Articles | Volume 17, issue 4
https://doi.org/10.5194/cp-17-1533-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-1533-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Five thousand years of fire history in the high North Atlantic region: natural variability and ancient human forcing
Delia Segato
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Mestre, Italy
CNR Institute of Polar Sciences (ISP-CNR), Via Torino 155, 30170 Mestre, Italy
Maria Del Carmen Villoslada Hidalgo
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Mestre, Italy
CNR Institute of Polar Sciences (ISP-CNR), Via Torino 155, 30170 Mestre, Italy
CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastián, Spain
Ross Edwards
Curtin University, Kent St, Bentley, WA 6102, Australia
Elena Barbaro
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Mestre, Italy
CNR Institute of Polar Sciences (ISP-CNR), Via Torino 155, 30170 Mestre, Italy
Paul Vallelonga
Centre for Ice and Climate, Physics of Ice, Climate and Earth, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
UWA Oceans Institute, University of Western Australia, Crawley, WA 6009, Australia
Helle Astrid Kjær
Centre for Ice and Climate, Physics of Ice, Climate and Earth, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Marius Simonsen
Centre for Ice and Climate, Physics of Ice, Climate and Earth, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Bo Vinther
Centre for Ice and Climate, Physics of Ice, Climate and Earth, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Niccolò Maffezzoli
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Mestre, Italy
CNR Institute of Polar Sciences (ISP-CNR), Via Torino 155, 30170 Mestre, Italy
Roberta Zangrando
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Mestre, Italy
CNR Institute of Polar Sciences (ISP-CNR), Via Torino 155, 30170 Mestre, Italy
Clara Turetta
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Mestre, Italy
CNR Institute of Polar Sciences (ISP-CNR), Via Torino 155, 30170 Mestre, Italy
Dario Battistel
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Mestre, Italy
CNR Institute of Polar Sciences (ISP-CNR), Via Torino 155, 30170 Mestre, Italy
Orri Vésteinsson
Archaeology Department, University of Iceland, Sæmundargata 2, 101 Reykjavík, Iceland
Carlo Barbante
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Mestre, Italy
CNR Institute of Polar Sciences (ISP-CNR), Via Torino 155, 30170 Mestre, Italy
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Mestre, Italy
CNR Institute of Polar Sciences (ISP-CNR), Via Torino 155, 30170 Mestre, Italy
Related authors
Tessa R. Vance, Nerilie J. Abram, Alison S. Criscitiello, Camilla K. Crockart, Aylin DeCampo, Vincent Favier, Vasileios Gkinis, Margaret Harlan, Sarah L. Jackson, Helle A. Kjær, Chelsea A. Long, Meredith K. Nation, Christopher T. Plummer, Delia Segato, Andrea Spolaor, and Paul T. Vallelonga
Clim. Past, 20, 969–990, https://doi.org/10.5194/cp-20-969-2024, https://doi.org/10.5194/cp-20-969-2024, 2024
Short summary
Short summary
This study presents the chronologies from the new Mount Brown South ice cores from East Antarctica, which were developed by counting annual layers in the ice core data and aligning these to volcanic sulfate signatures. The uncertainty in the dating is quantified, and we discuss initial results from seasonal cycle analysis and mean annual concentrations. The chronologies will underpin the development of new proxy records for East Antarctica spanning the past millennium.
Tobias Erhardt, Camilla Marie Jensen, Florian Adolphi, Helle Astrid Kjær, Remi Dallmayr, Birthe Twarloh, Melanie Behrens, Motohiro Hirabayashi, Kaori Fukuda, Jun Ogata, François Burgay, Federico Scoto, Ilaria Crotti, Azzurra Spagnesi, Niccoló Maffezzoli, Delia Segato, Chiara Paleari, Florian Mekhaldi, Raimund Muscheler, Sophie Darfeuil, and Hubertus Fischer
Earth Syst. Sci. Data, 15, 5079–5091, https://doi.org/10.5194/essd-15-5079-2023, https://doi.org/10.5194/essd-15-5079-2023, 2023
Short summary
Short summary
The presented paper provides a 3.8 kyr long dataset of aerosol concentrations from the East Greenland Ice coring Project (EGRIP) ice core. The data consists of 1 mm depth-resolution profiles of calcium, sodium, ammonium, nitrate, and electrolytic conductivity as well as decadal averages of these profiles. Alongside the data a detailed description of the measurement setup as well as a discussion of the uncertainties are given.
François Burgay, Rafael Pedro Fernández, Delia Segato, Clara Turetta, Christopher S. Blaszczak-Boxe, Rachael H. Rhodes, Claudio Scarchilli, Virginia Ciardini, Carlo Barbante, Alfonso Saiz-Lopez, and Andrea Spolaor
The Cryosphere, 17, 391–405, https://doi.org/10.5194/tc-17-391-2023, https://doi.org/10.5194/tc-17-391-2023, 2023
Short summary
Short summary
The paper presents the first ice-core record of bromine (Br) in the Antarctic plateau. By the observation of the ice core and the application of atmospheric chemical models, we investigate the behaviour of bromine after its deposition into the snowpack, with interest in the effect of UV radiation change connected to the formation of the ozone hole, the role of volcanic deposition, and the possible use of Br to reconstruct past sea ice changes from ice core collect in the inner Antarctic plateau.
Agnese Petteni, Mathieu Casado, Christophe Leroy-Dos Santos, Amaelle Landais, Niels Dutrievoz, Cécile Agosta, Pete D. Akers, Joel Savarino, Andrea Spolaor, Massimo Frezzotti, and Barbara Stenni
EGUsphere, https://doi.org/10.5194/egusphere-2025-3188, https://doi.org/10.5194/egusphere-2025-3188, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We investigated the isotopic composition of surface snow in a previously unexplored region of East Antarctica to understand how differences in air mass origin influence its variability. By comparing observations with model data, we validated the model and quantified the impact of post-depositional processes at the snow–atmosphere interface. Our results offer valuable insights for reconstructing past temperatures from ice cores.
Adrien Ooms, Mathieu Casado, Ghislain Picard, Laurent Arnaud, Maria Hörhold, Andrea Spolaor, Rita Traversi, Joel Savarino, Patrick Ginot, Pete Akers, Birthe Twarloh, and Valérie Masson-Delmotte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3259, https://doi.org/10.5194/egusphere-2025-3259, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This work presents a new approach to the estimation of accumulation rates at Concordia Station, East-Antarctica, for the last 20 years, from a new data set of chemical tracers and snow micro-scale properties measured in a snow trench. Multi-annual and meter to decameter scale variability of accumulation rates are compared again in-situ measurements of surface laser scanner and stake farm, with very good agreement. This further constrains SMB estimation for Antarctica at high temporal resolution.
Manuel Bensi, Giuseppe Civitarese, Diego Borme, Carmela Caroppo, Gabriella Caruso, Federica Cerino, Franco Decembrini, Alessandra de Olazabal, Tommaso Diociaiuti, Michele Giani, Vedrana Kovacevic, Martina Kralj, Angelina Lo Giudice, Giovanna Maimone, Marina Monti, Maria Papale, Luisa Patrolecco, Elisa Putelli, Alessandro Ciro Rappazzo, Federica Relitti, Carmen Rizzo, Francesca Spataro, Valentina Tirelli, Clara Turetta, and Maurizio Azzaro
Earth Syst. Sci. Data, 17, 3701–3719, https://doi.org/10.5194/essd-17-3701-2025, https://doi.org/10.5194/essd-17-3701-2025, 2025
Short summary
Short summary
In September 2021, the Italian Arctic Research Programme funded a multidisciplinary study along 75° N in the Greenland Sea as part of the CASSANDRA project and the Synoptic Arctic Survey (SAS) programme. This study emphasises the spatial variability of water properties, nutrient distribution, and biological communities determined by oceanographic dynamics in a region influenced by sea ice melting, Atlantic Water inflow, and climatic teleconnections during a record low summer sea ice extent.
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
Geosci. Model Dev., 18, 4183–4213, https://doi.org/10.5194/gmd-18-4183-2025, https://doi.org/10.5194/gmd-18-4183-2025, 2025
Short summary
Short summary
This study represents the primary marine organic aerosol (PMOA) emissions, focusing on their sea–atmosphere transfer. Using the FESOM2.1–REcoM3 model, concentrations of key organic biomolecules were estimated and integrated into the ECHAM6.3–HAM2.3 aerosol–climate model. Results highlight the influence of marine biological activity and surface winds on PMOA emissions, with reasonably good agreement with observations improving aerosol representation in the southern oceans.
Paolo Gabrielli, Theo M. Jenk, Michele Bertó, Giuliano Dreossi, Daniela Festi, Werner Kofler, Mai Winstrup, Klaus Oeggl, Margit Schwikowski, Barbara Stenni, and Carlo Barbante
EGUsphere, https://doi.org/10.5194/egusphere-2025-2174, https://doi.org/10.5194/egusphere-2025-2174, 2025
Short summary
Short summary
A low latitude-high altitude Alpine ice core record was obtained in 2011 from the glacier Alto dell’Ortles (Eastern Alps, Italy) and provided evidence of one of the oldest Alpine ice core records spanning the last ~7000 years, back to the last Northern Hemisphere Climatic Optimum. Here we provide a new Alto dell’Ortles chronology of improved accuracy that will allow to constrain Holocene climatic and environmental histories emerging from this high-altitude glacial archive of Central Europe.
