields, and Undernutrition: Development of a Model to Quantify the Impact of Climate
Scenarios on Child Undernutrition, Environ. Health Persp., 119,
1817–1823, https://doi.org/10.1289/ehp.1003311, 2011. a
Loeb, N. G., Wang, H., Cheng, A., Kato, S., Fasullo, J. T., Xu, K.-M., and
Allan, R. P.: Observational constraints on atmospheric and oceanic
cross-equatorial heat transports: revisiting the precipitation asymmetry
problem in climate models, Clim. Dyn., 46, 3239–3257,
https://doi.org/10.1007/s00382-015-2766-z, 2016. a
MacDougall, A. H., González-Rouco, J. F., Stevens, M. B., and Beltrami, H.:
Quantification of subsurface heat storage in a GCM simulation, Geophys.
Res. Lett., 35, L13702, https://doi.org/10.1029/2008GL034639, 2008. a
MacDougall, A. H., Beltrami, H., González-Rouco, J. F., Stevens, M. B., and Bourlon, E.: Comparison of observed and general circulation model derived continental subsurface heat flux in the Northern Hemisphere, J.
Geophys. Res.-Atmos., 115, D12109, https://doi.org/10.1029/2009JD013170, 2010. a
MacDougall, A. H., Avis, C. A., and Weaver, A. J.: Significant contribution to climate warming from the permafrost carbon feedback, Nat. Geosci., 5,
719–721, https://doi.org/10.1038/ngeo1573, 2012. a
Mareschal, J.-C. and Beltrami, H.: Evidence for recent warming from perturbed
geothermal gradients: examples from eastern Canada, Clim. Dyn., 6,
135–143, https://doi.org/10.1007/BF00193525, 1992. a, b, c, d
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A.,
González Rouco, J., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T.,
Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X.,
and Timmermann, A.: Information from Paleoclimate Archives, in: Climate
Change 2013: The Physical Science Basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P., book section 5, pp. 383–464, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.013, 2013. a, b, c
Matthews, T. K. R., Wilby, R. L., and Murphy, C.: Communicating the deadly
consequences of global warming for human heat stress, P.
Natl. Acad. Sci. USA, 114, 3861–3866, https://doi.org/10.1073/pnas.1617526114,
2017. a
McGranahan, G., Balk, D., and Anderson, B.: The rising tide: assessing the
risks of climate change and human settlements in low elevation coastal zones, Environ. Urban., 19, 17–37, https://doi.org/10.1177/0956247807076960,
2007. a
McPherson, M., García-García, A., Cuesta-Valero, F. J., Beltrami, H.,
Hansen-Ketchum, P., MacDougall, D., and Ogden, N. H.: Expansion of the Lyme
Disease Vector Ixodes Scapularis in Canada Inferred from CMIP5 Climate
Projections, Environ. Health Persp., 125, 057008,
https://doi.org/10.1289/EHP57, 2017. a
Melo-Aguilar, C., González-Rouco, J. F., García-Bustamante, E., Steinert, N., Jungclaus, J. H., Navarro, J., and Roldán-Gómez, P. J.: Methodological and physical biases in global to subcontinental borehole temperature reconstructions: an assessment from a pseudo-proxy perspective, Clim. Past, 16, 453–474, https://doi.org/10.5194/cp-16-453-2020, 2020. a, b, c, d, e
Mottaghy, D. and Rath, V.: Latent heat effects in subsurface heat transport
modelling and their impact on palaeotemperature reconstructions, Geophys. J. Int., 164, 236–245, https://doi.org/10.1111/j.1365-246X.2005.02843.x,
2006. a
NOAA: Borehole Database at National Oceanic and Atmospheric Administration's Server, available at:
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/borehole
last access: 1 September 2019. a
Oppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R., Magnan, A.,
Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R., Ghosh, T., Hay,
J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level
Riseand Implications for Low-Lying Islands, Coasts and Communities, in:
IPCC Special Report on the Ocean and Cryosphere in a Changing Climate,
edited by: Pörtner, H.-O., Roberts, D., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N., book section 4, pp. 321–446, in press, 2021. a, b
Palmer, M. D. and McNeall, D. J.: Internal variability of Earth's energy budget simulated by CMIP5 climate models, Environ. Res. Lett., 9,
034016, https://doi.org/10.1088/1748-9326/9/3/034016, 2014. a
Palmer, M. D., McNeall, D. J., and Dunstone, N. J.: Importance of the deep
