Articles | Volume 17, issue 3
https://doi.org/10.5194/cp-17-1363-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-1363-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Winter–spring warming in the North Atlantic during the last 2000 years: evidence from southwest Iceland
Department of Earth, Environmental and Planetary Sciences, Brown
University, Providence, RI 02912, USA
The Josephine Bay Paul Center for Comparative Molecular Biology and
Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
James M. Russell
Department of Earth, Environmental and Planetary Sciences, Brown
University, Providence, RI 02912, USA
Johanna Garfinkel
Department of Earth, Environmental and Planetary Sciences, Brown
University, Providence, RI 02912, USA
Yongsong Huang
Department of Earth, Environmental and Planetary Sciences, Brown
University, Providence, RI 02912, USA
Related authors
Nora Richter, Ellen C. Hopmans, Danica Mitrović, Pedro M. Raposeiro, Vítor Gonçalves, Ana C. Costa, Linda A. Amaral-Zettler, Laura Villanueva, and Darci Rush
Biogeosciences, 20, 2065–2098, https://doi.org/10.5194/bg-20-2065-2023, https://doi.org/10.5194/bg-20-2065-2023, 2023
Short summary
Short summary
Bacteriohopanepolyols (BHPs) are a diverse class of lipids produced by bacteria across a wide range of environments. This study characterizes the diversity of BHPs in lakes and coastal lagoons in the Azores Archipelago, as well as a co-culture enriched for methanotrophs. We highlight the potential of BHPs as taxonomic markers for bacteria associated with certain ecological niches, which can be preserved in sedimentary records.
Nora Richter, Ellen C. Hopmans, Danica Mitrović, Pedro M. Raposeiro, Vítor Gonçalves, Ana C. Costa, Linda A. Amaral-Zettler, Laura Villanueva, and Darci Rush
Biogeosciences, 20, 2065–2098, https://doi.org/10.5194/bg-20-2065-2023, https://doi.org/10.5194/bg-20-2065-2023, 2023
Short summary
Short summary
Bacteriohopanepolyols (BHPs) are a diverse class of lipids produced by bacteria across a wide range of environments. This study characterizes the diversity of BHPs in lakes and coastal lagoons in the Azores Archipelago, as well as a co-culture enriched for methanotrophs. We highlight the potential of BHPs as taxonomic markers for bacteria associated with certain ecological niches, which can be preserved in sedimentary records.
Lucas Bittner, Cindy De Jonge, Graciela Gil-Romera, Henry F. Lamb, James M. Russell, and Michael Zech
Biogeosciences, 19, 5357–5374, https://doi.org/10.5194/bg-19-5357-2022, https://doi.org/10.5194/bg-19-5357-2022, 2022
Short summary
Short summary
With regard to global warming, an understanding of past temperature changes is becoming increasingly important. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids used globally to reconstruct lake water temperatures. In the Bale Mountains lakes, we find a unique composition of brGDGT isomers. We present a modified local calibration and a new high-altitude temperature reconstruction from the Horn of Africa spanning the last 12.5 kyr.
Cited articles
Adalsteinsson, H., Jónasson, P. M., and Rist, S.: Physical
characteristics of Thingvallavatn, Iceland. Oikos, 64, 121–135,
https://doi.org/10.2307/3545048, 1992.
Andradóttir H. Ó.: Icelandic Lakes, Physical Characteristics, in: Encyclopedia of Lakes and
Reservoirs. Encyclopedia of Earth Sciences Series, edited by: Bengtsson, L., Herschy, R. W., Fairbridge, R. W., Springer, Dordrecht,
https://doi.org/10.1007/978-1-4020-4410-6_224, 2012.
Assel, R. A. and Robertson, D. M.: Changes in winter air temperatures near
Lake Michigan, 1851–1993, as determined from regional lake-ice records,
Limnol. Oceanogr., 40, 165–176, https://doi.org/10.4319/lo.1995.40.1.0165,
1995.
Axford, Y., Geirsdóttir, A., Miller, G. H., and Langdon, P. G.: Climate of
the Little Ice Age and the past 2000 years in northeast Iceland inferred
from chironomids and other lake sediment proxies, J. Paleolimnol., 41, 7–24,
https://doi.org/10.1007/s10933-008-9251-1, 2009.
Axford, Y., Andresen, C. S., Andrews, J. T., Belt, S. T., Geirsdóttir,
Á., Massé, G., Miller, G. H., Ólafsdóttir, S., and Vare, L. L.:
Do paleoclimate proxies agree? A test comparing 19 late Holocene climate and
sea-ice reconstructions from Icelandic marine and lake sediments, J. Quat.
Sci., 26, 645–656, https://doi.org/10.1002/jqs.1487, 2011.
Baker, J. L., Lachniet, M. S., Chervyatsova, O., Asmerom, Y., and Polyak, V.