Niccolò Maffezzoli, Eric Rignot, Carlo Barbante, Troels Petersen, and Sebastiano Vascon
Geosci. Model Dev., 18, 2545–2568, https://doi.org/10.5194/gmd-18-2545-2025, https://doi.org/10.5194/gmd-18-2545-2025, 2025
Short summary
Short summary
In this work we introduce IceBoost, a machine learning framework to model the ice thickness distribution of all the world's glaciers with greater accuracy than state-of-the-art methods. The model is trained on 3.7 million measurements globally available and provides skilful estimates across all regions. This advancement will help in better assessing future sea level changes and freshwater resources, with significance for both the scientific community and society at large.
Piers Larkman, Rachael H. Rhodes, Nicolas Stoll, Carlo Barbante, and Pascal Bohleber
The Cryosphere, 19, 1373–1390, https://doi.org/10.5194/tc-19-1373-2025, https://doi.org/10.5194/tc-19-1373-2025, 2025
Short summary
Short summary
Impurities in ice cores can be preferentially located at the boundaries between crystals of ice, impacting the interpretation of high-resolution data collected from ice core samples. Through use of a modelling framework, we demonstrate that one-dimensional signals can be significantly affected by this association, meaning high-resolution measurements must be carefully designed. Accounting for this effect is important for interpreting ice core data, especially for deep ice samples.
Andrea Securo, Costanza Del Gobbo, Giovanni Baccolo, Carlo Barbante, Michele Citterio, Fabrizio De Blasi, Marco Marcer, Mauro Valt, and Renato R. Colucci
The Cryosphere, 19, 1335–1352, https://doi.org/10.5194/tc-19-1335-2025, https://doi.org/10.5194/tc-19-1335-2025, 2025
Short summary
Short summary
We have reconstructed the multi-decadal (1980s–2023) ice mass changes for all the current mountain glaciers in the Dolomites. We used historical aerial photographs, drone surveys, and lidar to fill the glaciological data gap for the region. We observed an alarming decline in both glacier area and volume, with some of the glaciers showing smaller losses due to local topography and debris cover feedback. We strongly recommend more specific monitoring of these glaciers.
Marco Paglione, Yufang Hao, Stefano Decesari, Mara Russo, Karam Mansour, Mauro Mazzola, Diego Fellin, Andrea Mazzanti, Emilio Tagliavini, Manousos Ioannis Manousakas, Evangelia Diapouli, Elena Barbaro, Matteo Feltracco, Kaspar Rudolf Daellenbach, and Matteo Rinaldi
EGUsphere, https://doi.org/10.5194/egusphere-2025-760, https://doi.org/10.5194/egusphere-2025-760, 2025
Short summary
Short summary
A year-long set of PM1 samples from Ny-Ålesund, Svalbard, was analyzed by H-NMR and HR-TOF-AMS for the chemical characterization of the organic fraction. Positive Matrix Factorization allowed to identify five organic aerosol sources with specific seasonality. Winter-spring aerosol is dominated by Eurasian pollution, while summer is characterized by biogenic aerosols from marine sources; occasional summertime high OA loadings are associated with wildfire aerosols.
Chloe A. Brashear, Tyler R. Jones, Valerie Morris, Bruce H. Vaughn, William H. G. Roberts, William B. Skorski, Abigail G. Hughes, Richard Nunn, Sune Olander Rasmussen, Kurt M. Cuffey, Bo M. Vinther, Todd Sowers, Christo Buizert, Vasileios Gkinis, Christian Holme, Mari F. Jensen, Sofia E. Kjellman, Petra M. Langebroek, Florian Mekhaldi, Kevin S. Rozmiarek, Jonathan W. Rheinlænder, Margit H. Simon, Giulia Sinnl, Silje Smith-Johnsen, and James W. C. White
Clim. Past, 21, 529–546, https://doi.org/10.5194/cp-21-529-2025, https://doi.org/10.5194/cp-21-529-2025, 2025
Short summary
Short summary
We use a series of spectral techniques to quantify the strength of high-frequency climate variability in northeastern Greenland to 50 000 ka before present. Importantly, we find that variability consistently decreases hundreds of years prior to Dansgaard–Oeschger warming events. Model simulations suggest a change in North Atlantic sea ice behavior contributed to this pattern, thus providing new information on the conditions which preceded abrupt climate change during the Last Glacial Period.
Sindhu Vudayagiri, Bo Vinther, Johannes Freitag, Peter L. Langen, and Thomas Blunier
Clim. Past, 21, 517–528, https://doi.org/10.5194/cp-21-517-2025, https://doi.org/10.5194/cp-21-517-2025, 2025
Short summary
Short summary
Air trapped in polar ice during snowfall reflects atmospheric pressure at the time of occlusion, serving as a proxy for elevation. However, melting, firn structure changes, and air pressure variability complicate this relationship. We measured total air content (TAC) in the RECAP ice core from Renland ice cap, eastern Greenland, spanning 121 000 years. Melt layers and short-term TAC variations, whose origins remain unclear, present challenges in interpreting elevation changes.
Margaret Mallory Harlan, Jodi Fox, Helle Astrid Kjær, Tessa R. Vance, Anders Svensson, and Eliza Cook
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-64, https://doi.org/10.5194/cp-2024-64, 2024
Revised manuscript under review for CP
Short summary
Short summary
We identify two tephra horizons in the Mount Brown South (MBS) ice core originating from the mid-1980s eruptive period of Mt. Erebus and the 1991 eruption of Cerro Hudson. They represent an important addition to East Antarctic tephrochronology, with implications for understanding atmospheric dynamics and ice core chronologies. This work underpins the importance of the MBS ice core as a new tephrochronological archive in an underrepresented region of coastal East Antarctica.
Margaret Harlan, Helle Astrid Kjær, Aylin de Campo, Anders Svensson, Thomas Blunier, Vasileios Gkinis, Sarah Jackson, Christopher Plummer, and Tessa Vance
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-335, https://doi.org/10.5194/essd-2024-335, 2024
Preprint under review for ESSD
Short summary
Short summary
This paper provides high-resolution chemistry and impurity measurements from the Mount Brown South ice core in East Antarctica, from 873 to 2009 CE. Measurements include sodium, ammonium, hydrogen peroxide, electrolytic conductivity, and insoluble microparticles. Data are provided on three scales: 1 mm and 3 cm averaged depth resolution and decadally averaged. The paper also describes the continuous flow analysis systems used to collect the data as well as uncertainties and data quality.
Luca Teruzzi, Andrea Spolaor, David Cappelletti, Claudio Artoni, and Marco A. C. Potenza
EGUsphere, https://doi.org/10.5194/egusphere-2024-2057, https://doi.org/10.5194/egusphere-2024-2057, 2024
Preprint archived
Short summary
Short summary
We present a novel probe to measure visible light penetration into the uppermost snow layers with high spatial resolution. The probe is designed to be lightweight and robust to be exploited in extreme environments, extrapolating to the UV region. Such experimental approach will allow to fill the gap in the current understanding of sunlight propagation through the snowpack, often based on numerical approaches, improving the understanding of those processes occurring in snow even in the UV region.
Giuliano Dreossi, Mauro Masiol, Barbara Stenni, Daniele Zannoni, Claudio Scarchilli, Virginia Ciardini, Mathieu Casado, Amaëlle Landais, Martin Werner, Alexandre Cauquoin, Giampietro Casasanta, Massimo Del Guasta, Vittoria Posocco, and Carlo Barbante
The Cryosphere, 18, 3911–3931, https://doi.org/10.5194/tc-18-3911-2024, https://doi.org/10.5194/tc-18-3911-2024, 2024
Short summary
Short summary
Oxygen and hydrogen stable isotopes have been extensively used to reconstruct past temperatures, with precipitation representing the input signal of the isotopic records in ice cores. We present a 10-year record of stable isotopes in daily precipitation at Concordia Station: this is the longest record for inland Antarctica and represents a benchmark for quantifying post-depositional processes and improving the paleoclimate interpretation of ice cores.
Mikkel Langgaard Lauritzen, Anne Munck Solgaard, Nicholas Mossor Rathmann, Bo Møllesøe Vinther, Aslak Grindsted, Brice Noël, Guðfinna Aðalgeirsdóttir, and Christine Schøtt Hvidberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-2223, https://doi.org/10.5194/egusphere-2024-2223, 2024
Short summary
Short summary
We study the Holocene period, which started about 11,700 years ago, through 841 computer simulations to better understand the history of the Greenland Ice Sheet. We accurately match historical surface elevation records, verifying our model. The simulations show that an ice bridge that used to connect the Greenland ice sheet to Canada collapsed around 4,900 years ago and still influences the ice sheet. Over the past 500 years, the Greenland ice sheet has contributed 12 millimeters to sea levels.
