Research article
07 May 2020
Research article
| 07 May 2020
Advection and non-climate impacts on the South Pole Ice Core
Tyler J. Fudge et al.
Related authors
Jacob Davies Morgan, Christo Buizert, Tyler Jeffrey Fudge, Kenji Kawamura, Jeffrey Peck Severinghaus, and Cathy M. Trudinger
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-49, https://doi.org/10.5194/tc-2022-49, 2022
Preprint under review for TC
Short summary
Short summary
The composition of air bubbles in Antarctic ice cores records information about past changes in properties of the snowpack. We find that, near the South Pole, thicker snowpack in the past is often due to steeper surface topography, where faster winds erode the snow and deposit it in flatter areas. The slope and winds seem to also cause a seasonal bias in the composition of air bubbles in the ice core. These findings will improve interpretation of other ice cores from places with steep slopes.
Jenna A. Epifanio, Edward J. Brook, Christo Buizert, Jon S. Edwards, Todd A. Sowers, Emma C. Kahle, Jeffrey P. Severinghaus, Eric J. Steig, Dominic A. Winski, Erich C. Osterberg, Tyler J. Fudge, Murat Aydin, Ekaterina Hood, Michael Kalk, Karl J. Kreutz, David G. Ferris, and Joshua A. Kennedy
Clim. Past, 16, 2431–2444, https://doi.org/10.5194/cp-16-2431-2020, https://doi.org/10.5194/cp-16-2431-2020, 2020
Short summary
Short summary
A new ice core drilled at the South Pole provides a 54 000-year paleo-environmental record including the composition of the past atmosphere. This paper describes the gas chronology for the South Pole ice core, based on a high-resolution methane record. The new gas chronology, in combination with the existing ice age scale from Winski et al. (2019), allows a model-independent reconstruction of the delta age record.
James E. Lee, Edward J. Brook, Nancy A. N. Bertler, Christo Buizert, Troy Baisden, Thomas Blunier, V. Gabriela Ciobanu, Howard Conway, Dorthe Dahl-Jensen, Tyler J. Fudge, Richard Hindmarsh, Elizabeth D. Keller, Frédéric Parrenin, Jeffrey P. Severinghaus, Paul Vallelonga, Edwin D. Waddington, and Mai Winstrup
Clim. Past, 16, 1691–1713, https://doi.org/10.5194/cp-16-1691-2020, https://doi.org/10.5194/cp-16-1691-2020, 2020
Short summary
Short summary
The Roosevelt Island ice core was drilled to investigate climate from the eastern Ross Sea, West Antarctica. We describe the ice age-scale and gas age-scale of the ice core for 0–763 m (83 000 years BP). Old ice near the bottom of the core implies the ice dome existed throughout the last glacial period and that ice streaming was active in the region. Variations in methane, similar to those used as evidence of early human influence on climate, were observed prior to significant human populations.
Jessica A. Badgeley, Eric J. Steig, Gregory J. Hakim, and Tyler J. Fudge
Clim. Past, 16, 1325–1346, https://doi.org/10.5194/cp-16-1325-2020, https://doi.org/10.5194/cp-16-1325-2020, 2020
Dominic A. Winski, Tyler J. Fudge, David G. Ferris, Erich C. Osterberg, John M. Fegyveresi, Jihong Cole-Dai, Zayta Thundercloud, Thomas S. Cox, Karl J. Kreutz, Nikolas Ortman, Christo Buizert, Jenna Epifanio, Edward J. Brook, Ross Beaudette, Jeffrey Severinghaus, Todd Sowers, Eric J. Steig, Emma C. Kahle, Tyler R. Jones, Valerie Morris, Murat Aydin, Melinda R. Nicewonger, Kimberly A. Casey, Richard B. Alley, Edwin D. Waddington, Nels A. Iverson, Nelia W. Dunbar, Ryan C. Bay, Joseph M. Souney, Michael Sigl, and Joseph R. McConnell
Clim. Past, 15, 1793–1808, https://doi.org/10.5194/cp-15-1793-2019, https://doi.org/10.5194/cp-15-1793-2019, 2019
Short summary
Short summary
A deep ice core was recently drilled at the South Pole to understand past variations in the Earth's climate. To understand the information contained within the ice, we present the relationship between the depth and age of the ice in the South Pole Ice Core. We found that the oldest ice in our record is from 54 302 ± 519 years ago. Our results show that, on average, 7.4 cm of snow falls at the South Pole each year.
Jai Chowdhry Beeman, Léa Gest, Frédéric Parrenin, Dominique Raynaud, Tyler J. Fudge, Christo Buizert, and Edward J. Brook
Clim. Past, 15, 913–926, https://doi.org/10.5194/cp-15-913-2019, https://doi.org/10.5194/cp-15-913-2019, 2019
Short summary
Short summary
Atmospheric CO2 was likely an important amplifier of global-scale orbitally-driven warming during the last deglaciation. However, the mechanisms responsible for the rise in CO2, and the coherent rise in Antarctic isotopic temperature records, are under debate. Using a stochastic method, we detect variable lags between coherent changes in Antarctic temperature and CO2. This implies that the climate mechanisms linking the two records changed or experienced modulations during the deglaciation.
Mai Winstrup, Paul Vallelonga, Helle A. Kjær, Tyler J. Fudge, James E. Lee, Marie H. Riis, Ross Edwards, Nancy A. N. Bertler, Thomas Blunier, Ed J. Brook, Christo Buizert, Gabriela Ciobanu, Howard Conway, Dorthe Dahl-Jensen, Aja Ellis, B. Daniel Emanuelsson, Richard C. A. Hindmarsh, Elizabeth D. Keller, Andrei V. Kurbatov, Paul A. Mayewski, Peter D. Neff, Rebecca L. Pyne, Marius F. Simonsen, Anders Svensson, Andrea Tuohy, Edwin D. Waddington, and Sarah Wheatley
Clim. Past, 15, 751–779, https://doi.org/10.5194/cp-15-751-2019, https://doi.org/10.5194/cp-15-751-2019, 2019
Short summary
Short summary
We present a 2700-year timescale and snow accumulation history for an ice core from Roosevelt Island, Ross Ice Shelf, Antarctica. We observe a long-term slightly decreasing trend in accumulation during most of the period but a rapid decline since the mid-1960s. The latter is linked to a recent strengthening of the Amundsen Sea Low and the expansion of regional sea ice. The year 1965 CE may thus mark the onset of significant increases in sea-ice extent in the eastern Ross Sea.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
Elizabeth R. Thomas, J. Melchior van Wessem, Jason Roberts, Elisabeth Isaksson, Elisabeth Schlosser, Tyler J. Fudge, Paul Vallelonga, Brooke Medley, Jan Lenaerts, Nancy Bertler, Michiel R. van den Broeke, Daniel A. Dixon, Massimo Frezzotti, Barbara Stenni, Mark Curran, and Alexey A. Ekaykin
Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, https://doi.org/10.5194/cp-13-1491-2017, 2017
Short summary
Short summary
Regional Antarctic snow accumulation derived from 79 ice core records is evaluated as part of the PAGES Antarctica 2k working group. Our results show that surface mass balance for the total Antarctic ice sheet has increased at a rate of 7 ± 0.13 Gt dec-1 since 1800 AD, representing a net reduction in sea level of ~ 0.02 mm dec-1 since 1800 and ~ 0.04 mm dec-1 since 1900 AD. The largest contribution is from the Antarctic Peninsula.