J.: Holocene warming in western continental Eurasia driven by glacial
retreat and greenhouse forcing, Nat. Geosci., 10, 430–435,
https://doi.org/10.1038/ngeo2953, 2017.
Berner, K. S., Koç, N., Divine, D., Godtliebsen, F., and Moros, M.: A
decadal-scale Holocene sea surface temperature record from the subpolar
North Atlantic constructed using diatoms and statistics and its relation to
other climate parameters, Paleoceanography, 23, PA2210,
https://doi.org/10.1029/2006PA001339, 2008.
Blaauw, M.: Methods and code for `classical' age-modelling of radiocarbon
sequences, Quat. Geochronol., 5, 512–518,
https://doi.org/10.1016/j.quageo.2010.01.002, 2010.
Blair, C. L., Geirsdóttir, Á., and Miller, G. H.: A high-resolution
multi-proxy lake record of Holocene environmental change in southern
Iceland, J. Quat. Sci., 30, 281–292, https://doi.org/10.1002/jqs.2780, 2015.
Boyer, T. P., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Locarnini, R. A., Mishonov, A. V., O’Brien, T. D., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., Weathers, K., and Zweng, M. M.: World Ocean Database 2018, edited by: Mishonov, A. V., Technical Edn., NOAA Atlas NESDIS 87, available at: https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html (last access: 24 June 2020), 2018.
Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U., and Sarnthein,
M.: Molecular stratigraphy: a new tool for climatic assessment, Nature, 320,
129–133, https://doi.org/10.1038/320129a0, 1986.
Cabedo-Sanz, P., Belt, S. T., Jennings, A. E., Andrews, J. T., and
Geirsdóttir, Á.: Variability in drift ice export from the Arctic
Ocean to the North Icelandic Shelf over the last 8000 years: a multi-proxy
evaluation, Quat. Sci. Rev., 146, 99–115,
https://doi.org/10.1016/j.quascirev.2016.06.012, 2016.
Christensen, C. L.: Multi-proxy responses of Icelandic lakes to Holocene
tephra perturbations, Doctoral dissertation, University of Colorado at
Boulder, Boulder, USA, 2013.
Conte, M. H., Sicre, M. A., Rühlemann, C., Weber, J. C., Schulte, S.,
Schulz-Bull, D., and Blanz, T.: Global temperature calibration of the
alkenone unsaturation index ( ) in
surface waters and comparison with surface sediments, Geochem. Geophy.
Geosy., 7, Q02005, https://doi.org/10.1029/2005GC001054, 2006.
Coolen, M. J., Muyzer, G., Rijpstra, W. I. C., Schouten, S., Volkman, J. K.,
and Damsté, J. S. S.: Combined DNA and lipid analyses of sediments
reveal changes in Holocene haptophyte and diatom populations in an Antarctic
lake, Earth Planet. Sci. Lett., 223, 225–239,
https://doi.org/10.1016/j.epsl.2004.04.014, 2004.
Cook, T. L., Bradley, R. S., Stoner, J. S., and Francus, P.: Five thousand
years of sediment transfer in a high arctic watershed recorded in annually
laminated sediments from Lower Murray Lake, Ellesmere Island, Nunavut,
Canada, J. Paleolimnol., 41, 77, https://doi.org/10.1007/s10933-008-9252-0,
2009.
D'Andrea, W. J. and Huang, Y.: Long chain alkenones in Greenland lake
sediments: Low δ13C values and exceptional abundance, Org.
Geochem., 36, 1234–1241, https://doi.org/10.1016/j.orggeochem.2005.05.001,
2005.
D'Andrea, W. J., Liu, Z., Alexandre, M. D. R., Wattley, S., Herbert, T. D.,
and Huang, Y.: An efficient method for isolating individual long-chain
alkenones for compound-specific hydrogen isotope analysis, Anal. Chem., 79,
3430–3435, https://doi.org/10.1021/ac062067w, 2007.
D'Andrea, W. J., Huang, Y., Fritz, S. C., and Anderson, N. J.: Abrupt
Holocene climate change as an important factor for human migration in West
Greenland, P. Natl. Acad. Sci. USA, 108,
9765–9769, https://doi.org/10.1073/pnas.1101708108, 2011.
D'Andrea, W. J., Vaillencourt, D. A., Balascio, N. L., Werner, A., Roof, S.
R., Retelle, M., and Bradley, R. S.: Mild Little Ice Age and unprecedented
recent warmth in an 1800 year lake sediment record from
Svalbard, Geology, 40, 1007–1010, https://doi.org/10.1130/G33365.1, 2012.
D'Andrea, W. J., Theroux, S., Bradley, R. S., and Huang, X.: Does phylogeny
control -temperature sensitivity?
Implications for lacustrine alkenone paleothermometry, Geochim. Cosmochim.