Azzurra Spagnesi, Elena Barbaro, Matteo Feltracco, Federico Scoto, Marco Vecchiato, Massimiliano Vardè, Mauro Mazzola, François Yves Burgay, Federica Bruschi, Clara Jule Marie Hoppe, Allison Bailey, Andrea Gambaro, Carlo Barbante, and Andrea Spolaor
EGUsphere, https://doi.org/10.5194/egusphere-2024-1393, https://doi.org/10.5194/egusphere-2024-1393, 2024
Short summary
Short summary
Svalbard is a relevant area to evaluate changes in local environmental processes induced by Arctic Amplification (AA). By comparing the snow chemical composition of the 2019–20 season with 2018–19 and 2020–21, we provide an overview of the potential impacts of AA on the Svalbard snowpack, and associated changes in aerosol production process, influenced by a complex interplay between atmospheric patterns, local and oceanic conditions that jointly drive snowpack impurity amounts and composition.
Tessa R. Vance, Nerilie J. Abram, Alison S. Criscitiello, Camilla K. Crockart, Aylin DeCampo, Vincent Favier, Vasileios Gkinis, Margaret Harlan, Sarah L. Jackson, Helle A. Kjær, Chelsea A. Long, Meredith K. Nation, Christopher T. Plummer, Delia Segato, Andrea Spolaor, and Paul T. Vallelonga
Clim. Past, 20, 969–990, https://doi.org/10.5194/cp-20-969-2024, https://doi.org/10.5194/cp-20-969-2024, 2024
Short summary
Short summary
This study presents the chronologies from the new Mount Brown South ice cores from East Antarctica, which were developed by counting annual layers in the ice core data and aligning these to volcanic sulfate signatures. The uncertainty in the dating is quantified, and we discuss initial results from seasonal cycle analysis and mean annual concentrations. The chronologies will underpin the development of new proxy records for East Antarctica spanning the past millennium.
Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Clara Turetta, Marta Radaelli, Warren Cairns, Giulio Cozzi, Giovanna Mazzi, Marco Casula, Jacopo Gabrieli, Carlo Barbante, and Andrea Gambaro
Atmos. Chem. Phys., 24, 2821–2835, https://doi.org/10.5194/acp-24-2821-2024, https://doi.org/10.5194/acp-24-2821-2024, 2024
Short summary
Short summary
The study analyzed a year of atmospheric aerosol composition at Col Margherita in the Italian Alps. Over 100 chemical markers were identified, including major ions, organic compounds, and trace elements. It revealed sources of aerosol, highlighted impacts of Saharan dust events, and showed anthropogenic pollution's influence despite the site's remoteness. Enrichment factors emphasized non-natural sources of trace elements. Source apportionment identified four key factors affecting the area.
Johannes Lohmann, Jiamei Lin, Bo M. Vinther, Sune O. Rasmussen, and Anders Svensson
Clim. Past, 20, 313–333, https://doi.org/10.5194/cp-20-313-2024, https://doi.org/10.5194/cp-20-313-2024, 2024
Short summary
Short summary
We present the first attempt to constrain the climatic impact of volcanic eruptions with return periods of hundreds of years by the oxygen isotope records of Greenland and Antarctic ice cores covering the last glacial period. A clear multi-annual volcanic cooling signal is seen, but its absolute magnitude is subject to the unknown glacial sensitivity of the proxy. Different proxy signals after eruptions during cooler versus warmer glacial stages may reflect a state-dependent climate response.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Tobias Erhardt, Camilla Marie Jensen, Florian Adolphi, Helle Astrid Kjær, Remi Dallmayr, Birthe Twarloh, Melanie Behrens, Motohiro Hirabayashi, Kaori Fukuda, Jun Ogata, François Burgay, Federico Scoto, Ilaria Crotti, Azzurra Spagnesi, Niccoló Maffezzoli, Delia Segato, Chiara Paleari, Florian Mekhaldi, Raimund Muscheler, Sophie Darfeuil, and Hubertus Fischer
Earth Syst. Sci. Data, 15, 5079–5091, https://doi.org/10.5194/essd-15-5079-2023, https://doi.org/10.5194/essd-15-5079-2023, 2023
Short summary
Short summary
The presented paper provides a 3.8 kyr long dataset of aerosol concentrations from the East Greenland Ice coring Project (EGRIP) ice core. The data consists of 1 mm depth-resolution profiles of calcium, sodium, ammonium, nitrate, and electrolytic conductivity as well as decadal averages of these profiles. Alongside the data a detailed description of the measurement setup as well as a discussion of the uncertainties are given.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Azzurra Spagnesi, Pascal Bohleber, Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Giuliano Dreossi, Martin Stocker-Waldhuber, Daniela Festi, Jacopo Gabrieli, Andrea Gambaro, Andrea Fischer, and Carlo Barbante
EGUsphere, https://doi.org/10.5194/egusphere-2023-1625, https://doi.org/10.5194/egusphere-2023-1625, 2023
Preprint archived
Short summary
Short summary
We present new data from a 10 m ice core drilled in 2019 and a 8.4 m parallel ice core drilled in 2021 at the summit of Weißseespitze glacier. In a new combination of proxies, we discuss profiles of stable water isotopes, major ion chemistry as well as a full profile of microcharcoal and levoglucosan. We find that the chemical and isotopic signals are preserved, despite the ongoing surface mass loss. This is not be to expected considering what has been found at other glaciers at similar locations.
Nicolas Stoll, Julien Westhoff, Pascal Bohleber, Anders Svensson, Dorthe Dahl-Jensen, Carlo Barbante, and Ilka Weikusat
The Cryosphere, 17, 2021–2043, https://doi.org/10.5194/tc-17-2021-2023, https://doi.org/10.5194/tc-17-2021-2023, 2023
Short summary
Short summary
Impurities in polar ice play a role regarding its climate signal and internal deformation. We bridge different scales using different methods to investigate ice from the Last Glacial Period derived from the EGRIP ice core in Greenland. We characterise different types of cloudy bands, i.e. frequently occurring milky layers in the ice, and analyse their chemistry with Raman spectroscopy and 2D imaging. We derive new insights into impurity localisation and deposition conditions.
Simone Ventisette, Samuele Baldini, Claudio Artoni, Silvia Becagli, Laura Caiazzo, Barbara Delmonte, Massimo Frezzotti, Raffaello Nardin, Joel Savarino, Mirko Severi, Andrea Spolaor, Barbara Stenni, and Rita Traversi
EGUsphere, https://doi.org/10.5194/egusphere-2023-393, https://doi.org/10.5194/egusphere-2023-393, 2023
Preprint archived
Short summary
Short summary
The paper reports the spatial variability of concentration and fluxes of chemical impurities in superficial snow over unexplored area of the East Antarctic ice sheet. Pinatubo and Puyehue-Cordón Caulle volcanic eruptions in non-sea salt sulfate and dust snow pits record were used to achieve the accumulation rates. Deposition (wet, dry and uptake from snow surface) and post deposition processes are constrained. These knowledges are fundamental in Antarctic ice cores stratigraphies interpretation.
Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, and Carlo Barbante
The Cryosphere, 17, 539–565, https://doi.org/10.5194/tc-17-539-2023, https://doi.org/10.5194/tc-17-539-2023, 2023
Short summary
Short summary
Multiple lines of research in ice core science are limited by manually intensive and time-consuming optical microscopy investigations for the detection of insoluble particles, from pollen grains to volcanic shards. To help overcome these limitations and support researchers, we present a novel methodology for the identification and autonomous classification of ice core insoluble particles based on flow image microscopy and neural networks.
François Burgay, Rafael Pedro Fernández, Delia Segato, Clara Turetta, Christopher S. Blaszczak-Boxe, Rachael H. Rhodes, Claudio Scarchilli, Virginia Ciardini, Carlo Barbante, Alfonso Saiz-Lopez, and Andrea Spolaor
The Cryosphere, 17, 391–405, https://doi.org/10.5194/tc-17-391-2023, https://doi.org/10.5194/tc-17-391-2023, 2023
Short summary
Short summary
The paper presents the first ice-core record of bromine (Br) in the Antarctic plateau. By the observation of the ice core and the application of atmospheric chemical models, we investigate the behaviour of bromine after its deposition into the snowpack, with interest in the effect of UV radiation change connected to the formation of the ozone hole, the role of volcanic deposition, and the possible use of Br to reconstruct past sea ice changes from ice core collect in the inner Antarctic plateau.
Antoine Grisart, Mathieu Casado, Vasileios Gkinis, Bo Vinther, Philippe Naveau, Mathieu Vrac, Thomas Laepple, Bénédicte Minster, Frederic Prié, Barbara Stenni, Elise Fourré, Hans Christian Steen-Larsen, Jean Jouzel, Martin Werner, Katy Pol, Valérie Masson-Delmotte, Maria Hoerhold, Trevor Popp, and Amaelle Landais
Clim. Past, 18, 2289–2301, https://doi.org/10.5194/cp-18-2289-2022, https://doi.org/10.5194/cp-18-2289-2022, 2022
Short summary
Short summary
This paper presents a compilation of high-resolution (11 cm) water isotopic records, including published and new measurements, for the last 800 000 years from the EPICA Dome C ice core, Antarctica. Using this new combined water isotopes (δ18O and δD) dataset, we study the variability and possible influence of diffusion at the multi-decadal to multi-centennial scale. We observe a stronger variability at the onset of the interglacial interval corresponding to a warm period.
