Articles | Volume 17, issue 4
https://doi.org/10.5194/cp-17-1627-2021
https://doi.org/10.5194/cp-17-1627-2021
Research article
 | 
03 Aug 2021
Research article |  | 03 Aug 2021

CH4 and N2O fluctuations during the penultimate deglaciation

Loïc Schmidely, Christoph Nehrbass-Ahles, Jochen Schmitt, Juhyeong Han, Lucas Silva, Jinwha Shin, Fortunat Joos, Jérôme Chappellaz, Hubertus Fischer, and Thomas F. Stocker

Related authors

Brief communication: RADIX (Rapid Access Drilling and Ice eXtraction) dust logger test in the EastGRIP (East Greenland Ice-core Project) hole
Jakob Schwander, Thomas F. Stocker, Remo Walther, Samuel Marending, Tobias Erhardt, Chantal Zeppenfeld, and Jürg Jost
The Cryosphere, 18, 5613–5617, https://doi.org/10.5194/tc-18-5613-2024,https://doi.org/10.5194/tc-18-5613-2024, 2024
Short summary
Laser ablation inductively coupled plasma mass spectrometry measurements for high-resolution chemical ice core analyses with a first application to an ice core from Skytrain Ice Rise (Antarctica)
Helene Hoffmann, Jason Day, Rachael H. Rhodes, Mackenzie Grieman, Jack Humby, Isobel Rowell, Christoph Nehrbass-Ahles, Robert Mulvaney, Sally Gibson, and Eric Wolff
The Cryosphere, 18, 4993–5013, https://doi.org/10.5194/tc-18-4993-2024,https://doi.org/10.5194/tc-18-4993-2024, 2024
Short summary
The influence of present-day regional surface mass balance uncertainties on the future evolution of the Antarctic Ice Sheet
Christian Wirths, Thomas F. Stocker, and Johannes C. R. Sutter
The Cryosphere, 18, 4435–4462, https://doi.org/10.5194/tc-18-4435-2024,https://doi.org/10.5194/tc-18-4435-2024, 2024
Short summary
No increase is detected and modeled for the seasonal cycle amplitude of δ13C of atmospheric carbon dioxide
Fortunat Joos, Sebastian Lienert, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2024-1972,https://doi.org/10.5194/egusphere-2024-1972, 2024
Short summary
Sediment fluxes dominate glacial-interglacial changes in ocean carbon inventory: results from factorial simulations over the past 780,000 years
Markus Adloff, Aurich Jeltsch-Thömmes, Frerk Pöppelmeier, Thomas F. Stocker, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-1754,https://doi.org/10.5194/egusphere-2024-1754, 2024
Short summary

Related subject area

Subject: Greenhouse Gases | Archive: Ice Cores | Timescale: Millenial/D-O
Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methane
Michaela Mühl, Jochen Schmitt, Barbara Seth, James E. Lee, Jon S. Edwards, Edward J. Brook, Thomas Blunier, and Hubertus Fischer
Clim. Past, 19, 999–1025, https://doi.org/10.5194/cp-19-999-2023,https://doi.org/10.5194/cp-19-999-2023, 2023
Short summary
An 83 000-year-old ice core from Roosevelt Island, Ross Sea, Antarctica
James E. Lee, Edward J. Brook, Nancy A. N. Bertler, Christo Buizert, Troy Baisden, Thomas Blunier, V. Gabriela Ciobanu, Howard Conway, Dorthe Dahl-Jensen, Tyler J. Fudge, Richard Hindmarsh, Elizabeth D. Keller, Frédéric Parrenin, Jeffrey P. Severinghaus, Paul Vallelonga, Edwin D. Waddington, and Mai Winstrup
Clim. Past, 16, 1691–1713, https://doi.org/10.5194/cp-16-1691-2020,https://doi.org/10.5194/cp-16-1691-2020, 2020
Short summary
Antarctic temperature and CO2: near-synchrony yet variable phasing during the last deglaciation
Jai Chowdhry Beeman, Léa Gest, Frédéric Parrenin, Dominique Raynaud, Tyler J. Fudge, Christo Buizert, and Edward J. Brook
Clim. Past, 15, 913–926, https://doi.org/10.5194/cp-15-913-2019,https://doi.org/10.5194/cp-15-913-2019, 2019
Short summary
Analytical constraints on layered gas trapping and smoothing of atmospheric variability in ice under low-accumulation conditions
Kévin Fourteau, Xavier Faïn, Patricia Martinerie, Amaëlle Landais, Alexey A. Ekaykin, Vladimir Ya. Lipenkov, and Jérôme Chappellaz
Clim. Past, 13, 1815–1830, https://doi.org/10.5194/cp-13-1815-2017,https://doi.org/10.5194/cp-13-1815-2017, 2017
Short summary
NGRIP CH4 concentration from 120 to 10 kyr before present and its relation to a δ15N temperature reconstruction from the same ice core
M. Baumgartner, P. Kindler, O. Eicher, G. Floch, A. Schilt, J. Schwander, R. Spahni, E. Capron, J. Chappellaz, M. Leuenberger, H. Fischer, and T. F. Stocker
Clim. Past, 10, 903–920, https://doi.org/10.5194/cp-10-903-2014,https://doi.org/10.5194/cp-10-903-2014, 2014

Cited articles

Alley, R. B.: Wally was right: Predictive ability of the North Atlantic “conveyor belt” hypothesis for abrupt climate change, Annu. Rev. Earth Pl. Sc., 35, 241–272, https://doi.org/10.1146/annurev.earth.35.081006.131524, 2007. a
Baumgartner, M., Schilt, A., Eicher, O., Schmitt, J., Schwander, J., Spahni, R., Fischer, H., and Stocker, T. F.: High-resolution interpolar difference of atmospheric methane around the Last Glacial Maximum, Biogeosciences, 9, 3961–3977, https://doi.org/10.5194/bg-9-3961-2012, 2012. a
Baumgartner, M., Kindler, P., Eicher, O., Floch, G., Schilt, A., Schwander, J., Spahni, R., Capron, E., Chappellaz, J., Leuenberger, M., Fischer, H., and Stocker, T. F.: NGRIP CH4 concentration from 120 to 10 kyr before present and its relation to a δ15N temperature reconstruction from the same ice core, Clim. Past, 10, 903–920, https://doi.org/10.5194/cp-10-903-2014, 2014. a, b, c
Bauska, T. K., Baggenstos, D., Brook, E. J., Mix, A. C., Marcott, S. A., Petrenko, V. V., Schaefer, H., Severinghaus, J. P., and Lee, J. E.: Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation, P. Natl. Acad. Sci. USA, 113, 3465–3470, https://doi.org/10.1073/pnas.1513868113, 2016. a
Bauska, T. K., Brook, E. J., Marcott, S. A., Baggenstos, D., Shackleton, S., Severinghaus, J. P., and Petrenko, V. V.: Controls on millennial–scale atmospheric CO2 variability during the last glacial period, Geophys. Res. Lett., 45, 7731–7740, https://doi.org/10.1029/2018GL077881, 2018. a
Download
Short summary
Using ancient gas trapped in polar glaciers, we reconstructed the atmospheric concentrations of methane and nitrous oxide over the penultimate deglaciation to study their response to major climate changes. We show this deglaciation to be characterized by modes of methane and nitrous oxide variability that are also found during the last deglaciation and glacial cycle.