Acta, 175, 168–180, https://doi.org/10.1016/j.gca.2015.10.031, 2016.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011 (data available at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim, last access: 24 June 2020).
Dee, S. G., Russell, J. M., Morrill, C., Chen, Z., and Neary, A.:
PRYSM v2.0: A Proxy System Model for Lacustrine Archives, Paleoceanogr. Paleocl., 33,
1250–1269, https://doi.org/10.1029/2018PA003413, 2018.
Delworth, T. L., Zeng, F., Vecchi, G. A., Yang, X., Zhang, L. and Zhang, R.:
The North Atlantic Oscillation as a driver of rapid climate change in the
Northern Hemisphere, Nat. Geosci., 9, 509–512,
https://doi.org/10.1038/ngeo2738, 2016.
Divine, D., Isaksson, E., Martma, T., Meijer, H. A., Moore, J., Pohjola, V.,
van de Wal, R. S., and Godtliebsen, F.: Thousand years of winter surface air
temperature variations in Svalbard and northern Norway reconstructed from
ice-core data, Polar Res., 30, 7379,
https://doi.org/10.3402/polar.v30i0.7379, 2011.
Divine, D. V., Sjolte, J., Isaksson, E., Meijer, H. A. J., Van De Wal, R. S. W.,
Martma, T., Pohjola, V., Sturm, C., and Godtliebsen, F.: Modelling the
regional climate and isotopic composition of Svalbard precipitation using
REMOiso: a comparison with available GNIP and ice core data, Hydrol.
Process., 25, 3748–3759, https://doi.org/10.1002/hyp.8100, 2011.
Eden, C. and Jung, T.: North Atlantic interdecadal variability: oceanic
response to the North Atlantic Oscillation (1865–1997), J. Climate, 14,
676–691, https://doi.org/10.1175/1520-0442(2001)014<0676:NAIVOR>2.0.CO;2, 2001.
Einarsson, M. Á.: Climate of Iceland, World Survey of Climatology, 15,
673–697, 1984.
Gathorne-Hardy, F. J., Erlendsson, E., Langdon, P. G., and Edwards, K. J.: Lake
sediment evidence for late Holocene climate change and landscape erosion in
western Iceland, J. Paleolimnol., 42, 413–426,
https://doi.org/10.1007/s10933-008-9285-4, 2009.
Geirsdóttir, Á., Miller, G. H., Thordarson, T., and
Ólafsdóttir, K. B.: A 2000 year record of climate variations
reconstructed from Haukadalsvatn, West Iceland, J. Paleolimnol., 41, 95–115,
https://doi.org/10.1007/s10933-008-9253-z, 2009.
Geirsdóttir, Á., Miller, G. H., Andrews, J. T., Harning, D. J., Anderson, L. S., Florian, C., Larsen, D. J., and Thordarson, T.: The onset of neoglaciation in Iceland and the 4.2 ka event, Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, 2019.
Haltia-Hovi, E., Saarinen, T., and Kukkonen, M.: A 2000-year record of solar
forcing on varved lake sediment in eastern Finland. Quat. Sci. Rev., 26,
678–689, https://doi.org/10.1016/j.quascirev.2006.11.005, 2007.
Hanna, E., Jónsson, T., and Box, J. E.: An analysis of Icelandic climate
since the nineteenth century, Int. J. Climatol., 24,
1193–1210, https://doi.org/10.1002/joc.1051, 2004.
Hanna, E., Jónsson, T., Ólafsson, J., and Valdimarsson, H.:
Icelandic coastal sea surface temperature records constructed: putting the
pulse on air–sea–climate interactions in the northern North Atlantic. Part
I: comparison with HadISST1 open-ocean surface temperatures and preliminary
analysis of long-term patterns and anomalies of SSTs around
Iceland, J. Climate, 19, 5652–5666, https://doi.org/10.1175/JCLI3933.1, 2006.
Harning, D. J., Andrews, J. T., Belt, S. T., Cabedo-Sanz, P., Geirsdóttir,
Á., Dildar, N., Miller, G. H. and Sepúlveda, J.: Sea Ice Control on
Winter Subsurface Temperatures of the North Iceland Shelf During the Little
Ice Age: A TEX86 Calibration Case Study, Paleoceanogr.
Paleocl., 34, 1006–1021, https://doi.org/10.1029/2018PA003523, 2019.
Harning, D. J., Curtin, L., Geirsdóttir, Á., D'Andrea, W. J.,
Miller, G. H., and Sepúlveda, J.: Lipid biomarkers quantify Holocene
summer temperature and ice cap sensitivity in Icelandic lakes, Geophys. Res.
Lett., 47, e2019GL085728, https://doi.org/10.1029/2019GL085728, 2020.
Helama, S., Jones, P. D., and Briffa, K. R.: Dark Ages Cold Period: A
literature review and directions for future research, Holocene, 27,
1600–1606, https://doi.org/10.1177/0959683617693898, 2017.