Helle Astrid Kjær, Patrick Zens, Samuel Black, Kasper Holst Lund, Anders Svensson, and Paul Vallelonga
Clim. Past, 18, 2211–2230, https://doi.org/10.5194/cp-18-2211-2022, https://doi.org/10.5194/cp-18-2211-2022, 2022
Short summary
Short summary
Six shallow cores from northern Greenland spanning a distance of 426 km were retrieved during a traversal in 2015. We identify several recent acid horizons associated with Icelandic eruptions and eruptions in the Barents Sea region and obtain a robust forest fire proxy associated primarily with Canadian forest fires. We also observe an increase in the large dust particle fluxes that we attribute to an activation of Greenland local sources in recent years (1998–2015).
Silvia Becagli, Elena Barbaro, Simone Bonamano, Laura Caiazzo, Alcide di Sarra, Matteo Feltracco, Paolo Grigioni, Jost Heintzenberg, Luigi Lazzara, Michel Legrand, Alice Madonia, Marco Marcelli, Chiara Melillo, Daniela Meloni, Caterina Nuccio, Giandomenico Pace, Ki-Tae Park, Suzanne Preunkert, Mirko Severi, Marco Vecchiato, Roberta Zangrando, and Rita Traversi
Atmos. Chem. Phys., 22, 9245–9263, https://doi.org/10.5194/acp-22-9245-2022, https://doi.org/10.5194/acp-22-9245-2022, 2022
Short summary
Short summary
Measurements of phytoplanktonic dimethylsulfide and its oxidation products in the Antarctic atmosphere allow us to understand the role of the oceanic (sea ice melting, Chl α and dimethylsulfoniopropionate) and atmospheric (wind direction and speed, humidity, solar radiation and transport processes) factors in the biogenic aerosol formation, concentration and characteristic ratio between components in an Antarctic coastal site facing the polynya of the Ross Sea.
Giulia Sinnl, Mai Winstrup, Tobias Erhardt, Eliza Cook, Camilla Marie Jensen, Anders Svensson, Bo Møllesøe Vinther, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 18, 1125–1150, https://doi.org/10.5194/cp-18-1125-2022, https://doi.org/10.5194/cp-18-1125-2022, 2022
Short summary
Short summary
A new Greenland ice-core timescale, covering the last 3800 years, was produced using the machine learning algorithm StratiCounter. We synchronized the ice cores using volcanic eruptions and wildfires. We compared the new timescale to the tree-ring timescale, finding good alignment both between the common signatures of volcanic eruptions and of solar activity. Our Greenlandic timescales is safe to use for the Late Holocene, provided one uses our uncertainty estimate.
Julien Westhoff, Giulia Sinnl, Anders Svensson, Johannes Freitag, Helle Astrid Kjær, Paul Vallelonga, Bo Vinther, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Ilka Weikusat
Clim. Past, 18, 1011–1034, https://doi.org/10.5194/cp-18-1011-2022, https://doi.org/10.5194/cp-18-1011-2022, 2022
Short summary
Short summary
We present a melt event record from an ice core from central Greenland, which covers the past 10 000 years. Our record displays warm summer events, which can be used to enhance our understanding of the past climate. We compare our data to anomalies in tree ring width, which also represents summer temperatures, and find a good correlation. Furthermore, we investigate an outstandingly warm event in the year 986 AD or 991 AD, which has not been analyzed before.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Jiamei Lin, Anders Svensson, Christine S. Hvidberg, Johannes Lohmann, Steffen Kristiansen, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Sune Olander Rasmussen, Eliza Cook, Helle Astrid Kjær, Bo M. Vinther, Hubertus Fischer, Thomas Stocker, Michael Sigl, Matthias Bigler, Mirko Severi, Rita Traversi, and Robert Mulvaney
Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, https://doi.org/10.5194/cp-18-485-2022, 2022
Short summary
Short summary
We employ acidity records from Greenland and Antarctic ice cores to estimate the emission strength, frequency and climatic forcing for large volcanic eruptions from the last half of the last glacial period. A total of 25 volcanic eruptions are found to be larger than any eruption in the last 2500 years, and we identify more eruptions than obtained from geological evidence. Towards the end of the glacial period, there is a notable increase in volcanic activity observed for Greenland.
Paolo Gabrielli, Theo Manuel Jenk, Michele Bertó, Giuliano Dreossi, Daniela Festi, Werner Kofler, Mai Winstrup, Klaus Oeggl, Margit Schwikowski, Barbara Stenni, and Carlo Barbante
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-20, https://doi.org/10.5194/cp-2022-20, 2022
Revised manuscript not accepted
Short summary
Short summary
We present a methodology that reduces the chronological uncertainty of an Alpine ice core record from the glacier Alto dell’Ortles, Italy. This chronology will allow the constraint of the Holocene climatic and environmental histories emerging from this archive of Central Europe. This method will allow to obtain accurate chronologies also from other ice cores from-low latitude/high-altitude glaciers that typically suffer from larger dating uncertainties compared with well dated polar records.
Raffaello Nardin, Mirko Severi, Alessandra Amore, Silvia Becagli, Francois Burgay, Laura Caiazzo, Virginia Ciardini, Giuliano Dreossi, Massimo Frezzotti, Sang-Bum Hong, Ishaq Khan, Bianca Maria Narcisi, Marco Proposito, Claudio Scarchilli, Enricomaria Selmo, Andrea Spolaor, Barbara Stenni, and Rita Traversi
Clim. Past, 17, 2073–2089, https://doi.org/10.5194/cp-17-2073-2021, https://doi.org/10.5194/cp-17-2073-2021, 2021
Short summary
Short summary
The first step to exploit all the potential information buried in ice cores is to produce a reliable age scale. Based on chemical and isotopic records from the 197 m Antarctic GV7(B) ice core, accurate dating was achieved and showed that the archive spans roughly the last 830 years. The relatively high accumulation rate allowed us to use the non-sea-salt sulfate seasonal pattern to count annual layers. The accumulation rate reconstruction exhibited a slight increase since the 18th century.
Federico Dallo, Daniele Zannoni, Jacopo Gabrieli, Paolo Cristofanelli, Francescopiero Calzolari, Fabrizio de Blasi, Andrea Spolaor, Dario Battistel, Rachele Lodi, Warren Raymond Lee Cairns, Ann Mari Fjæraa, Paolo Bonasoni, and Carlo Barbante
Atmos. Meas. Tech., 14, 6005–6021, https://doi.org/10.5194/amt-14-6005-2021, https://doi.org/10.5194/amt-14-6005-2021, 2021
Short summary
Short summary
Our work showed how the adoption of low-cost technology could be useful in environmental research and monitoring. We focused our work on tropospheric ozone, but we also showed how to make a general purpose low-cost sensing system which may be adapted and optimised to be used in many other case studies. Given the importance of providing quality data, we put a lot of effort in the sensor's calibration, and we believe that our results show how to exploit the potential of the low-cost technology.
Camilla K. Crockart, Tessa R. Vance, Alexander D. Fraser, Nerilie J. Abram, Alison S. Criscitiello, Mark A. J. Curran, Vincent Favier, Ailie J. E. Gallant, Christoph Kittel, Helle A. Kjær, Andrew R. Klekociuk, Lenneke M. Jong, Andrew D. Moy, Christopher T. Plummer, Paul T. Vallelonga, Jonathan Wille, and Lingwei Zhang
Clim. Past, 17, 1795–1818, https://doi.org/10.5194/cp-17-1795-2021, https://doi.org/10.5194/cp-17-1795-2021, 2021
Short summary
Short summary
We present preliminary analyses of the annual sea salt concentrations and snowfall accumulation in a new East Antarctic ice core, Mount Brown South. We compare this record with an updated Law Dome (Dome Summit South site) ice core record over the period 1975–2016. The Mount Brown South record preserves a stronger and inverse signal for the El Niño–Southern Oscillation (in austral winter and spring) compared to the Law Dome record (in summer).
Michele Bertò, David Cappelletti, Elena Barbaro, Cristiano Varin, Jean-Charles Gallet, Krzysztof Markowicz, Anna Rozwadowska, Mauro Mazzola, Stefano Crocchianti, Luisa Poto, Paolo Laj, Carlo Barbante, and Andrea Spolaor
Atmos. Chem. Phys., 21, 12479–12493, https://doi.org/10.5194/acp-21-12479-2021, https://doi.org/10.5194/acp-21-12479-2021, 2021
Short summary
Short summary
We present the daily and seasonal variability in black carbon (BC) in surface snow inferred from two specific experiments based on the hourly and daily time resolution sampling during the Arctic spring in Svalbard. These unique data sets give us, for the first time, the opportunity to evaluate the associations between the observed surface snow BC mass concentration and a set of predictors corresponding to the considered meteorological and snow physico-chemical parameters.
Helle Astrid Kjær, Lisa Lolk Hauge, Marius Simonsen, Zurine Yoldi, Iben Koldtoft, Maria Hörhold, Johannes Freitag, Sepp Kipfstuhl, Anders Svensson, and Paul Vallelonga
The Cryosphere, 15, 3719–3730, https://doi.org/10.5194/tc-15-3719-2021, https://doi.org/10.5194/tc-15-3719-2021, 2021
Short summary
Short summary
Ice core analyses are often done in home laboratories after costly transport of samples from the field. This limits the amount of sample that can be analysed.