Léa Gest, Frédéric Parrenin, Jai Chowdhry Beeman, Dominique Raynaud, Tyler J. Fudge, Christo Buizert, and Edward J. Brook
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-71, https://doi.org/10.5194/cp-2017-71, 2017
Revised manuscript has not been submitted
Short summary
Short summary
In this manuscript, we place the atmospheric CO2 and Antarctic temperature records onto a common age scale during the last deglaciation. Moreover, we evaluate the phase relationship between those two records in order to discuss possible climatic and carbon cycle scenarios. Indeed, this phase relationship is central to determine the role of the former in past (and therefore future) climatic variations. This scientific problem was even discussed by some policy makers (e.g., in the USA senate).
Michael Sigl, Tyler J. Fudge, Mai Winstrup, Jihong Cole-Dai, David Ferris, Joseph R. McConnell, Ken C. Taylor, Kees C. Welten, Thomas E. Woodruff, Florian Adolphi, Marion Bisiaux, Edward J. Brook, Christo Buizert, Marc W. Caffee, Nelia W. Dunbar, Ross Edwards, Lei Geng, Nels Iverson, Bess Koffman, Lawrence Layman, Olivia J. Maselli, Kenneth McGwire, Raimund Muscheler, Kunihiko Nishiizumi, Daniel R. Pasteris, Rachael H. Rhodes, and Todd A. Sowers
Clim. Past, 12, 769–786, https://doi.org/10.5194/cp-12-769-2016, https://doi.org/10.5194/cp-12-769-2016, 2016
Short summary
Short summary
Here we present a chronology (WD2014) for the upper part (0–2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide ice core, which is based on layer counting of distinctive annual cycles preserved in the elemental, chemical and electrical conductivity records. We validated the chronology by comparing it to independent high-accuracy, absolutely dated chronologies. Given its demonstrated high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere.
C. Buizert, K. M. Cuffey, J. P. Severinghaus, D. Baggenstos, T. J. Fudge, E. J. Steig, B. R. Markle, M. Winstrup, R. H. Rhodes, E. J. Brook, T. A. Sowers, G. D. Clow, H. Cheng, R. L. Edwards, M. Sigl, J. R. McConnell, and K. C. Taylor
Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015, https://doi.org/10.5194/cp-11-153-2015, 2015
T. J. Fudge, E. D. Waddington, H. Conway, J. M. D. Lundin, and K. Taylor
Clim. Past, 10, 1195–1209, https://doi.org/10.5194/cp-10-1195-2014, https://doi.org/10.5194/cp-10-1195-2014, 2014
Lindsey Davidge, Eric J. Steig, and Andrew J. Schauer
EGUsphere, https://doi.org/10.5194/egusphere-2022-60, https://doi.org/10.5194/egusphere-2022-60, 2022
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We describe a continuous flow method to measure Δ17O by laser spectroscopy, and we show that cm-scale information can be measured reliably in ice cores by this method. We present seasonally resolved measurements of Δ17O from Greenland, and we demonstrate that – though small – most of our remaining error is from calibration. Our results reinforce the use of this method for high-precision, high-resolution measurements of Δ17O; they also identify calibration as a limiting step for this method.
Jacob Davies Morgan, Christo Buizert, Tyler Jeffrey Fudge, Kenji Kawamura, Jeffrey Peck Severinghaus, and Cathy M. Trudinger
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-49, https://doi.org/10.5194/tc-2022-49, 2022
Preprint under review for TC
Short summary
Short summary
The composition of air bubbles in Antarctic ice cores records information about past changes in properties of the snowpack. We find that, near the South Pole, thicker snowpack in the past is often due to steeper surface topography, where faster winds erode the snow and deposit it in flatter areas. The slope and winds seem to also cause a seasonal bias in the composition of air bubbles in the ice core. These findings will improve interpretation of other ice cores from places with steep slopes.
Michael J. MacFerrin, C. Max Stevens, Baptiste Vandecrux, Edwin D. Waddington, and Waleed Abdalati
Earth Syst. Sci. Data, 14, 955–971, https://doi.org/10.5194/essd-14-955-2022, https://doi.org/10.5194/essd-14-955-2022, 2022
Short summary
Short summary
The vast majority of the Greenland ice sheet's surface is covered by pluriannual snow, also called firn, that accumulates year after year and is compressed into glacial ice. The thickness of the firn layer changes through time and responds to the surface climate. We present continuous measurement of the firn compaction at various depths for eight sites. The dataset will help to evaluate firn models, interpret ice cores, and convert remotely sensed ice sheet surface height change to mass loss.
Trevor R. Hillebrand, John O. Stone, Michelle Koutnik, Courtney King, Howard Conway, Brenda Hall, Keir Nichols, Brent Goehring, and Mette K. Gillespie
The Cryosphere, 15, 3329–3354, https://doi.org/10.5194/tc-15-3329-2021, https://doi.org/10.5194/tc-15-3329-2021, 2021
Short summary
Short summary
We present chronologies from Darwin and Hatherton glaciers to better constrain ice sheet retreat during the last deglaciation in the Ross Sector of Antarctica. We use a glacier flowband model and an ensemble of 3D ice sheet model simulations to show that (i) the whole glacier system likely thinned steadily from about 9–3 ka, and (ii) the grounding line likely reached the Darwin–Hatherton Glacier System at about 3 ka, which is ≥3.8 kyr later than was suggested by previous reconstructions.
David A. Lilien, Daniel Steinhage, Drew Taylor, Frédéric Parrenin, Catherine Ritz, Robert Mulvaney, Carlos Martín, Jie-Bang Yan, Charles O'Neill, Massimo Frezzotti, Heinrich Miller, Prasad Gogineni, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 15, 1881–1888, https://doi.org/10.5194/tc-15-1881-2021, https://doi.org/10.5194/tc-15-1881-2021, 2021
Short summary
Short summary
We collected radar data between EDC, an ice core spanning ~800 000 years, and BELDC, the site chosen for a new
oldest icecore at nearby Little Dome C. These data allow us to identify 50 % older internal horizons than previously traced in the area. We fit a model to the ages of those horizons at BELDC to determine the age of deep ice there. We find that there is likely to be 1.5 Myr old ice ~265 m above the bed, with sufficient resolution to preserve desired climatic information.