Holmes, N., Langdon, P. G., Caseldine, C. J., Wastegård, S., Leng, M.
J., Croudace, I. W., and Davies, S. M.: Climatic variability during the last
millennium in Western Iceland from lake sediment records, Holocene, 26,
756–771, https://doi.org/10.1177/0959683615618260, 2016.
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation: regional
temperatures and precipitation, Science, 269, 676–679,
https://doi.org/10.1126/science.269.5224.676, 1995.
Icelandic Meteorological Office: Homepage, available at: https://en.vedur.is/climatology/data/ (last
access: 11 June 2020), 2012.
Isaksson, E., Divine, D., Kohler, J., Martma, T., Pohjola, V., Motoyama, H.,
and Watanabe, O.: Climate oscillations as recorded in Svalbard ice core
ω18O records between ad 1200 and 1997, Geogr. Ann. A., 87,
203–214, https://doi.org/10.1111/j.0435-3676.2005.00253.x, 2005.
Jiang, H., Eiríksson, J., Schulz, M., Knudsen, K. L., and Seidenkrantz,
M. S.: Evidence for solar forcing of sea-surface temperature on the North
Icelandic Shelf during the late Holocene, Geology, 33, 73–76,
https://doi.org/10.1130/G21130.1, 2005.
Jiang, H., Muscheler, R., Björck, S., Seidenkrantz, M. S., Olsen, J.,
Sha, L., Sjolte, J., Eiríksson, J., Ran, L., Knudsen, K. L., and
Knudsen, M. F.: Solar forcing of Holocene summer sea-surface temperatures in
the northern North Atlantic, Geology, 43, 203–206,
https://doi.org/10.1130/G36377.1, 2015.
Justwan, A., Koç, N., and Jennings, A. E.: Evolution of the Irminger and
East Icelandic Current systems through the Holocene, revealed by
diatom-based sea surface temperature reconstructions, Quat. Sci. Rev., 27,
1571–1582, https://doi.org/10.1016/j.quascirev.2008.05.006, 2008.
Kaufman, D. S., Schneider, D. P., McKay, N. P., Ammann, C. M., Bradley, R.
S., Briffa, K. R., Miller, G. H., Otto-Bliesner, B. L., Overpeck, J. T.,
Vinther, B. M., and Lakes, A.: Recent warming reverses long-term Arctic
cooling, Science, 325, 1236–1239, https://doi.org/10.1126/science.1173983,
2009.
Landl, B., Björnsson, H., and Kuhn, M.: The energy balance of calved
ice in Lake Jökulsarlón, Iceland, Arct. Antarct. Alp.
Res., 35, 475–481, 2003.
Langdon, P. G., Caseldine, C. J., Croudace, I. W., Jarvis, S., Wastegård,
S., and Crowford, T. C.: A chironomid-based reconstruction of summer
temperatures in NW Iceland since AD 1650, Quat. Res., 75, 451–460,
https://doi.org/10.1016/j.yqres.2010.11.007, 2011.
Larsen, D. J., Miller, G. H., Geirsdóttir, Á., and Thordarson, T.: A
3000-year varved record of glacier activity and climate change from the
proglacial lake Hvítárvatn, Iceland, Quat. Sci. Rev., 30,
2715–2731, https://doi.org/10.1016/j.quascirev.2011.05.026, 2011.
Larsen, G. and Eiríksson, J.: Late Quaternary terrestrial
tephrochronology of Iceland – frequency of explosive eruptions, type and
volume of tephra deposits, J. Quat. Sci., 23, 109–120,
https://doi.org/10.1002/jqs.1129, 2008.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 261–285,
https://doi.org/10.1051/0004-6361:20041335, 2004.
Latif, M., Böning, C., Willebrand, J., Biastoch, A., Dengg, J.,
Keenlyside, N., Schweckendiek, U., and Madec, G.: Is the Thermohaline
Circulation Changing?, J. Climate, 19, 4631–4637,
https://doi.org/10.1175/JCLI3876.1, 2006.
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L., Timmermann,
A., Smith, R. S., Lohmann, G., Zheng, W., and Timm, O. E.: The Holocene
temperature conundrum, P. Natl. Acad. Sci. USA, 111, E3501–E3505,
https://doi.org/10.1073/pnas.1407229111, 2014.
Ljungqvist, F. C., Zhang, Q., Brattström, G., Krusic, P. J., Seim, A.,
Li, Q., Zhang, Q., and Moberg, A.: Centennial-Scale Temperature Change in
Last Millennium Simulations and Proxy-Based Reconstructions, J. Climate, 32,
2441–2482, https://doi.org/10.1175/JCLI-D-18-0525.1, 2019.