Here, we present the first truly field-portable continuous flow analysis (CFA) system for the analysis of impurities in snow, firn and ice cores while still in the field: the lightweight in situ analysis (LISA) box.
LISA is demonstrated in Greenland to reconstruct accumulation, conductivity and peroxide in snow cores.
Elena Barbaro, Krystyna Koziol, Mats P. Björkman, Carmen P. Vega, Christian Zdanowicz, Tonu Martma, Jean-Charles Gallet, Daniel Kępski, Catherine Larose, Bartłomiej Luks, Florian Tolle, Thomas V. Schuler, Aleksander Uszczyk, and Andrea Spolaor
Atmos. Chem. Phys., 21, 3163–3180, https://doi.org/10.5194/acp-21-3163-2021, https://doi.org/10.5194/acp-21-3163-2021, 2021
Short summary
Short summary
This paper shows the most comprehensive seasonal snow chemistry survey to date, carried out in April 2016 across 22 sites on 7 glaciers across Svalbard. The dataset consists of the concentration, mass loading, spatial and altitudinal distribution of major ion species (Ca2+, K+,
Na2+, Mg2+,
NH4+, SO42−,
Br−, Cl− and
NO3−), together with its stable oxygen and hydrogen isotope composition (δ18O and
δ2H) in the snowpack. This study was part of the larger Community Coordinated Snow Study in Svalbard.
Christian Zdanowicz, Jean-Charles Gallet, Mats P. Björkman, Catherine Larose, Thomas Schuler, Bartłomiej Luks, Krystyna Koziol, Andrea Spolaor, Elena Barbaro, Tõnu Martma, Ward van Pelt, Ulla Wideqvist, and Johan Ström
Atmos. Chem. Phys., 21, 3035–3057, https://doi.org/10.5194/acp-21-3035-2021, https://doi.org/10.5194/acp-21-3035-2021, 2021
Short summary
Short summary
Black carbon (BC) aerosols are soot-like particles which, when transported to the Arctic, darken snow surfaces, thus indirectly affecting climate. Information on BC in Arctic snow is needed to measure their impact and monitor the efficacy of pollution-reduction policies. This paper presents a large new set of BC measurements in snow in Svalbard collected between 2007 and 2018. It describes how BC in snow varies across the archipelago and explores some factors controlling these variations.
François Burgay, Andrea Spolaor, Jacopo Gabrieli, Giulio Cozzi, Clara Turetta, Paul Vallelonga, and Carlo Barbante
Clim. Past, 17, 491–505, https://doi.org/10.5194/cp-17-491-2021, https://doi.org/10.5194/cp-17-491-2021, 2021
Short summary
Short summary
We present the first Fe record from the NEEM ice core, which provides insight into past atmospheric Fe deposition in the Arctic. Considering the biological relevance of Fe, we questioned if the increased eolian Fe supply during glacial periods could explain the marine productivity variability in the Fe-limited subarctic Pacific Ocean. We found no overwhelming evidence that eolian Fe fertilization triggered any phytoplankton blooms, likely because other factors play a more relevant role.
Andreas Plach, Bo M. Vinther, Kerim H. Nisancioglu, Sindhu Vudayagiri, and Thomas Blunier
Clim. Past, 17, 317–330, https://doi.org/10.5194/cp-17-317-2021, https://doi.org/10.5194/cp-17-317-2021, 2021
Short summary
Short summary
In light of recent large-scale melting of the Greenland ice sheet
(GrIS), e.g., in the summer of 2012 several days with surface melt
on the entire ice sheet (including elevations above 3000 m), we use
computer simulations to estimate the amount of melt during a
warmer-than-present period of the past. Our simulations show more
extensive melt than today. This is important for the interpretation of
ice cores which are used to reconstruct the evolution of the ice sheet
and the climate.
Helle Astrid Kjær, Patrick Zens, Ross Edwards, Martin Olesen, Ruth Mottram, Gabriel Lewis, Christian Terkelsen Holme, Samuel Black, Kasper Holst Lund, Mikkel Schmidt, Dorthe Dahl-Jensen, Bo Vinther, Anders Svensson, Nanna Karlsson, Jason E. Box, Sepp Kipfstuhl, and Paul Vallelonga
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-337, https://doi.org/10.5194/tc-2020-337, 2021
Manuscript not accepted for further review
Short summary
Short summary
We have reconstructed accumulation in 6 firn cores and 8 snow cores in Northern Greenland and compared with a regional Climate model over Greenland. We find the model underestimate precipitation especially in north-eastern part of the ice cap- an important finding if aiming to reconstruct surface mass balance.
Temperatures at 10 meters depth at 6 sites in Greenland were also determined and show a significant warming since the 1990's of 0.9 to 2.5 °C.
Seyedhamidreza Mojtabavi, Frank Wilhelms, Eliza Cook, Siwan M. Davies, Giulia Sinnl, Mathias Skov Jensen, Dorthe Dahl-Jensen, Anders Svensson, Bo M. Vinther, Sepp Kipfstuhl, Gwydion Jones, Nanna B. Karlsson, Sergio Henrique Faria, Vasileios Gkinis, Helle Astrid Kjær, Tobias Erhardt, Sarah M. P. Berben, Kerim H. Nisancioglu, Iben Koldtoft, and Sune Olander Rasmussen
Clim. Past, 16, 2359–2380, https://doi.org/10.5194/cp-16-2359-2020, https://doi.org/10.5194/cp-16-2359-2020, 2020
Short summary
Short summary
We present a first chronology for the East Greenland Ice-core Project (EGRIP) over the Holocene and last glacial termination. After field measurements and processing of the ice-core data, the GICC05 timescale is transferred from the NGRIP core to the EGRIP core by means of matching volcanic events and common patterns (381 match points) in the ECM and DEP records. The new timescale is named GICC05-EGRIP-1 and extends back to around 15 kyr b2k.
Christine S. Hvidberg, Aslak Grinsted, Dorthe Dahl-Jensen, Shfaqat Abbas Khan, Anders Kusk, Jonas Kvist Andersen, Niklas Neckel, Anne Solgaard, Nanna B. Karlsson, Helle Astrid Kjær, and Paul Vallelonga
The Cryosphere, 14, 3487–3502, https://doi.org/10.5194/tc-14-3487-2020, https://doi.org/10.5194/tc-14-3487-2020, 2020
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) extends around 600 km from its onset in the interior of Greenland to the coast. Several maps of surface velocity and topography in Greenland exist, but accuracy is limited due to the lack of validation data. Here we present results from a 5-year GPS survey in an interior section of NEGIS. We use the data to assess a list of satellite-derived ice velocity and surface elevation products and discuss the implications for the ice stream flow in the area.
Jesper Sjolte, Florian Adolphi, Bo M. Vinther, Raimund Muscheler, Christophe Sturm, Martin Werner, and Gerrit Lohmann
Clim. Past, 16, 1737–1758, https://doi.org/10.5194/cp-16-1737-2020, https://doi.org/10.5194/cp-16-1737-2020, 2020
Short summary
Short summary
In this study we investigate seasonal climate reconstructions produced by matching climate model output to ice core and tree-ring data, and we evaluate the model–data reconstructions against meteorological observations. The reconstructions capture the main patterns of variability in sea level pressure and temperature in summer and winter. The performance of the reconstructions depends on seasonal climate variability itself, and definitions of seasons can be optimized to capture this variability.
James E. Lee, Edward J. Brook, Nancy A. N. Bertler, Christo Buizert, Troy Baisden, Thomas Blunier, V. Gabriela Ciobanu, Howard Conway, Dorthe Dahl-Jensen, Tyler J. Fudge, Richard Hindmarsh, Elizabeth D. Keller, Frédéric Parrenin, Jeffrey P. Severinghaus, Paul Vallelonga, Edwin D. Waddington, and Mai Winstrup
Clim. Past, 16, 1691–1713, https://doi.org/10.5194/cp-16-1691-2020, https://doi.org/10.5194/cp-16-1691-2020, 2020
Short summary
Short summary
The Roosevelt Island ice core was drilled to investigate climate from the eastern Ross Sea, West Antarctica. We describe the ice age-scale and gas age-scale of the ice core for 0–763 m (83 000 years BP). Old ice near the bottom of the core implies the ice dome existed throughout the last glacial period and that ice streaming was active in the region. Variations in methane, similar to those used as evidence of early human influence on climate, were observed prior to significant human populations.