Bradley R. Markle and Eric J. Steig
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-37, https://doi.org/10.5194/cp-2021-37, 2021
Revised manuscript accepted for CP
Short summary
Short summary
The geochemistry preserved in polar ice can provide detailed histories of Earth’s climate over millennia. Here we use the stable isotope ratios of ice form many Antarctic ice cores to reconstruct temperature variability of Antarctica and of the midlatitude Southern Hemisphere over tens of thousands of years. We improve upon existing methods to estimate temperature from the geochemical measurements and investigate the patterns of climate change in the past.
Jenna A. Epifanio, Edward J. Brook, Christo Buizert, Jon S. Edwards, Todd A. Sowers, Emma C. Kahle, Jeffrey P. Severinghaus, Eric J. Steig, Dominic A. Winski, Erich C. Osterberg, Tyler J. Fudge, Murat Aydin, Ekaterina Hood, Michael Kalk, Karl J. Kreutz, David G. Ferris, and Joshua A. Kennedy
Clim. Past, 16, 2431–2444, https://doi.org/10.5194/cp-16-2431-2020, https://doi.org/10.5194/cp-16-2431-2020, 2020
Short summary
Short summary
A new ice core drilled at the South Pole provides a 54 000-year paleo-environmental record including the composition of the past atmosphere. This paper describes the gas chronology for the South Pole ice core, based on a high-resolution methane record. The new gas chronology, in combination with the existing ice age scale from Winski et al. (2019), allows a model-independent reconstruction of the delta age record.
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020, https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary
Short summary
In the vast interior of the Greenland ice sheet, snow accumulates into a thick and porous layer called firn. Each summer, the firn retains part of the meltwater generated at the surface and buffers sea-level rise. In this study, we compare nine firn models traditionally used to quantify this retention at four sites and evaluate their performance against a set of in situ observations. We highlight limitations of certain model designs and give perspectives for future model development.
C. Max Stevens, Vincent Verjans, Jessica M. D. Lundin, Emma C. Kahle, Annika N. Horlings, Brita I. Horlings, and Edwin D. Waddington
Geosci. Model Dev., 13, 4355–4377, https://doi.org/10.5194/gmd-13-4355-2020, https://doi.org/10.5194/gmd-13-4355-2020, 2020
Short summary
Short summary
Understanding processes in snow (firn), including compaction and airflow, is important for calculating how much mass the ice sheets are losing and for interpreting climate records from ice cores. We have developed the open-source Community Firn Model to simulate these processes. We used it to compare 13 different firn compaction equations and found that they do not agree within 10 %. We also show that including firn compaction in a firn-air model improves the match with data from ice cores.
Vincent Verjans, Amber A. Leeson, Christopher Nemeth, C. Max Stevens, Peter Kuipers Munneke, Brice Noël, and Jan Melchior van Wessem
The Cryosphere, 14, 3017–3032, https://doi.org/10.5194/tc-14-3017-2020, https://doi.org/10.5194/tc-14-3017-2020, 2020
Short summary
Short summary
Ice sheets are covered by a firn layer, which is the transition stage between fresh snow and ice. Accurate modelling of firn density properties is important in many glaciological aspects. Current models show disagreements, are mostly calibrated to match specific observations of firn density and lack thorough uncertainty analysis. We use a novel calibration method for firn models based on a Bayesian statistical framework, which results in improved model accuracy and in uncertainty evaluation.
James E. Lee, Edward J. Brook, Nancy A. N. Bertler, Christo Buizert, Troy Baisden, Thomas Blunier, V. Gabriela Ciobanu, Howard Conway, Dorthe Dahl-Jensen, Tyler J. Fudge, Richard Hindmarsh, Elizabeth D. Keller, Frédéric Parrenin, Jeffrey P. Severinghaus, Paul Vallelonga, Edwin D. Waddington, and Mai Winstrup
Clim. Past, 16, 1691–1713, https://doi.org/10.5194/cp-16-1691-2020, https://doi.org/10.5194/cp-16-1691-2020, 2020
Short summary
Short summary
The Roosevelt Island ice core was drilled to investigate climate from the eastern Ross Sea, West Antarctica. We describe the ice age-scale and gas age-scale of the ice core for 0–763 m (83 000 years BP). Old ice near the bottom of the core implies the ice dome existed throughout the last glacial period and that ice streaming was active in the region. Variations in methane, similar to those used as evidence of early human influence on climate, were observed prior to significant human populations.
John Erich Christian, Alexander A. Robel, Cristian Proistosescu, Gerard Roe, Michelle Koutnik, and Knut Christianson
The Cryosphere, 14, 2515–2535, https://doi.org/10.5194/tc-14-2515-2020, https://doi.org/10.5194/tc-14-2515-2020, 2020
Short summary
Short summary
We use simple, physics-based models to compare how marine-terminating glaciers respond to changes at their marine margin vs. inland surface melt. Initial glacier retreat is more rapid for ocean changes than for inland changes, but in both cases, glaciers will continue responding for millennia. We analyze several implications of these differing pathways of change. In particular, natural ocean variability must be better understood to correctly identify the anthropogenic role in glacier retreat.
Abigail G. Hughes, Tyler R. Jones, Bo M. Vinther, Vasileios Gkinis, C. Max Stevens, Valerie Morris, Bruce H. Vaughn, Christian Holme, Bradley R. Markle, and James W. C. White
Clim. Past, 16, 1369–1386, https://doi.org/10.5194/cp-16-1369-2020, https://doi.org/10.5194/cp-16-1369-2020, 2020
Short summary
Short summary
An ice core drilled on the Renland ice cap (RECAP) in east-central Greenland contains a continuous climate record dating through the last glacial period. Here we present the water isotope record for the Holocene, in which high-resolution climate information is retained for the last 8 kyr. We find that the RECAP water isotope record exhibits seasonal and decadal variability which may reflect sea surface conditions and regional climate variability.
Jessica A. Badgeley, Eric J. Steig, Gregory J. Hakim, and Tyler J. Fudge
Clim. Past, 16, 1325–1346, https://doi.org/10.5194/cp-16-1325-2020, https://doi.org/10.5194/cp-16-1325-2020, 2020
Achim Heilig, Olaf Eisen, Martin Schneebeli, Michael MacFerrin, C. Max Stevens, Baptiste Vandecrux, and Konrad Steffen
The Cryosphere, 14, 385–402, https://doi.org/10.5194/tc-14-385-2020, https://doi.org/10.5194/tc-14-385-2020, 2020
Short summary
Short summary
We investigate the spatial representativeness of point observations of snow accumulation in SW Greenland. Such analyses have rarely been conducted but are necessary to link regional-scale observations from, e.g., remote-sensing data to firn cores and snow pits. The presented data reveal a low regional variability in density but snow depth can vary significantly. It is necessary to combine pits with spatial snow depth data to increase the regional representativeness of accumulation observations.