ocean for estimating decadal changes in Earth's radiation balance,
Geophysical Research Letters, 38, l13707, https://doi.org/10.1029/2011GL047835,
2011. a
Phalkey, R. K., Aranda-Jan, C., Marx, S., Höfle, B., and Sauerborn, R.:
Systematic review of current efforts to quantify the impacts of climate
change on undernutrition, P. Natl. Acad. Sci. USA,
112, E4522–E4529, https://doi.org/10.1073/pnas.1409769112, 2015. a
Pickler, C., Beltrami, H., and Mareschal, J.-C.: Laurentide Ice Sheet basal temperatures during the last glacial cycle as inferred from borehole data, Clim. Past, 12, 115–127, https://doi.org/10.5194/cp-12-115-2016, 2016. a, b, c, d
Pickler, C., Gurza Fausto, E., Beltrami, H., Mareschal, J.-C., Suárez, F., Chacon-Oecklers, A., Blin, N., Cortés Calderón, M. T., Montenegro, A., Harris, R., and Tassara, A.: Recent climate variations in Chile: constraints from borehole temperature profiles, Clim. Past, 14, 559–575, https://doi.org/10.5194/cp-14-559-2018, 2018. a, b, c
Pollack, H. N., Huang, S., and Shen, P.-Y.: Climate Change Record in Subsurface Temperatures: A Global Perspective, Science, 282, 279–281,
https://doi.org/10.1126/science.282.5387.279, 1998. a, b, c
Rath, V., González Rouco, J. F., and Goosse, H.: Impact of postglacial warming on borehole reconstructions of last millennium temperatures, Clim. Past, 8, 1059–1066, https://doi.org/10.5194/cp-8-1059-2012, 2012. a
Reiter, M.: Possible Ambiguities in Subsurface Temperature Logs: Consideration of Ground-water Flow and Ground Surface Temperature Change, Pure Appl. Geophys., 162, 343–355, https://doi.org/10.1007/s00024-004-2604-4, 2005. a
Riser, S. C., Freeland, H. J., Roemmich, D., Wijffels, S., Troisi, A.,
Belbéoch, M., Gilbert, D., Xu, J., Pouliquen, S., Thresher, A., Le Traon,
P.-Y., Maze, G., Klein, B., Ravichandran, M., Grant, F., Poulain, P.-M.,
Suga, T., Lim, B., Sterl, A., Sutton, P., Mork, K.-A., Vélez-Belchí,
P. J., Ansorge, I., King, B., Turton, J., Baringer, M., and Jayne, S. R.:
Fifteen years of ocean observations with the global Argo array, Nat.
Clim. Change, 6, 145–153, https://doi.org/10.1038/nclimate2872, 2016. a
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth,
A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K.,
Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H., and Jones,
J. W.: Assessing agricultural risks of climate change in the 21st century in
a global gridded crop model intercomparison, P. Natl.
Acad. Sci. USA, 111, 3268–3273, https://doi.org/10.1073/pnas.1222463110, 2014. a
Roy, S., Harris, R. N., Rao, R. U. M., and Chapman, D. S.: Climate change in
India inferred from geothermal observations, J. Geophys. Res.-Sol. Ea., 107, 5-1–5-16, https://doi.org/10.1029/2001JB000536, 2002. a
Schurer, A. P., Mann, M. E., Hawkins, E., Tett, S. F. B., and Hegerl, G. C.:
Importance of the pre-industrial baseline for likelihood of exceeding Paris
goals, Nat. Clim. Change, 7, 563–567, https://doi.org/10.1038/nclimate3345, 2017. a
Screen, J. A., Deser, C., Smith, D. M., Zhang, X., Blackport, R., Kushner,
P. J., Oudar, T., McCusker, K. E., and Sun, L.: Consistency and discrepancy
in the atmospheric response to Arctic sea-ice loss across climate models,
Nat. Geosci., 11, 155–163, https://doi.org/10.1038/s41561-018-0059-y, 2018. a
Shen, P., Wang, K., Beltrami, H., and Mareschal, J.-C.: A comparative study of inverse methods for estimating climatic history from borehole temperature
data, Global Planet. Change, 6, 113–127,
https://doi.org/10.1016/0921-8181(92)90030-E, 1992. a
Sherwood, S. C. and Huber, M.: An adaptability limit to climate change due to
heat stress, P. Natl. Acad. Sci. USA, 107,
9552–9555, https://doi.org/10.1073/pnas.0913352107, 2010. a
Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S.,
L'Ecuyer, T., Stackhouse, P. W., Lebsock, M., and Andrews, T.: An update on
Earth's energy balance in light of the latest global observations, Nat.
Geosci., 5, 691–696, https://doi.org/10.1038/ngeo1580, 2012. a
Stevens, M. B., Smerdon, J. E., González-Rouco, J. F., Stieglitz, M., and
Beltrami, H.: Effects of bottom boundary placement on subsurface heat
storage: Implications for climate model simulations, Geophys. Res.