Longo, W. M., Theroux, S., Giblin, A. E., Zheng, Y., Dillon, J. T., and
Huang, Y.: Temperature calibration and phylogenetically distinct
distributions for freshwater alkenones: evidence from northern Alaskan
lakes, Geochim. Cosmochim. Ac., 180, 177–196,
https://doi.org/10.1016/j.gca.2016.02.019, 2016.
Longo, W. M., Huang, Y., Yao, Y., Zhao, J., Giblin, A. E., Wang, X., Zech, R.,
Haberzettl, T., Jardillier, L., Toney, J., and Liu, Z.: Widespread
occurrence of distinct alkenones from Group I haptophytes in freshwater
lakes: Implications for paleotemperature and paleoenvironmental
reconstructions, Earth Planet. Sci. Lett., 492, 239–250,
https://doi.org/10.1016/j.epsl.2018.04.002, 2018.
Longo, W. M., Huang, Y., Russell, J. M., Morrill, C., Daniels, W. C.,
Giblin, A. E., and Crowther, J.: Insolation and greenhouse gases drove
Holocene winter and spring warming in Arctic Alaska, Quat. Sci. Rev., 242,
106438, https://doi.org/10.1016/j.quascirev.2020.106438, 2020.
Malmquist, H. J., Antonsson, Þ., Ingvason, H. R., Ingimarsson, F., and
Arnason, F.: Salmonid fish and warming of shallow Lake Elliðavatn in
Southwest Iceland, Verh. Internat. Verein. Limnol., 30, 1127–1132,
https://doi.org/10.1080/03680770.2009.11902317, 2009.
Mangini, A., Spötl, C., and Verdes, P.: Reconstruction of temperature in
the Central Alps during the past 2000 yr from a δ18O stalagmite
record, Earth Planet. Sci. Lett., 235, 741–751,
https://doi.org/10.1016/j.epsl.2005.05.010, 2005.
Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L., and Brewer, S.:
Reconciling divergent trends and millennial variations in Holocene
temperatures, Nature, 554, 92–96, https://doi.org/10.1038/nature25464, 2018.
Massé, G., Rowland, S. J., Sicre, M. A., Jacob, J., Jansen, E., and
Belt, S. T.: Abrupt climate changes for Iceland during the last millennium:
evidence from high resolution sea ice reconstructions, Earth Planet. Sci.
Lett., 269, 565–569, https://doi.org/10.1016/j.epsl.2008.03.017, 2008.
Mauri, A., Davis, B. A. S., Collins, P. M., and Kaplan, J. O.: The climate
of Europe during the Holocene: a gridded pollen-based reconstruction and its
multi-proxy evaluation, Quat. Sci. Rev., 112, 109–127,
https://doi.org/10.1016/j.quascirev.2015.01.013, 2015.
McKay, N. P., and Kaufman, D. S.: An extended Arctic proxy temperature
database for the past 2,000 years, Sci. Data, 1, 140026,
https://doi.org/10.1038/sdata.2014.26, 2014.
Meyer, H., Opel, T., Laepple, T., Dereviagin, A. Y., Hoffmann, K. and Werner,
M.: Long-term winter warming trend in the Siberian Arctic during the mid- to
late Holocene, Nat. Geosci., 8, 122–125,
https://doi.org/10.1038/ngeo2349, 2015.
Miettinen, A., Divine, D., Koç, N., Godtliebsen, F., and Hall, I. R.:
Multicentennial variability of the sea surface temperature gradient across
the subpolar North Atlantic over the last 2.8 kyr, J. Climate, 25, 4205–4219,
https://doi.org/10.1175/JCLI-D-11-00581.1, 2012.
Miller, G. H., Geirsdóttir, Á., Zhong, Y., Larsen, D. J.,
Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A., Lehman,
S. J., Southon, J. R. and Anderson, C.: Abrupt onset of the Little Ice Age
triggered by volcanism and sustained by sea-ice/ocean feedbacks, Geophys.
Res. Lett., 39, L02708, https://doi.org/10.1029/2011GL050168, 2012.
Moffa-Sánchez, P., Born, A., Hall, I. R., Thornalley, D. J., and Barker,
S.: Solar forcing of North Atlantic surface temperature and salinity over
the past millennium, Nat. Geosci., 7, 275–278,
https://doi.org/10.1038/ngeo2094, 2014.
Moffa-Sánchez, P. and Hall, I. R.: North Atlantic variability and its
links to European climate over the last 3000 years, Nat. Commun., 8, 1726,
https://doi.org/10.1038/s41467-017-01884-8, 2017.
Moreno-Chamarro, E., Zanchettin, D., Lohmann, K., Luterbacher, J., and
Jungclaus, J.: H. Winter amplification of the European Little Ice Age
cooling by the subpolar gyre, Sci. Rep., 7, 9981,
https://doi.org/10.1038/s41598-017-07969-0, 2017.