David A. Lilien, Ian Joughin, Benjamin Smith, and Noel Gourmelen
The Cryosphere, 13, 2817–2834, https://doi.org/10.5194/tc-13-2817-2019, https://doi.org/10.5194/tc-13-2817-2019, 2019
Short summary
Short summary
We used a number of computer simulations to understand the recent retreat of a rapidly changing group of glaciers in West Antarctica. We found that significant melt underneath the floating extensions of the glaciers, driven by relatively warm ocean water at depth, was likely needed to cause the large retreat that has been observed. If melt continues around current rates, retreat is likely to continue through the coming century and extend beyond the present-day drainage area of these glaciers.
Dominic A. Winski, Tyler J. Fudge, David G. Ferris, Erich C. Osterberg, John M. Fegyveresi, Jihong Cole-Dai, Zayta Thundercloud, Thomas S. Cox, Karl J. Kreutz, Nikolas Ortman, Christo Buizert, Jenna Epifanio, Edward J. Brook, Ross Beaudette, Jeffrey Severinghaus, Todd Sowers, Eric J. Steig, Emma C. Kahle, Tyler R. Jones, Valerie Morris, Murat Aydin, Melinda R. Nicewonger, Kimberly A. Casey, Richard B. Alley, Edwin D. Waddington, Nels A. Iverson, Nelia W. Dunbar, Ryan C. Bay, Joseph M. Souney, Michael Sigl, and Joseph R. McConnell
Clim. Past, 15, 1793–1808, https://doi.org/10.5194/cp-15-1793-2019, https://doi.org/10.5194/cp-15-1793-2019, 2019
Short summary
Short summary
A deep ice core was recently drilled at the South Pole to understand past variations in the Earth's climate. To understand the information contained within the ice, we present the relationship between the depth and age of the ice in the South Pole Ice Core. We found that the oldest ice in our record is from 54 302 ± 519 years ago. Our results show that, on average, 7.4 cm of snow falls at the South Pole each year.
Vincent Verjans, Amber A. Leeson, C. Max Stevens, Michael MacFerrin, Brice Noël, and Michiel R. van den Broeke
The Cryosphere, 13, 1819–1842, https://doi.org/10.5194/tc-13-1819-2019, https://doi.org/10.5194/tc-13-1819-2019, 2019
Short summary
Short summary
Firn models rely on empirical approaches for representing the percolation and refreezing of meltwater through the firn column. We develop liquid water schemes of different levels of complexity for firn models and compare their performances with respect to observations of density profiles from Greenland. Our results demonstrate that physically advanced water schemes do not lead to better agreement with density observations. Uncertainties in other processes contribute more to model discrepancy.
Robert Tardif, Gregory J. Hakim, Walter A. Perkins, Kaleb A. Horlick, Michael P. Erb, Julien Emile-Geay, David M. Anderson, Eric J. Steig, and David Noone
Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, https://doi.org/10.5194/cp-15-1251-2019, 2019
Short summary
Short summary
An updated Last Millennium Reanalysis is presented, using an expanded multi-proxy database, and proxy models representing the seasonal characteristics of proxy records, in addition to the dual sensitivity to temperature and moisture of tree-ring-width chronologies. We show enhanced skill in spatial reconstructions of key climate variables in the updated reanalysis, compared to an earlier version, resulting from the combined influences of the enhanced proxy network and improved proxy modeling.
Jai Chowdhry Beeman, Léa Gest, Frédéric Parrenin, Dominique Raynaud, Tyler J. Fudge, Christo Buizert, and Edward J. Brook
Clim. Past, 15, 913–926, https://doi.org/10.5194/cp-15-913-2019, https://doi.org/10.5194/cp-15-913-2019, 2019
Short summary
Short summary
Atmospheric CO2 was likely an important amplifier of global-scale orbitally-driven warming during the last deglaciation. However, the mechanisms responsible for the rise in CO2, and the coherent rise in Antarctic isotopic temperature records, are under debate. Using a stochastic method, we detect variable lags between coherent changes in Antarctic temperature and CO2. This implies that the climate mechanisms linking the two records changed or experienced modulations during the deglaciation.
Mai Winstrup, Paul Vallelonga, Helle A. Kjær, Tyler J. Fudge, James E. Lee, Marie H. Riis, Ross Edwards, Nancy A. N. Bertler, Thomas Blunier, Ed J. Brook, Christo Buizert, Gabriela Ciobanu, Howard Conway, Dorthe Dahl-Jensen, Aja Ellis, B. Daniel Emanuelsson, Richard C. A. Hindmarsh, Elizabeth D. Keller, Andrei V. Kurbatov, Paul A. Mayewski, Peter D. Neff, Rebecca L. Pyne, Marius F. Simonsen, Anders Svensson, Andrea Tuohy, Edwin D. Waddington, and Sarah Wheatley
Clim. Past, 15, 751–779, https://doi.org/10.5194/cp-15-751-2019, https://doi.org/10.5194/cp-15-751-2019, 2019
Short summary
Short summary
We present a 2700-year timescale and snow accumulation history for an ice core from Roosevelt Island, Ross Ice Shelf, Antarctica. We observe a long-term slightly decreasing trend in accumulation during most of the period but a rapid decline since the mid-1960s. The latter is linked to a recent strengthening of the Amundsen Sea Low and the expansion of regional sea ice. The year 1965 CE may thus mark the onset of significant increases in sea-ice extent in the eastern Ross Sea.
Baptiste Vandecrux, Michael MacFerrin, Horst Machguth, William T. Colgan, Dirk van As, Achim Heilig, C. Max Stevens, Charalampos Charalampidis, Robert S. Fausto, Elizabeth M. Morris, Ellen Mosley-Thompson, Lora Koenig, Lynn N. Montgomery, Clément Miège, Sebastian B. Simonsen, Thomas Ingeman-Nielsen, and Jason E. Box
The Cryosphere, 13, 845–859, https://doi.org/10.5194/tc-13-845-2019, https://doi.org/10.5194/tc-13-845-2019, 2019
Short summary
Short summary
The perennial snow, or firn, on the Greenland ice sheet each summer stores part of the meltwater formed at the surface, buffering the ice sheet’s contribution to sea level. We gathered observations of firn air content, indicative of the space available in the firn to retain meltwater, and find that this air content remained stable in cold regions of the firn over the last 65 years but recently decreased significantly in western Greenland.