Cited articles
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R.,
Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S.,
Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R.,
Yue, C., and Randerson, J. T.: A human-driven decline in global burned area,
Science, 356, 1356–1362, https://doi.org/10.1126/science.aal4108, 2017. a, b
Arnalds, O., Dagsson-Waldhauserova, P., and Olafsson, H.: The Icelandic
volcanic aeolian environment: Processes and impacts – A review, Aeolian
Research, 20, 176–195, https://doi.org/10.1016/j.aeolia.2016.01.004,
2016. a
Barrett, T., Ponette-González, A., Rindy, J., and Weathers, K.: Wet deposition
of black carbon: A synthesis, Atmos. Environ., 213, 558–567,
https://doi.org/10.1016/j.atmosenv.2019.06.033, 2019. a
Battistel, D., Kehrwald, N. M., Zennaro, P., Pellegrino, G., Barbaro, E., Zangrando, R., Pedeli, X. X., Varin, C., Spolaor, A., Vallelonga, P. T., Gambaro, A., and Barbante, C.: High-latitude Southern Hemisphere fire history during the mid- to late Holocene (6000–750 BP), Clim. Past, 14, 871–886, https://doi.org/10.5194/cp-14-871-2018, 2018. a, b
Bhattarai, H., Saikawa, E., Wan, X., Zhu, H., Ram, K., Gao, S., Kang, S.,
Zhang, Q., Zhang, Y., Wu, G., Wang, X., Kawamura, K., Fu, P., and Cong, Z.:
Levoglucosan as a tracer of biomass burning: Recent progress and
perspectives, Atmos. Res., 220, 20–33,
https://doi.org/10.1016/j.atmosres.2019.01.004, 2019. a
Bigler, M., Svensson, A., Kettner, E., Vallelonga, P., Nielsen, M., and
Steffensen, J.: Optimization of High-Resolution Continuous Flow Analysis for
Transient Climate Signals in Ice Cores, Environ. Sci. Technol.,
45, 4483–4489, https://doi.org/10.1021/es200118j, 2011. a, b
Blarquez, O., Vannière, B., Marlon, J. R., Daniau, A.-L., Power, M. J.,
Brewer, S., and Bartlein, P. J.:
paleofire
: An R package to
analyse sedimentary charcoal records from the Global Charcoal Database
to reconstruct past biomass burning, Comput. Geosci., 72, 255–261, https://doi.org/10.1016/j.cageo.2014.07.020, 2014. a, b
Bond, T., Doherty, S., Fahey, D., Forster, P., Berntsen, T., DeAngelo, B.,
Flanner, M., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn,
P., Sarofim, M., Schultz, M., Michael, S., Venkataraman, C., Zhang, H.,
Zhang, S., and Zender, C.: Bounding the role of black carbon in the climate
system: A Scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013. a
Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M.,
Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle,
J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A.,
Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I.,
Scott, A. C., Swetnam, T. W., van der Werf, G. R., and Pyne, S. J.: Fire in
the Earth System, Science, 324, 481–484, https://doi.org/10.1126/science.1163886,
2009. a, b
Butwin, M., Löwis, S., Pfeffer, M., and Thorsteinsson, T.: The Effects of
Volcanic Eruptions on the Frequency of Particulate Matter Suspension Events
in Iceland, J. Aerosol Sci., 128, 99–113,
https://doi.org/10.1016/j.jaerosci.2018.12.004, 2018. a
Cape, J., Coyle, M., and Dumitrean, P.: The atmospheric lifetime of black
carbon, Atmos. Environ., 59, 256–263,
https://doi.org/10.1016/j.atmosenv.2012.05.030, 2012. a, b
Chuvieco, E., Mouillot, F., van der Werf, G. R., San Miguel, J., Tanase,
M., Koutsias, N., García, M., Yebra, M., Padilla, M., Gitas, I., Heil, A.,
Hawbaker, T. J., and Giglio, L.: Historical background and current
developments for mapping burned area from satellite Earth observation, Remote
Sens. Environ., 225, 45–64,
https://doi.org/10.1016/j.rse.2019.02.013, 2019. a
Corella, J. P., Maffezzoli, N., Cuevas, C. A., Vallelonga, P., Spolaor, A., Cozzi, G., Müller, J., Vinther, B., Barbante, C., Kjær, H. A., Edwards, R., and Saiz-Lopez, A.: Holocene atmospheric iodine evolution over the North Atlantic, Clim. Past, 15, 2019–2030, https://doi.org/10.5194/cp-15-2019-2019, 2019. a, b
Daniau, A., Bartlein, P. J., Harrison, S. P., Prentice, I. C., Brewer, S.,
Friedlingstein, P., Harrison-Prentice, T. I., Inoue, J., Izumi, K., Marlon,
J. R., Mooney, S., Power, M. J., Stevenson, J., Tinner, W., Andrič, M.,
Atanassova, J., Behling, H., Black, M., Blarquez, O., Brown, K. J.,
Carcaillet, C., Colhoun, E. A., Colombaroli, D., Davis, B. A. S., D'Costa,
D., Dodson, J., Dupont, L., Eshetu, Z., Gavin, D. G., Genries, A., Haberle,
S., Hallett, D. J., Hope, G., Horn, S. P., Kassa, T. G., Katamura, F.,
Kennedy, L. M., Kershaw, P., Krivonogov, S., Long, C., Magri, D., Marinova,
E., McKenzie, G. M., Moreno, P. I., Moss, P., Neumann, F. H., Norström, E.,
Paitre, C., Rius, D., Roberts, N., Robinson, G. S., Sasaki, N., Scott, L.,
Takahara, H., Terwilliger, V., Thevenon, F., Turner, R., Valsecchi, V. G.,
Vannière, B., Walsh, M., Williams, N., and Zhang, Y.: Predictability of
biomass burning in response to climate changes, Global Biogeochem. Cy.,
26, GB4007, https://doi.org/10.1029/2011GB004249, 2012. a
Doughty, C. E.: Preindustrial Human Impacts on Global and Regional Environment,
Annu. Rev. Environ. Resour., 38, 503–527,
https://doi.org/10.1146/annurev-environ-032012-095147, 2013. a
Eichler, A., Tinner, W., Brütsch, S., Olivier, S., Papina, T., and
Schwikowski, M.: An ice-core based history of Siberian forest fires since AD
1250, Quaternary Sci. Rev., 30, 1027–1034,
https://doi.org/10.1016/j.quascirev.2011.02.007, 2011. a
Erlendsson, E. and Edwards, K. J.: The timing and causes of the final
pre-settlement expansion of Betula pubescens in Iceland, The Holocene, 19,
1083–1091, https://doi.org/10.1177/0959683609341001, 2009. a, b
Feurdean, A., Florescu, G., Tanţău, I., Vannière, B., Diaconu, A.-C.,
Pfeiffer, M., Warren, D., Hutchinson, S. M., Gorina, N., Gałka, M., and
Kirpotin, S.: Recent fire regime in the southern boreal forests of western
Siberia is unprecedented in the last five millennia, Quaternary Sci.
Rev., 244, 106495,
https://doi.org/10.1016/j.quascirev.2020.106495, 2020a. a, b
Feurdean, A., Vannière, B., Finsinger, W., Warren, D., Connor, S. C., Forrest, M., Liakka, J., Panait, A., Werner, C., Andrič, M., Bobek, P., Carter, V. A., Davis, B., Diaconu, A.-C., Dietze, E., Feeser, I., Florescu, G., Gałka, M., Giesecke, T., Jahns, S., Jamrichová, E., Kajukało, K., Kaplan, J., Karpińska-Kołaczek, M., Kołaczek, P., Kuneš, P., Kupriyanov, D., Lamentowicz, M., Lemmen, C., Magyari, E. K., Marcisz, K., Marinova, E., Niamir, A., Novenko, E., Obremska, M., Pędziszewska, A., Pfeiffer, M., Poska, A., Rösch, M., Słowiński, M., Stančikaitė, M., Szal, M., Święta-Musznicka, J., Tanţău, I., Theuerkauf, M., Tonkov, S., Valkó, O., Vassiljev, J., Veski, S., Vincze, I., Wacnik, A., Wiethold, J., and Hickler, T.: Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe, Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, 2020b. a
Fischer, H., Schüpbach, S., Gfeller, G., Bigler, M., Röthlisberger, R.,
Erhardt, T., Stocker, T. F., Mulvaney, R., and Wolff, E. W.: Millennial
changes in North American wildfire and soil activity over the last glacial
cycle, Nat. Geosci., 8, 723–727,
https://doi.org/10.1038/ngeo2495, 2015. a, b
Funder, S.: Holocene stratigraphy and vegetation history in the Scoresby Sund
area, East Greenland, Bulletin – Groenlands Geologiske Undersoegelse, 129,
1–76, available at:
https://inis.iaea.org/search/search.aspx?orig_q=RN:10462964 (last access: 14 July 2021),
1978. a
Gambaro, A., Zangrando, R., Gabrielli, P., Barbante, C., and Cescon, P.: Direct
Determination of Levoglucosan at the Picogram per Milliliter Level in
Antarctic Ice by High-Performance Liquid
Chromatography/Electrospray Ionization Triple Quadrupole Mass
Spectrometry, Anal. Chem., 80, 1649–1655,
https://doi.org/10.1021/ac701655x, 2008. a, b, c
Geirsdóttir, A., Miller, G. H., Axford, Y., and Sædís Ólafsdóttir:
Holocene and latest Pleistocene climate and glacier fluctuations in Iceland,
Quaternary Sci. Rev., 28, 2107–2118,
https://doi.org/10.1016/j.quascirev.2009.03.013, 2009. a
Geirsdóttir, A., Miller, G., Larsen, D., and Olafsdottir, S.: Abrupt Holocene
climate transitions in the northern North Atlantic region recorded by
synchronized lacustrine records in Iceland, Quaternary Sci. Rev., 70,
48–62, https://doi.org/10.1016/j.quascirev.2013.03.010, 2013. a
Geirsdóttir, Á., Miller, G. H., Andrews, J. T., Harning, D. J., Anderson, L. S., Florian, C., Larsen, D. J., and Thordarson, T.: The onset of neoglaciation in Iceland and the 4.2 ka event, Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, 2019. a
Grieman, M. M., Aydin, M., Isaksson, E., Schwikowski, M., and Saltzman, E. S.: Aromatic acids in an Arctic ice core from Svalbard: a proxy record of biomass burning, Clim. Past, 14, 637–651, https://doi.org/10.5194/cp-14-637-2018, 2018. a, b
Hallsdóttir, M. and Caseldine, C. J.: 14. The Holocene vegetation history of
Iceland, state-of-the-art and future research, in: Iceland – Modern
Processes and Past Environments, vol. 5 of Developments in Quaternary
Sciences, pp. 319–334, Elsevier,
https://doi.org/10.1016/S1571-0866(05)80016-8, 2005. a, b, c, d
Haraldsson, H. and Ólafsdóttir, R.: Simulating vegetation cover dynamics with
regards to long-term climatic variations in sub-Arctic landscapes, Global
Planet. Change, 38, 313–325, https://doi.org/10.1016/S0921-8181(03)00114-0,
2003. a
Hoffmann, D., Tilgner, A., Iinuma, Y., and Herrmann, H.: Atmospheric stability
of levoglucosan: a detailed laboratory and modeling study, Environ.