Lett., 34, l02702, https://doi.org/10.1029/2006GL028546, 2007. a
Stevens, M. B., González-Rouco, J. F., and Beltrami, H.: North American
climate of the last millennium: Underground temperatures and model
comparison, J. Geophys. Res.-Earth, 113, f01008,
https://doi.org/10.1029/2006JF000705, 2008. a, b, c
Suman, A., Dyer, F., and White, D.: Late Holocene temperature variability in
Tasmania inferred from borehole temperature data, Clim. Past, 13,
559–572, https://doi.org/10.5194/cp-13-559-2017, 2017. a
Tomas, R. A., Deser, C., and Sun, L.: The Role of Ocean Heat Transport in the
Global Climate Response to Projected Arctic Sea Ice Loss, J. Climate,
29, 6841–6859, https://doi.org/10.1175/JCLI-D-15-0651.1, 2016. a
Trenberth, K. E., Zhang, Y., Fasullo, J. T., and Cheng, L.: Observation-Based
Estimates of Global and Basin Ocean Meridional Heat Transport Time Series,
J. Climate, 32, 4567–4583, https://doi.org/10.1175/JCLI-D-18-0872.1, 2019. a
Turcotte, D. L. and Schubert, G.: Geodynamics, University Printing House, Shaftesbury Road, Cambridge, CB2 8BS, England, UK, 2002. a
University of East Anglia Climatic Research Unit (CRU), Harris, I. C., and Jones, P. D.: CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) version 4.01 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2016), CEDA Archive, https://doi.org/10/gcmcz3, 2017. a
Vasseur, G., Bernard, P., de Meulebrouck, J. V., Kast, Y., and Jolivet, J.:
Holocene paleotemperatures deduced from geothermal measurements,
Palaeogeography, Palaeoclimatology, Palaeoecology, 43, 237–259,
https://doi.org/10.1016/0031-0182(83)90013-5, 1983. a, b
Vaughan, D., Comiso, J., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote,
P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., and Zhang, T.: Observations: Cryosphere, in: Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P., book section 4, 317–382, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/CBO9781107415324.012, 2013. a
von Schuckmann, K., Palmer, M. D., Trenberth, K. E., Cazenave, A., Chambers,
D., Champollion, N., Hansen, J., Josey, S. A., Loeb, N., Mathieu, P. P.,
Meyssignac, B., and Wild, M.: An imperative to monitor Earth's energy
imbalance, Nat. Clim. Change, 6, 138–144,
https://doi.org/10.1038/nclimate2876, 2016. a, b
von Schuckmann, K., Cheng, L., Palmer, M. D., Hansen, J., Tassone, C., Aich, V., Adusumilli, S., Beltrami, H., Boyer, T., Cuesta-Valero, F. J., Desbruyères, D., Domingues, C., García-García, A., Gentine, P., Gilson, J., Gorfer, M., Haimberger, L., Ishii, M., Johnson, G. C., Killick, R., King, B. A., Kirchengast, G., Kolodziejczyk, N., Lyman, J., Marzeion, B., Mayer, M., Monier, M., Monselesan, D. P., Purkey, S., Roemmich, D., Schweiger, A., Seneviratne, S. I., Shepherd, A., Slater, D. A., Steiner, A. K., Straneo, F., Timmermans, M.-L., and Wijffels, S. E.: Heat stored in the Earth system: where does the energy go?, Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, 2020.
a, b
Wang, J. and Bras, R.: Ground heat flux estimated from surface soil
temperature, J. Hydrol., 216, 214–226,
https://doi.org/10.1016/S0022-1694(99)00008-6, 1999. a
Watts, N., Amann, M., Arnell, N., Ayeb-Karlsson, S., Belesova, K., Boykoff, M.,
Byass, P., Cai, W., Campbell-Lendrum, D., Capstick, S., Chambers, J., Dalin,
C., Daly, M., Dasandi, N., Davies, M., Drummond, P., Dubrow, R., Ebi, K. L.,
Eckelman, M., Ekins, P., Escobar, L. E., Fernandez Montoya, L., Georgeson,
L., Graham, H., Haggar, P., Hamilton, I., Hartinger, S., Hess, J., Kelman,
I., Kiesewetter, G., Kjellstrom, T., Kniveton, D., Lemke, B., Liu, Y., Lott,
M., Lowe, R., Sewe, M. O., Martinez-Urtaza, J., Maslin, M., McAllister, L.,
McGushin, A., Jankin Mikhaylov, S., Milner, J., Moradi-Lakeh, M., Morrissey,
K., Murray, K., Munzert, S., Nilsson, M., Neville, T., Oreszczyn, T., Owfi,
F., Pearman, O., Pencheon, D., Phung, D., Pye, S., Quinn, R., Rabbaniha, M.,
Robinson, E., Rocklöv, J., Semenza, J. C., Sherman, J.,
Shumake-Guillemot, J., Tabatabaei, M., Taylor, J., Trinanes, J., Wilkinson,
P., Costello, A., Gong, P., and Montgomery, H.: The 2019 report of The
Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate, Lancet, 394,
1836–1878, https://doi.org/10.1016/S0140-6736(19)32596-6, 2019. a, b
Wu, X., Lu, Y., Zhou, S., Chen, L., and Xu, B.: Impact of climate change on
human infectious diseases: Empirical evidence and human adaptation,
Environ. Int., 86, 14–23,
https://doi.org/10.1016/j.envint.2015.09.007, 2016. a
Short summary
We provide new global estimates of changes in surface temperature, surface heat flux, and continental heat storage since preindustrial times from geothermal data. Our analysis includes new measurements and a more comprehensive description of uncertainties than previous studies. Results show higher continental heat storage than previously reported, with global land mean temperature changes of 1 K and subsurface heat gains of 12 ZJ during the last half of the 20th century.
We provide new global estimates of changes in surface temperature, surface heat flux, and...