Nicholas Holschuh, Knut Christianson, Howard Conway, Robert W. Jacobel, and Brian C. Welch
The Cryosphere, 12, 2821–2829, https://doi.org/10.5194/tc-12-2821-2018, https://doi.org/10.5194/tc-12-2821-2018, 2018
Short summary
Short summary
Models of the Antarctic Sheet are tuned using observations of historic ice-sheet behavior, but we have few observations that tell us how inland ice behaved over the last few millennia. A 2 km tall volcano sitting under the ice sheet has left a record in the ice as it flows by, and that feature provides unique insight into the regional ice-flow history. It indicates that observed, rapid changes in West Antarctica flow dynamics have not affected the continental interior over the last 5700 years.
Frazer D. W. Christie, Robert G. Bingham, Noel Gourmelen, Eric J. Steig, Rosie R. Bisset, Hamish D. Pritchard, Kate Snow, and Simon F. B. Tett
The Cryosphere, 12, 2461–2479, https://doi.org/10.5194/tc-12-2461-2018, https://doi.org/10.5194/tc-12-2461-2018, 2018
Short summary
Short summary
With a focus on the hitherto little-studied Marie Byrd Land coastline linking Antarctica's more comprehensively studied Amundsen and Ross Sea Embayments, this paper uses both satellite remote sensing (Landsat, ASTER, ICESat, and CryoSat2) and climate and ocean records (i.e. ERA-Interim, Met Office EN4 data) to examine links between ice recession, inter-decadal atmosphere-ocean forcing and other influences acting upon the Pacific-facing coastline of West Antarctica.
David A. Lilien, Ian Joughin, Benjamin Smith, and David E. Shean
The Cryosphere, 12, 1415–1431, https://doi.org/10.5194/tc-12-1415-2018, https://doi.org/10.5194/tc-12-1415-2018, 2018
Short summary
Short summary
We used remotely sensed data and a numerical model to study the processes controlling the stability of two rapidly changing ice shelves in West Antarctica. Both these ice shelves have been losing mass since at least 1996, primarily as a result of ocean-forced melt. We find that this imbalance likely results from changes initiated around 1970 or earlier. Our results also show that the shelves’ differing speedup is controlled by the strength of their margins and their grounding-line positions.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
David E. Shean, Knut Christianson, Kristine M. Larson, Stefan R. M. Ligtenberg, Ian R. Joughin, Ben E. Smith, C. Max Stevens, Mitchell Bushuk, and David M. Holland
The Cryosphere, 11, 2655–2674, https://doi.org/10.5194/tc-11-2655-2017, https://doi.org/10.5194/tc-11-2655-2017, 2017
Short summary
Short summary
We used long-term GPS data and interferometric reflectometry (GPS-IR) to measure velocity, strain rate and surface elevation for the PIG ice shelf – a site of significant mass loss in recent decades. We combined these observations with high-res DEMs and firn model output to constrain surface mass balance and basal melt rates. We document notable spatial variability in basal melt rates but limited temporal variability from 2012 to 2014 despite significant changes in sub-shelf ocean heat content.
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elizabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Martin Werner, and Massimo Frezzotti
Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, https://doi.org/10.5194/cp-13-1609-2017, 2017
Short summary
Short summary
Within PAGES Antarctica2k, we build an enlarged database of ice core water stable isotope records. We produce isotopic composites and temperature reconstructions since 0 CE for seven distinct Antarctic regions. We find a significant cooling trend from 0 to 1900 CE across all regions. Since 1900 CE, significant warming trends are identified for three regions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of last-2000-year natural variability.
Elizabeth R. Thomas, J. Melchior van Wessem, Jason Roberts, Elisabeth Isaksson, Elisabeth Schlosser, Tyler J. Fudge, Paul Vallelonga, Brooke Medley, Jan Lenaerts, Nancy Bertler, Michiel R. van den Broeke, Daniel A. Dixon, Massimo Frezzotti, Barbara Stenni, Mark Curran, and Alexey A. Ekaykin
Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, https://doi.org/10.5194/cp-13-1491-2017, 2017
Short summary
Short summary
Regional Antarctic snow accumulation derived from 79 ice core records is evaluated as part of the PAGES Antarctica 2k working group. Our results show that surface mass balance for the total Antarctic ice sheet has increased at a rate of 7 ± 0.13 Gt dec-1 since 1800 AD, representing a net reduction in sea level of ~ 0.02 mm dec-1 since 1800 and ~ 0.04 mm dec-1 since 1900 AD. The largest contribution is from the Antarctic Peninsula.
Léa Gest, Frédéric Parrenin, Jai Chowdhry Beeman, Dominique Raynaud, Tyler J. Fudge, Christo Buizert, and Edward J. Brook
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-71, https://doi.org/10.5194/cp-2017-71, 2017
Revised manuscript has not been submitted
Short summary
Short summary
In this manuscript, we place the atmospheric CO2 and Antarctic temperature records onto a common age scale during the last deglaciation. Moreover, we evaluate the phase relationship between those two records in order to discuss possible climatic and carbon cycle scenarios. Indeed, this phase relationship is central to determine the role of the former in past (and therefore future) climatic variations. This scientific problem was even discussed by some policy makers (e.g., in the USA senate).
Adam J. Campbell, Betzalel Massarano, Edwin D. Waddington, and Stephen G. Warren
The Cryosphere, 11, 1141–1148, https://doi.org/10.5194/tc-11-1141-2017, https://doi.org/10.5194/tc-11-1141-2017, 2017
Short summary
Short summary
How could plant life, that needs light to survive, live on a planet covered with ice? Such a situation is thought to have existed during what are called the Snowball Earth events over 600 million years ago. Here we find that
ice shadows, regions where ice has difficulty flowing into, may have a played a role in that survival of early plant life.
Tyler R. Jones, James W. C. White, Eric J. Steig, Bruce H. Vaughn, Valerie Morris, Vasileios Gkinis, Bradley R. Markle, and Spruce W. Schoenemann
Atmos. Meas. Tech., 10, 617–632, https://doi.org/10.5194/amt-10-617-2017, https://doi.org/10.5194/amt-10-617-2017, 2017
Short summary
Short summary
New measurement systems have been developed that continuously melt ice core samples, in contrast to other methods that analyze a single sample at a time. These newer systems are capable of reducing analysis time by many years and improving data set resolution. In this study, we introduce improved methodologies that optimize the speed, accuracy, and precision of a water isotope continuous-flow system. The presented system will be used for Antarctic and Greenland ice core projects.