Sci. Technol., 44, 694–699, https://doi.org/10.1021/es902476f, 2010. a
Hughes, A. G., Jones, T. R., Vinther, B. M., Gkinis, V., Stevens, C. M., Morris, V., Vaughn, B. H., Holme, C., Markle, B. R., and White, J. W. C.: High-frequency climate variability in the Holocene from a coastal-dome ice core in east-central Greenland, Clim. Past, 16, 1369–1386, https://doi.org/10.5194/cp-16-1369-2020, 2020. a, b, c, d, e
Jayarathne, T., Stockwell, C. E., Gilbert, A. A., Daugherty, K., Cochrane, M. A., Ryan, K. C., Putra, E. I., Saharjo, B. H., Nurhayati, A. D., Albar, I., Yokelson, R. J., and Stone, E. A.: Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño, Atmos. Chem. Phys., 18, 2585–2600, https://doi.org/10.5194/acp-18-2585-2018, 2018. a
Kehrwald, N. M., Jasmann, J. R., Dunham, M. E., Ferris, D. G., Osterberg,
E. C., Kennedy, J., Havens, J., Barber, L. B., and Fortner, S. K.: Boreal
blazes: biomass burning and vegetation types archived in the Juneau Icefield,
Environ. Res. Lett., 15, 085005, https://doi.org/10.1088/1748-9326/ab8fd2,
2020. a
Keywood, M., Kanakidou, M., Stohl, A., Dentener, F., Grassi, G., Meyer, C. P.,
Torseth, K., Edwards, D., Thompson, A. M., Lohmann, U., and Burrows, J.: Fire
in the Air: Biomass Burning Impacts in a Changing Climate, Crit. Rev.
Environ. Sci. Technol., 43, 40–83,
https://doi.org/10.1080/10643389.2011.604248, 2013. a
Legrand, M., McConnell, J., Fischer, H., Wolff, E. W., Preunkert, S., Arienzo, M., Chellman, N., Leuenberger, D., Maselli, O., Place, P., Sigl, M., Schüpbach, S., and Flannigan, M.: Boreal fire records in Northern Hemisphere ice cores: a review, Clim. Past, 12, 2033–2059, https://doi.org/10.5194/cp-12-2033-2016, 2016. a, b, c, d, e, f
Lim, S., Faïn, X., Ginot, P., Mikhalenko, V., Kutuzov, S., Paris, J.-D., Kozachek, A., and Laj, P.: Black carbon variability since preindustrial times in the eastern part of Europe reconstructed from Mt. Elbrus, Caucasus, ice cores, Atmos. Chem. Phys., 17, 3489–3505, https://doi.org/10.5194/acp-17-3489-2017, 2017. a
Maffezzoli, N., Vallelonga, P., Edwards, R., Saiz-Lopez, A., Turetta, C., Kjær, H. A., Barbante, C., Vinther, B., and Spolaor, A.: A 120 000-year record of sea ice in the North Atlantic?, Clim. Past, 15, 2031–2051, https://doi.org/10.5194/cp-15-2031-2019, 2019. a, b
Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K.,
Rutherford, S., and Ni, F.: Proxy-based reconstructions of hemispheric and
global surface temperature variations over the past two millennia,
P. Natl. Acad. Sci., 105, 13252–13257,
https://doi.org/10.1073/pnas.0805721105, 2008. a
Marlon, J. R., Bartlein, P. J., Carcaillet, C., Gavin, D. G., Harrison, S. P.,
Higuera, P. E., Joos, F., Power, M. J., and Prentice, I. C.: Climate and
human influences on global biomass burning over the past two millennia,
Nat. Geosci., 1, 697–702, https://doi.org/10.1038/ngeo313, 2008. a, b, c, d, e, f, g, h, i
Marlon, J. R., Bartlein, P. J., Daniau, A.-L., Harrison, S. P., Maezumi, S. Y.,
Power, M. J., Tinner, W., and Vanniére, B.: Global biomass burning: a
synthesis and review of Holocene paleofire records and their controls,
Quaternary Sci. Rev., 65, 5–25,
https://doi.org/10.1016/j.quascirev.2012.11.029, 2013. a, b, c
Marlon, J. R., Kelly, R., Daniau, A.-L., Vannière, B., Power, M. J., Bartlein, P., Higuera, P., Blarquez, O., Brewer, S., Brücher, T., Feurdean, A., Romera, G. G., Iglesias, V., Maezumi, S. Y., Magi, B., Courtney Mustaphi, C. J., and Zhihai, T.: Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons, Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016, 2016. a, b
McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S.,
Saltzman, E. S., Banta, J. R., Pasteris, D. R., Carter, M. M., and Kahl, J.
D. W.: 20th-Century Industrial Black Carbon Emissions Altered Arctic
Climate Forcing, Science, 317, 1381–1384, https://doi.org/10.1126/science.1144856,
2007. a, b, c, d
Molinari, C., Lehsten, V., Blarquez, O., Carcaillet, C., Davis, B. A. S.,
Kaplan, J. O., Clear, J., and Bradshaw, R. H. W.: The climate, the fuel and
the land use: Long-term regional variability of biomass burning in boreal
forests, Glob. Change Biol., 24, 4929–4945, https://doi.org/10.1111/gcb.14380,
2018. a
Ólafsson, H., Furger, M., and Brümmer, B.: The weather and climate of
Iceland, Meteorol. Z., 16, 5–8,
https://doi.org/10.1127/0941-2948/2007/0185, 2007. a
Osmont, D., Wendl, I. A., Schmidely, L., Sigl, M., Vega, C. P., Isaksson, E., and Schwikowski, M.: An 800-year high-resolution black carbon ice core record from Lomonosovfonna, Svalbard, Atmos. Chem. Phys., 18, 12777–12795, https://doi.org/10.5194/acp-18-12777-2018, 2018. a
Osmont, D., Sigl, M., Eichler, A., Jenk, T. M., and Schwikowski, M.: A Holocene black carbon ice-core record of biomass burning in the Amazon Basin from Illimani, Bolivia, Clim. Past, 15, 579–592, https://doi.org/10.5194/cp-15-579-2019, 2019. a
Pfeiffer, M., Spessa, A., and Kaplan, J. O.: A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0), Geosci. Model Dev., 6, 643–685, https://doi.org/10.5194/gmd-6-643-2013, 2013. a
Power, M., Marlon, J., Ortiz, N., Bartlein, P., Harrison, S., Mayle, F.,
Ballouche, A., Bradshaw, R., Carcaillet, C., Cordova, C., Mooney, S., Moreno,
P., Prentice, I., Thonicke, K., Tinner, W., Whitlock, C., Zhang, Y., Zhao,
Y., Ali, A., Anderson, R., Beer, R., Behling, H., Briles, C., Brown, K.,
Brunelle, A., Bush, M., Camill, P., Chu, G., Clark, J., Colombaroli, D.,
Connor, S., Daniau, A., Daniels, M., Dodson, J., Doughty, E., Edwards, M.,
Finsinger, W., Foster, D., Frechette, J., Gaillard, M., Gavin, D., Gobet, E.,
Haberle, S., Hallett, D., Higuera, P., Hope, G., Horn, S., Inoue, J.,
Kaltenrieder, P., Kennedy, L., Kong, Z., Larsen, C., Long, C., Lynch, J.,
Lynch, E., McGlone, M., Meeks, S., Mensing, S., Meyer, G., Minckley, T.,
Mohr, J., Nelson, D., New, J., Newnham, R., Noti, R., Oswald, W., Pierce, J.,
Richard, P., Rowe, C., Sanchez Goñi, M., Shuman, B., Takahara, H.,
Toney, J., Turney, C., Urrego-Sanchez, D., Umbanhowar, C., Vandergoes, M.,
Vanniere, B., Vescovi, E., Walsh, M., Wang, X., Williams, N., Wilmshurst, J.,
and Zhang, J.: Changes in fire regimes since the Last Glacial Maximum:
An assessment based on a global synthesis and analysis of charcoal data,
Clim. Dynam., 30, 887–907, https://doi.org/10.1007/s00382-007-0334-x, 2008. a, b, c, d
Price, T. D.: Europe's First Farmers, Cambridge University Press,
https://doi.org/10.1017/CBO9780511607851, 2000. a
Ramanathan, V. and Carmichael, G.: Global and Regional Climate Changes Due to
Black Carbon, Nat. Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156, 2008. a
Rubino, M., D'Onofrio, A., Seki, O., and Bendle, J.: Ice-core records of
biomass burning, The Anthropocene Review, 3, 140–162, https://doi.org/10.1177/2053019615605117,
2015. a, b
Ruddiman, W.: The Anthropogenic Greenhouse Era Began Thousands of Years Ago,
Clim. Change, 61, 261–293,
https://doi.org/10.1023/B:CLIM.0000004577.17928.fa, 2003. a, b
Ruddiman, W. and Ellis, E.: Effect Of Per-Capita Land Use Changes On Holocene
Forest Clearance And CO2 Emissions, Quaternary Sci.