Moros, M., Andrews, J. T., Eberl, D. D., and Jansen, E.: Holocene history of
drift ice in the northern North Atlantic: Evidence for different spatial and
temporal modes, Paleoceanography, 21, PA2017, https://doi.org/10.1029/2005PA001214,
2006.
Müller, P. J., Kirst, G., Ruhland, G., Von Storch, I., and
Rosell-Melé, A.: Calibration of the alkenone paleotemperature index
based on core-tops from the eastern
South Atlantic and the global ocean (60∘ N–60∘ S), Geochim. Cosmochim. Ac., 62, 1757–1772,
https://doi.org/10.1029/2005GC001054, 1998.
Nakamura, H., Sawada, K., Araie, H., Suzuki, I., and Shiraiwa, Y.: Long
chain alkenes, alkenones and alkenoates produced by the haptophyte alga
Chrysotila lamellosa CCMP1307 isolated from a salt marsh, Org. Geochem., 66,
90–97, https://doi.org/10.1016/j.orggeochem.2013.11.007, 2014.
National Land Survey of Iceland: Homepage, available at: https://www.lmi.is/is/landupplysingar/gagnagrunnar/nidurhal, last access: 24 June 2020.
Natural Earth: Homepage, available at: https://www.naturalearthdata.com/ (last access: 24 June 2020), 2018.
Ogilvie, A. E. J.: The past climate and sea-ice record from Iceland, Part 1:
Data to AD 1780, Climatic Change, 6, 131–152,
https://doi.org/10.1007/BF00144609, 1984.
Ogilvie, A. E. J.: Documentary evidence for changes in the climate of Iceland
AD 1500 to 1800, in: Climate since AD 1500, edited by: Bradley, R. S. and
Jones, P. D., Routledge, London and New York, 92–117, 1992.
Ogilvie, A. E. J.: Sea-ice conditions off the coasts of Iceland AD
1601–1850 with special reference to part of the Maunder Minimum period
(1675–1715), AmS-Varia, 25, 9–12, 1996.
Ogilvie, A. E. J., Barlow, L. K., and Jennings, A. E.: North Atlantic climate
c. AD 1000: Millennial reflections on the Viking discoveries of Iceland,
Greenland and North America, Weather, 55, 34–45,
https://doi.org/10.1002/j.1477-8696.2000.tb04028.x, 2000.
Ogilvie, A. E. J. and Jónsson, T.: “Little Ice Age” research: A
perspective from Iceland, Climatic Change, 48, 9–52,
https://doi.org/10.1023/A:1005625729889, 2001.
Ojala, A. E. and Alenius, T.: 10,000 years of interannual sedimentation
recorded in the Lake Nautajärvi (Finland) clastic–organic
varves, Palaeogeogr. Palaeocl., 219, 285–302,
https://doi.org/10.1016/j.palaeo.2005.01.002, 2005.
Ólafsdóttir, S., Jennings, A. E., Geirsdóttir, Á., Andrews,
J., and Miller, G. H.: Holocene variability of the North Atlantic Irminger
current on the south-and northwest shelf of Iceland, Mar. Micropaleontol.,
77, 101–118, https://doi.org/10.1016/j.marmicro.2010.08.002, 2010.
Ólafsson, J.: Physical characteristics of Lake Mývatn and River Laxá, Oikos, 32, 38–66, https://doi.org/10.2307/3544220, 1979.
Ono, M., Sawada, K., Shiraiwa, Y., and Kubota, M.: Changes in alkenone and
alkenoate distributions during acclimatization to salinity change in
Isochrysis galbana: Implication for alkenone-based paleosalinity and
paleothermometry, Geochem. J., 46, 235–247,
https://doi.org/10.2343/geochemj.2.0203, 2012.
Opel T., Laepple T., Meyer H., Dereviagin A. Y., and Wetterich S.: Northeast
Siberian ice wedges confirm Arctic winter warming over the past two
millennia, Holocene, 27, 1789–1796,
https://doi.org/10.1177/0959683617702229, 2017.
Orme, L. C., Miettinen, A., Divine, D., Husum, K., Pearce, C., Van
Nieuwenhove, N., Born, A., Mohan, R., and Seidenkrantz, M. S.: Subpolar North
Atlantic sea surface temperature since 6 ka BP: Indications of anomalous
ocean-atmosphere interactions at 4–2 ka BP, Quat. Sci. Rev., 194, 128–142,
https://doi.org/10.1016/j.quascirev.2018.07.007, 2018.
Otto-Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L.,
Stevenson, S., Rosenbloom, N., Mai, A., and Strand, G.: Climate variability
and change since 850 CE: An ensemble approach with the Community Earth
System Model, B. Am. Meteorol. Soc., 97, 735–754,
https://doi.org/10.1175/BAMS-D-14-00233.1, 2016.