Michael Sigl, Tyler J. Fudge, Mai Winstrup, Jihong Cole-Dai, David Ferris, Joseph R. McConnell, Ken C. Taylor, Kees C. Welten, Thomas E. Woodruff, Florian Adolphi, Marion Bisiaux, Edward J. Brook, Christo Buizert, Marc W. Caffee, Nelia W. Dunbar, Ross Edwards, Lei Geng, Nels Iverson, Bess Koffman, Lawrence Layman, Olivia J. Maselli, Kenneth McGwire, Raimund Muscheler, Kunihiko Nishiizumi, Daniel R. Pasteris, Rachael H. Rhodes, and Todd A. Sowers
Clim. Past, 12, 769–786, https://doi.org/10.5194/cp-12-769-2016, https://doi.org/10.5194/cp-12-769-2016, 2016
Short summary
Short summary
Here we present a chronology (WD2014) for the upper part (0–2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide ice core, which is based on layer counting of distinctive annual cycles preserved in the elemental, chemical and electrical conductivity records. We validated the chronology by comparing it to independent high-accuracy, absolutely dated chronologies. Given its demonstrated high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere.
C. Buizert, K. M. Cuffey, J. P. Severinghaus, D. Baggenstos, T. J. Fudge, E. J. Steig, B. R. Markle, M. Winstrup, R. H. Rhodes, E. J. Brook, T. A. Sowers, G. D. Clow, H. Cheng, R. L. Edwards, M. Sigl, J. R. McConnell, and K. C. Taylor
Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015, https://doi.org/10.5194/cp-11-153-2015, 2015
L. Geng, J. Cole-Dai, B. Alexander, J. Erbland, J. Savarino, A. J. Schauer, E. J. Steig, P. Lin, Q. Fu, and M. C. Zatko
Atmos. Chem. Phys., 14, 13361–13376, https://doi.org/10.5194/acp-14-13361-2014, https://doi.org/10.5194/acp-14-13361-2014, 2014
Short summary
Short summary
Examinations on snowpit and firn core results from Summit, Greenland suggest that there are two mechanisms leading to the observed double nitrate peaks in some years in the industrial era: 1) long-rang transport of nitrate and 2) enhanced local photochemical production of nitrate. Both of these mechanisms are related to pollution transport, as the additional nitrate from either direct transport or enhanced local photochemistry requires enhanced nitrogen sources from anthropogenic emissions.
E. J. Steig, V. Gkinis, A. J. Schauer, S. W. Schoenemann, K. Samek, J. Hoffnagle, K. J. Dennis, and S. M. Tan
Atmos. Meas. Tech., 7, 2421–2435, https://doi.org/10.5194/amt-7-2421-2014, https://doi.org/10.5194/amt-7-2421-2014, 2014
B. Medley, I. Joughin, B. E. Smith, S. B. Das, E. J. Steig, H. Conway, S. Gogineni, C. Lewis, A. S. Criscitiello, J. R. McConnell, M. R. van den Broeke, J. T. M. Lenaerts, D. H. Bromwich, J. P. Nicolas, and C. Leuschen
The Cryosphere, 8, 1375–1392, https://doi.org/10.5194/tc-8-1375-2014, https://doi.org/10.5194/tc-8-1375-2014, 2014
T. J. Fudge, E. D. Waddington, H. Conway, J. M. D. Lundin, and K. Taylor
Clim. Past, 10, 1195–1209, https://doi.org/10.5194/cp-10-1195-2014, https://doi.org/10.5194/cp-10-1195-2014, 2014
E. D. Sofen, B. Alexander, E. J. Steig, M. H. Thiemens, S. A. Kunasek, H. M. Amos, A. J. Schauer, M. G. Hastings, J. Bautista, T. L. Jackson, L. E. Vogel, J. R. McConnell, D. R. Pasteris, and E. S. Saltzman
Atmos. Chem. Phys., 14, 5749–5769, https://doi.org/10.5194/acp-14-5749-2014, https://doi.org/10.5194/acp-14-5749-2014, 2014
P. Fretwell, H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C. Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, A. J. Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim, P. Gogineni, J. A. Griggs, R. C. A. Hindmarsh, P. Holmlund, J. W. Holt, R. W. Jacobel, A. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. A. Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J. Mouginot, F. O. Nitsche, Y. Nogi, O. A. Nost, S. V. Popov, E. Rignot, D. M. Rippin, A. Rivera, J. Roberts, N. Ross, M. J. Siegert, A. M. Smith, D. Steinhage, M. Studinger, B. Sun, B. K. Tinto, B. C. Welch, D. Wilson, D. A. Young, C. Xiangbin, and A. Zirizzotti
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, https://doi.org/10.5194/tc-7-375-2013, 2013
Related subject area
Subject: Ice Dynamics | Archive: Ice Cores | Timescale: Millenial/D-O
Quantifying dating uncertainties in layer-counted paleoclimate proxy archives
Objective extraction and analysis of statistical features of Dansgaard–Oeschger events
Interpolation methods for Antarctic ice-core timescales: application to Byrd, Siple Dome and Law Dome ice cores
The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years
Glacial–interglacial dynamics of Antarctic firn columns: comparison between simulations and ice core air-δ15N measurements
Eirik Myrvoll-Nilsen, Keno Riechers, Martin Wibe Rypdal, and Niklas Boers
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-176, https://doi.org/10.5194/cp-2021-176, 2021
Revised manuscript accepted for CP
Short summary
Short summary
Frameworks for quantifying dating uncertainties are well studied in radiometrically dated archives, but are less researched in layer-counted archives. Using the example of the Greenland Ice Core Chronology 2005 we express the joint age-depth relationship of layer-counted proxies by a Bayesian regression model from which chronologies can be sampled. When applied to the dating of Dansgaard-Oeschger events we find that our estimates are consistent with previous results, with narrower uncertainties.
Johannes Lohmann and Peter D. Ditlevsen
Clim. Past, 15, 1771–1792, https://doi.org/10.5194/cp-15-1771-2019, https://doi.org/10.5194/cp-15-1771-2019, 2019
Short summary
Short summary
Greenland ice core records show that the climate of the last glacial period was frequently interrupted by rapid warming events, followed by cooling episodes of vastly different duration. We fit a generic waveform to the noisy ice core record in order to extract a robust climate signal and empirically study what controls the amplitude and duration of the warmings and coolings. We find that cooling transitions are more predictable than warmings and are influenced by different climate forcings.