Rev., 28, 3011–3015, https://doi.org/10.1016/j.quascirev.2009.05.022, 2009. a
Sapart, C., Monteil, G., Prokopiou, M., Wal, R., Kaplan, J., Sperlich, P.,
Krumhardt, K., Veen, C., Houweling, S., Krol, M., Blunier, T., Sowers, T.,
Martinerie, P., Witrant, E., Dahl-Jensen, D., and Röckmann, T.: Natural and
anthropogenic variations in methane sources during the past two millennia,
Nature, 490, 85–88, https://doi.org/10.1038/nature11461, 2012. a, b
Schüpbach, S., Fischer, H., Bigler, M., Erhardt, T., Gfeller, G., Leuenberger,
D., Mini, O., Mulvaney, R., Abram, N., Fleet, L., Frey, M., Thomas, E.,
Svensson, A., Dahl-Jensen, D., Kettner, E., Kjær, H., Seierstad, I.,
Steffensen, J., Rasmussen, S., and Wolff, E.: Greenland records of aerosol
source and atmospheric lifetime changes from the Eemian to the Holocene,
Nat. Commun., 9, 1476, https://doi.org/10.1038/s41467-018-03924-3, 2018. a
Simoneit, B. R. T.: A review of biomarker compounds as source indicators and
tracers for air pollution, Environ. Sci. Poll. Res., 6,
159–169, https://doi.org/10.1007/BF02987621, 1999. a
Simonsen, M. F., Baccolo, G., Blunier, T., Borunda, A., Delmonte, B., Frei, R.,
Goldstein, S., Grinsted, A., Kjær, H. A., Sowers, T., Svensson, A., Vinther,
B., Vladimirova, D., Winckler, G., Winstrup, M., and Vallelonga, P.: East
Greenland ice core dust record reveals timing of Greenland ice sheet
advance and retreat, Nat. Commun., 10, 4494,
https://doi.org/10.1038/s41467-019-12546-2, 2019. a, b, c, d, e, f, g, h
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA’s HYSPLIT Atmospheric Transport and Dispersion
Modeling System, B. Am. Meteorol. Soc., 96,
2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015. a
Stohl, A., Berg, T., Burkhart, J. F., Fjǽraa, A. M., Forster, C., Herber, A., Hov, Ø., Lunder, C., McMillan, W. W., Oltmans, S., Shiobara, M., Simpson, D., Solberg, S., Stebel, K., Ström, J., Tørseth, K., Treffeisen, R., Virkkunen, K., and Yttri, K. E.: Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006, Atmos. Chem. Phys., 7, 511–534, https://doi.org/10.5194/acp-7-511-2007, 2007. a
Streeter, R., Dugmore, A., Lawson, I., Erlendsson, E., and Edwards, K.: The
onset of the palaeoanthropocene in Iceland: Changes in complex natural
systems, The Holocene, 25, 1662–1675,
https://doi.org/10.1177/0959683615594468, 2015. a, b
Trbojević, N.: The Impact of Settlement on Woodland Resources in Viking
Age Iceland, Ph.D. thesis, The School of Humanities, University of
Iceland, 2016. a
Truong, C., Oudre, L., and Vayatis, N.: Selective review of offline change
point detection methods, Signal Processing, 167, 107299,
https://doi.org/10.1016/j.sigpro.2019.107299, 2019. a
Vannière, B., Blarquez, O., Rius, D., Doyen, E., Brücher, T., Colombaroli,
D., Connor, S., Feurdean, A., Hickler, T., Kaltenrieder, P., Lemmen, C.,
Leys, B., Massa, C., and Olofsson, J.: 7000-year human legacy of
elevation-dependent European fire regimes, Quaternary Sci. Rev., 132,
206–212, https://doi.org/10.1016/j.quascirev.2015.11.012, 2016. a
Vinther, B., Buchardt, S. L., Clausen, H., Dahl-Jensen, D., Johnsen, S.,
Fisher, D., Koerner, R., Raynaud, D., Lipenkov, V., Andersen, K., Blunier,
T., Rasmussen, S., Steffensen, J., and Svensson, A.: Holocene thinning of the
Greenland ice sheet, Nature, 461, 385–388, https://doi.org/10.1038/nature08355, 2009. a
Vinther, B. M., Clausen, H. B., Johnsen, S. J., Rasmussen, S. O., Andersen,
K. K., Buchardt, S. L., Dahl-Jensen, D., Seierstad, I. K., Siggaard-Andersen,
M., Steffensen, J. P., Svensson, A., Olsen, J., and Heinemeier, J.: A
synchronized dating of three Greenland ice cores throughout the Holocene,
J. Geophys. Res.-Atmos., 111, D13102,
https://doi.org/10.1029/2005JD006921, 2006.
a
Vésteinsson, O. and McGovern, T. H.: The Peopling of Iceland, Norwegian
Archaeological Review, 45, 206–218, https://doi.org/10.1080/00293652.2012.721792,
2012. a
Wagner, B., Melles, M., Hahne, J., Niessen, F., and Hubberten, H.-W.: Holocene
climate history of Geographical Society Ø, East Greenland – evidence from
lake sediments, Palaeogeography, Palaeoclimatology, Palaeoecology, 160,
45–68, https://doi.org/10.1016/S0031-0182(00)00046-8, 2000. a, b, c, d
Warner, M.: Introduction to PySPLIT: A Python toolkit for NOAA ARL's
HYSPLIT model, Comput. Sci. Eng., 20, 47–62,
https://doi.org/10.1109/MCSE.2017.3301549, 2018. a
Wendl, I. A., Eichler, A., Isaksson, E., Martma, T., and Schwikowski, M.: 800-year ice-core record of nitrogen deposition in Svalbard linked to ocean productivity and biogenic emissions, Atmos. Chem. Phys., 15, 7287–7300, https://doi.org/10.5194/acp-15-7287-2015, 2015. a
Witze, A.: The Arctic is burning like never before – and that’s bad news
for climate change, Nature, 585, 336–337,
https://doi.org/10.1038/d41586-020-02568-y, 2020. a
You, C., Yao, T., Xu, B., Xu, C., Zhao, H., and Song, L.: Effects of sources,
transport, and postdepositional processes on levoglucosan records in
southeastern Tibetan glaciers, J. Geophys. Res.-Atmos., 121, 8701–8711, https://doi.org/10.1002/2016JD024904, 2016. a
Zennaro, P., Kehrwald, N., McConnell, J. R., Schüpbach, S., Maselli, O. J., Marlon, J., Vallelonga, P., Leuenberger, D., Zangrando, R., Spolaor, A., Borrotti, M., Barbaro, E., Gambaro, A., and Barbante, C.: Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core, Clim. Past, 10, 1905–1924, https://doi.org/10.5194/cp-10-1905-2014, 2014. a, b, c, d
Zennaro, P., Kehrwald, N., Marlon, J., Ruddiman, W. F., Brücher, T.,
Agostinelli, C., Dahl-Jensen, D., Zangrando, R., Gambaro, A., and Barbante,
C.: Europe on fire three thousand years ago: Arson or climate?, Geophys.
Res. Lett., 42, 5023–2033, https://doi.org/10.1002/2015GL064259, 2015. a, b, c, d
Short summary
Human influence on fire regimes in the past is poorly understood, especially at high latitudes. We present 5 kyr of fire proxies levoglucosan, black carbon, and ammonium in the RECAP ice core in Greenland and reconstruct for the first time the fire regime in the high North Atlantic region, comprising coastal east Greenland and Iceland. Climate is the main driver of the fire regime, but at 1.1 kyr BP a contribution may be made by the deforestation resulting from Viking colonization of Iceland.
Human influence on fire regimes in the past is poorly understood, especially at high latitudes....