PAGES 2K Consortium: Continental-scale temperature variability during the
past two millennia, Nat. Geosci., 6, 339–346,
https://doi.org/10.1038/ngeo1797, 2013.
PAGES 2K Consortium: Consistent multi-decadal variability in global
temperature reconstructions and simulations over the Common Era, Nat.
Geosci., 12, 643–649, https://doi.org/10.1038/s41561-019-0400-0, 2019.
Pla, S. and Catalan, J.: Chrysophyte cysts from lake sediments reveal the
submillennial winter/spring climate variability in the northwestern
Mediterranean region throughout the Holocene, Clim. Dynam., 24, 263–278,
https://doi.org/10.1007/s00382-004-0482-1, 2005.
Planet Labs Inc.: Homepage, available at: https://www.planet.com/, last access: 14 April 2021.
Prahl, F. G. and Wakeham, S. G.: Calibration of unsaturation patterns in
long-chain ketone compositions for palaeotemperature
assessment, Nature, 330, 367–369, https://doi.org/10.1038/330367a0, 1987.
Prahl, F. G., Muehlhausen, L. A., and Zahnle, D. L.: Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions, Geochim. Cosmochim. Ac., 52, 2303–2310, https://doi.org/10.1016/0016-7037(88)90132-9, 1988.
Ran, L., Jiang, H., Knudsen, K. L. and Eiríksson, J.: Diatom-based
reconstruction of palaeoceanographic changes on the North Icelandic shelf
during the last millennium, Palaeogeogr., Palaeocl., 302,
109–119, https://doi.org/10.1016/j.palaeo.2010.02.001, 2011.
Rehfeld, K., Trachsel, M., Telford, R. J., and Laepple, T.: Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world, Clim. Past, 12, 2255–2270, https://doi.org/10.5194/cp-12-2255-2016, 2016.
Richter, N., Longo, W. M., George, S., Shipunova, A., Huang, Y., and
Amaral-Zettler, L.: Phylogenetic diversity in freshwater-dwelling
Isochrysidales haptophytes with implications for alkenone
production, Geobiology, 17, 272–280, https://doi.org/10.1111/gbi.12330,
2019.
Richter, N., Russell, J. M., Garfinkel, J., and Huang, Y.: Impacts of Norse
settlement on terrestrial and aquatic ecosystems in Southwest Iceland, J.
Paleolimnol., 65, 255–269, https://doi.org/10.1007/s10933-020-00169-3,
2021 (data available at: https://www.ncdc.noaa.gov/paleo/study/29992, last access: 14 April 2021).
Salacup, J. M., Farmer, J. R., Herbert, T. D., and Prell, W. L.: Alkenone
Paleothermometry in Coastal Settings: Evaluating the Potential for Highly
Resolved Time Series of Sea Surface Temperature, Paleoceanogr.
Paleocl., 34, 164–181, https://doi.org/10.1029/2018PA003416, 2019.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev., 4, 33–45, https://doi.org/10.5194/gmd-4-33-2011, 2011.
Sicre, M. A., Jacob, J., Ezat, U., Rousse, S., Kissel, C., Yiou, P.,
Eiríksson, J., Knudsen, K. L., Jansen, E., and Turon, J. L.: Decadal
variability of sea surface temperatures off North Iceland over the last 2000
years, Earth Planet. Sci. Lett., 268, 137–142,
https://doi.org/10.1016/j.epsl.2008.01.011, 2008.
Sicre, M. A., Hall, I. R., Mignot, J., Khodri, M., Ezat, U., Truong, M. X.,
Eiríksson, J., and Knudsen, K. L.: Sea surface temperature variability
in the subpolar Atlantic over the last two millennia, Paleoceanography, 26, PA4218,
https://doi.org/10.1029/2011PA002169, 2011.
Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow,
F., Büntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., and Fischer,
H.: Timing and climate forcing of volcanic eruptions for the past 2,500
years, Nature, 523, 543–549, https://doi.org/10.1038/nature14565, 2015.
Steinhilber, F., Beer, J., and Fröhlich, C.: Total solar irradiance
during the Holocene, Geophys. Res. Lett., 36, L19704,
https://doi.org/10.1029/2009GL040142, 2009.
Sun, Q., Chu, G., Liu, G., Li, S., and Wang, X.: Calibration of alkenone
unsaturation index with growth temperature for a lacustrine species,
Chrysotila lamellosa (Haptophyceae), Org. Geochem., 38, 1226–1234,
https://doi.org/10.1016/j.orggeochem.2007.04.007, 2007.
Theroux, S., D'Andrea, W. J., Toney, J., Amaral-Zettler, L., and Huang, Y.:
Phylogenetic diversity and evolutionary relatedness of alkenone-producing
haptophyte algae in lakes: implications for continental paleotemperature reconstructions,
Earth Planet. Sci. Lett., 300, 311–320,
https://doi.org/10.1016/j.epsl.2010.10.009, 2010.