T. J. Fudge, E. D. Waddington, H. Conway, J. M. D. Lundin, and K. Taylor
Clim. Past, 10, 1195–1209, https://doi.org/10.5194/cp-10-1195-2014, https://doi.org/10.5194/cp-10-1195-2014, 2014
D. Veres, L. Bazin, A. Landais, H. Toyé Mahamadou Kele, B. Lemieux-Dudon, F. Parrenin, P. Martinerie, E. Blayo, T. Blunier, E. Capron, J. Chappellaz, S. O. Rasmussen, M. Severi, A. Svensson, B. Vinther, and E. W. Wolff
Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, https://doi.org/10.5194/cp-9-1733-2013, 2013
E. Capron, A. Landais, D. Buiron, A. Cauquoin, J. Chappellaz, M. Debret, J. Jouzel, M. Leuenberger, P. Martinerie, V. Masson-Delmotte, R. Mulvaney, F. Parrenin, and F. Prié
Clim. Past, 9, 983–999, https://doi.org/10.5194/cp-9-983-2013, https://doi.org/10.5194/cp-9-983-2013, 2013
Cited articles
Alley, R. B., Meese, D. A., Shuman, C. A., Gow, A. J., Taylor, K. C., Grootes,
P. M., White, J. W. C., Ram, M., Waddington, E. D., Mayewski, P. A., and
Zielinski, G. A.: Abrupt increase in Greenland snow accumulation at the end
of the Younger Dryas event, Nature, 362, 527–529, 1993.
Briggs, R. D., Pollard, D., and Tarasov, L.: A data-constrained large ensemble
analysis of Antarctic evolution since the
Eemian, Quaternary Sci. Rev., 103, 91–115, 2014.
Casey, K. A., Fudge, T. J., Neumann, T. A., Steig, E. J., Cavitte, M. G. P., and
Blankenship, D. D.: The 1500 m South Pole ice core: recovering a 40 ka
environmental record, Ann. Glaciol., 55, 137–146, 2014.
Cuffey, K. M. and Clow, G. D.: Temperature, accumulation, and ice sheet
elevation in central Greenland through the last deglacial
transition, J. Geophys. Res.-Oceans, 102, 26383–26396, 1997.
Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glacier, Fourth Edition, Elsevier, Burlington MA, 01803 USA, 2010.
Dansgaard, W. and Johnsen, S. J.: A flow model and a time scale for the ice
core from Camp Century, Greenland, J. Glaciol., 8, 215–223,
1969.
Dansgaard, W., Johnsen, S. J., Moller, J., and Langway Jr., C. C.: One thousand
centuries of climatic record from Camp Century on the Greenland Ice Sheet,
Science, 166, 377–380, 1969.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future
sea-level rise, Nature, 531, 591–597, 2016.
Dixon, D. A., Mayewski, P. A., Korotkikh, E., Sneed, S. B., Handley, M. J., Introne, D. S., and Scambos, T. A.: Variations in snow and firn chemistry along US ITASE traverses and the effect of surface glazing, The Cryosphere, 7, 515–535, https://doi.org/10.5194/tc-7-515-2013, 2013.
EPICA, Augustin, L., Barbante, C., Barnes, P. R. F., Barnola, J. M., Bigler, M.,
Castellano, E., Cattani, O., Chappellaz, J., DahlJensen, D., Delmonte, B.,
Dreyfus, G., Durand, G., Falourd, S., Fischer, H., Fluckiger, J., Hansson,
M. E., Huybrechts, P., Jugie, R., Johnsen, S. J., Jouzel, J., Kaufmann, P.,
Kipfstuhl, J., Lambert, F., Lipenkov, V. Y., Littot, G. V. C., Longinelli, A.,
Lorrain, R., Maggi, V., Masson-Delmotte, V., Miller, H., Mulvaney, R.,
Oerlemans, J., Oerter, H., Orombelli, G., Parrenin, F., Peel, D. A., Petit,
J. R., Raynaud, D., Ritz, C., Ruth, U., Schwander, J., Siegenthaler, U.,
Souchez, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F.,
Tabacco, I. E., Udisti, R., van de Wal, R. S. W., van den Broeke, M., Weiss,
J., Wilhelms, F., Winther, J. G., Wolff, E. W., and Zucchelli, M.: One-to-one
coupling of glacial climate variability in Greenland and Antarctica, Nature, 444, 195–198, 2006.
Ferris, D. G., Cole-Dai, J., Reyes, A. R., and Budner, D. M.: South
Pole ice core record of explosive volcanic eruptions in the first and second
millennia A.D. and evidence of a large eruption in the tropics around 535
A.D., J. Geophys. Res., 116, D17308, https://doi.org/10.1029/2011JD015916, 2011.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Fudge, T. J., Markle, B. R., Cuffey, K. M., Buizert, C., Taylor, K. C., Steig,
E. J., Waddington, E. D., Conway, H., and Koutnik, M.: Variable relationship
between accumulation and temperature in West Antarctica for the past 31,000
years, Geophys. Res. Lett., 43, 3795–3803, 2016.
Golledge, N. R., Menviel, L., Carter, L., Fogwill, C. J., England, M. H.,
Cortese G., and Levy, R. H.: Antarctic contribution to meltwater pulse 1A
from reduced Southern Ocean overturning, Nat. Commun., 5, https://doi.org/10.1038/ncomms6107, 2014.
Gow, A. J., Ueda, H. T., and Garfield, D. E.: Antarctic ice sheet – preliminary
results of first core hole to bedrock, Science, 161, 1011–1014, 1968.
Hamilton, G. S.: Topographic control of regional accumulation rate
variability at South Pole and implications for ice-core interpretation.
Ann. Glaciol., 39, 214–218, 2004.
Hammer, C. U., Clausen, H. B., and Dansgaard, W.: Greenland ice-sheet evidence
of post-glacial volcanism and its climatic impact, Nature, 288, 230–235,
1980.
Hawley, R. L., Courville, Z. R., Kehrl, L. M., Lutz, E. R., Osterberg, E. C. T.,
Overly, B., and Wong, G. J.: Recent accumulation variability in northwest
Greenland from ground-penetrating radar and shallow cores along the
Greenland Inland Traverse, J. Glaciol., 60, 375–382, 2014.
Huybrechts, P., Rybak, O., Pattyn, F., Ruth, U., and Steinhage, D.: Ice thinning, upstream advection, and non-climatic biases for the upper 89 % of the EDML ice core from a nested model of the Antarctic ice sheet, Clim. Past, 3, 577–589, https://doi.org/10.5194/cp-3-577-2007, 2007.
Jouzel, J., Alley, R. B., Cuffey, K. M., Dansgaard, W., Grootes, P., Hoffmann,
G., Johnsen, S. J., Koster, R. D., Peel, D., Shuman, C. A., Stievenard, M.,
Stuiver M., and White, J.: Validity of the temperature reconstruction from
water isotopes in ice cores, J. Geophys. Res.-Oceans, 102, 26471–26487, 1997.