Theroux, S., Toney, J., Amaral-Zettler, L., and Huang, Y.: Production and temperature sensitivity of long chain alkenones in the cultured haptophyte Pseudoisochrysis paradoxa, Org. Geochem., 62, 68–73, https://doi.org/10.1016/j.orggeochem.2013.07.006, 2013.
Thornalley, D., Elderfield, H., and McCave, I.: Holocene oscillations in
temperature and salinity of the surface subpolar North Atlantic, Nature,
457, 711–714, https://doi.org/10.1038/nature07717, 2009.
Toney, J. L., Huang, Y., Fritz, S. C., Baker, P. A., Grimm, E., and Nyren,
P.: Climatic and environmental controls on the occurrence and distributions
of long chain alkenones in lakes of the interior United States, Geochim.
Cosmochim. Ac., 74, 1563–1578, https://doi.org/10.1016/j.gca.2009.11.021,
2010.
Toney, J. L., Theroux, S., Andersen, R. A., Coleman, A., Amaral-Zettler, L.,
and Huang, Y.: Culturing of the first 37: 4 predominant lacustrine
haptophyte: geochemical, biochemical, and genetic implications, Geochim.
Cosmochim. Ac., 78, 51–64, https://doi.org/10.1016/j.gca.2011.11.024, 2012.
van der Bilt, W. G., D'Andrea, W. J., Bakke, J., Balascio, N. L., Werner, J.
P., Gjerde, M., and Bradley, R. S.: Alkenone-based reconstructions reveal
four-phase Holocene temperature evolution for High Arctic Svalbard, Quat.
Sci. Rev., 183, 204–213, https://doi.org/10.1016/j.quascirev.2016.10.006,
2018.
van der Bilt, W. G., D'Andrea, W. J., Werner, J. P., and Bakke, J.: Early
Holocene temperature oscillations exceed amplitude of observed and projected
warming in Svalbard lakes, Geophys. Res. Lett., 46, 14732–14741,
https://doi.org/10.1029/2019GL084384, 2019.
Van Nieuwenhove, N., Pearce, C., Knudsen, M. F., Røy, H., and
Seidenkrantz, M. S.: Meltwater and seasonality influence on subpolar Gyre
circulation during the Holocene, Palaeogeogr. Palaeocl., 502, 104–118, https://doi.org/10.1016/j.palaeo.2018.05.002,
2018.
Visbeck, M., Chassignet, E. P., Curry, R. G., Delworth, T. L., Dickson, R.
R., and Krahmann, G.: The ocean's response to North Atlantic Oscillation
variability, Geophys. Monogr. Sr., 134, 113–146,
https://doi.org/10.1029/134GM06, 2003.
Wang, Z. and Liu, W.: Calibration of the
index of long-chain alkenones with
the in-situ water temperature in Lake Qinghai in the Tibetan
Plateau, Chinese Sci. Bull., 58, 803–808,
https://doi.org/10.1007/s11434-012-5527-y, 2013.
Yao, Y., Zhao, J., Longo, W. M., Li, G., Wang, X., Vachula, R. S., Wang, K. J.,
and Huang, Y.: New insights into environmental controls on the occurrence
and abundance of Group I alkenones and their paleoclimate applications:
Evidence from volcanic lakes of northeastern China, Earth Planet. Sci.
Lett., 527, 115792, https://doi.org/10.1016/j.epsl.2019.115792, 2019.
Yeager, S. G. and Robson, J. I.: Recent progress in understanding and
predicting Atlantic decadal climate variability, Curr. Clim. Change Rep., 3,
112–127, https://doi.org/10.1007/s40641-017-0064-z, 2017.
Zheng, Y., Huang, Y., Andersen, R. A., and Amaral-Zettler, L. A.: Excluding
the di-unsaturated alkenone in the
index strengthens temperature correlation for the common lacustrine and
brackish-water haptophytes, Geochim. Cosmochim. Ac., 175, 36–46,
https://doi.org/10.1016/j.gca.2015.11.024, 2016.
Zink, K. G., Leythaeuser, D., Melkonian, M., and Schwark, L.: Temperature
dependency of long-chain alkenone distributions in recent to fossil limnic
sediments and in lake waters, Geochim. Cosmochim. Ac., 65, 253–265,
https://doi.org/10.1016/S0016-7037(00)00509-3, 2001.
Short summary
We present a reconstruction of winter–spring temperatures developed using organic proxies preserved in well-dated lake sediments from southwest Iceland to assess seasonal temperature changes in the North Atlantic region over the last 2000 years. The gradual warming trend observed in our record is likely influenced by sea surface temperatures, which are sensitive to changes in ocean circulation and seasonal insolation, during the winter and spring season.
We present a reconstruction of winter–spring temperatures developed using organic proxies...