Kingslake, J., Scherer, R. P., Albrecht, T., Coenen, J., Powell, R. D., Reese,
R., Stansell, N. D., Tulaczyk, S., Wearing, M. G., and Whitehouse, P. L.:
Extensive retreat and re-advance of the West Antarctic Ice Sheet during the
Holocene, Nature, 558, 430–434, https://doi.org/10.1038/s41586-018-0208-x, 2018.
Koutnik, M. R., Fudge, T. J., Conway, H., Waddington, E. D., Neumann, T. A.,
Cuffey, K. M., Buizert, C., and Taylor, K. C.: Holocene accumulation and ice
flow near the West Antarctic Ice Sheet Divide ice core
site, J. Geophys. Res.-Earth, 121,
907–924, 2016.
Lilien, D., Fudge, T. J., Koutnik, M., Conway, H., and Waddington, E. D.: South Pole area GPS velocities, U.S. Antarctic Program (USAP) Data Center, https://doi.org/10.15784/601100, 2018a.
Lilien, D. A., Fudge, T. J., Koutnik, M. R., Conway, H., Osterberg, E. C.,
Ferris, D. G., Waddington, E. D., and Stevens, C. M.: Holocene Ice-Flow Speedup
in the Vicinity of the South Pole, Geophys. Res. Lett., 45, 6557–6565, 2018b.
Lorius, C., Jouzel, J., Ritz, C., Merlivat, L., Barkov, N. I., Korotkevich,
Y. S., and Kotlyakov, V. M.: A 150,000-year climatic record from Antarctic ice, Nature, 316, 591–596, 1985.
Marcott, S. A., Bauska, T. K., Buizert, C., Steig, E. J., Rosen, J. L., Cuffey,
K. M., Fudge, T. J., Severinghaus, J. P., Ahn, J., Kalk, M. L., McConnell, J. R.,
Sowers, T., Taylor, K. C., White, J. W. C., and Brook, E. J.: Centennial-scale
changes in the global carbon cycle during the last deglaciation, Nature,
514, 616–620, 2014.
Markle, B. R., Steig, E. J., Buizert, C., Schoenemann, S. W., Bitz, C. M.,
Fudge, T. J., Pedro, J. B., Ding, Q. H., Jones, T. R., White, J. C., and Sowers,
T.: Global atmospheric teleconnections during Dansgaard-Oeschger
events, Nat. Geosci., 10, 36–40, 2017.
Martinerie, P., Lipenkov, V. Y., Raynaud, D., Chappellaz, J., Barkov, N. I.,
and Lorius, C.: Air content paleo record in the Vostok ice core (Antarctica)
– a mixed record of climatic and glaciological
parameters, J. Geophys. Res.-Atmos., 99,
10565–10576, 1994.
Masson-Delmotte, V., Hou, S., Ekaykin, A., Jouzel, J., Aristarain, A.,
Bernardo, R. T., Bromwich, D., Cattani, O., Delmotte, M., Falourd, S.,
Frezzotti, M., Gallee, H., Genoni, L., Isaksson, E., Landais, A., Helsen,
M. M., Hoffmann, G., Lopez, J., Morgan, V., Motoyama, H., Noone, D., Oerter,
H., Petit, J. R., Royer, A., Uemura, R., Schmidt, G. A., Schlosser, E.,
Simoes, J. C., Steig, E. J., Stenni, B., Stievenard, M., van den Broeke, M. R.,
de Wal, R., de Berg, W. J. V., Vimeux, F., and White, J. W. C.: A review of
Antarctic surface snow isotopic composition: Observations, atmospheric
circulation, and isotopic modeling, J. Climate, 21, 3359–3387, 2008.
Miege, C., Forster, R. R., Box, J. E., Burgess, E. W., McConnell, J. R.,
Pasteris, D. R., and Spikes, V. B.: Southeast Greenland high accumulation rates
derived from firn cores and ground-penetrating radar, Ann. Glaciol., 54, 322–332,
2013.
Morse, D. L., Blankenship, D. D., Waddington, E. D., and Neumann, T. A.: A site
for deep ice coring in West Antarctica: results from aerogeophysical surveys
and thermo-kinematic modeling, Ann. Glaciol., 35, 36–44, 2002.
NEEM, Dahl-Jensen, D., Albert, M. R,. Aldahan, A., Azuma, N,.
Balslev-Clausen, D., Baumgartner, M., Berggren, A. -M., Bigler, M., Binder,
T., Blunier, T., Bourgeois, J. C., Brook, E. J., Buchardt, S. L., Buizert,
C., Capron, E., Chappellaz, J., Chung, J., Clausen, H. B., Cvijanovic, I.,
Davies, S. M., Ditlevsen, P., Eicher, O., Fischer, H., Fisher, D. A., Fleet,
L. G., Gfeller, G., Gkinis, V., Gogineni, S., Goto-Azuma, K., Grinsted, A.,
Gudlaugsdottir, H., Guillevic, M., Hansen, S. B., Hansson, M., Hirabayashi,
M., Hong, S., Hur, S. D., Huybrechts, P., Hvidberg, C. S., Iizuka, Y., Jenk,
T., Johnsen, S. J., Jones, T. R., Jouzel, J., Karlsson, N. B., Kawamura, K.,
Keegan, K., Kettner, E., Kipfstuhl, S., Kjaer, H. A., Koutnik, M., Kuramoto,
T., Koehler, P., Laepple, T., Landais, A., Langen, P. L., Larsen, L. B.,
Leuenberger, D., Leuenberger, M., Leuschen, C., Li, J., Lipenkov, V.,
Martinerie, P., Maselli, O. J., Masson-Delmotte, V., McConnell, J. R.,
Miller, H., Mini, O., Miyamoto, A., Montagnat-Rentier, M., Mulvaney, R.,
Muscheler, R., Orsi, A. J., Paden, J., Panton, C., Pattyn, F., Petit, J.
-R., Pol, K., Popp, T., Possnert, G., Prie, F., Prokopiou, M., Quiquet, A.,
Rasmussen, S. O., Raynaud, D., Ren, J., Reutenauer, C., Ritz, C., Rockmann,
T., Rosen, J. L., Rubino, M., Rybak, O., Samyn, D., Sapart, C. J., Schilt,
A., Schmidt, A. M. Z., Schwander, J., Schuepbach, S., Seierstad, I.,
Severinghaus, J. P., Sheldon, S., Simonsen, S. B., Sjolte, J., Solgaard, A.
M., Sowers, T., Sperlich, P., Steen-Larsen, H. C., Steffen, K., Steffensen,
J. P., Steinhage, D., Stocker, T. F., Stowasser, C., Sturevik, A. S.,
Sturges, W. T., Sveinbjornsdottir, A., Svensson, A., Tison, J. -L., Uetake,
J., Vallelonga, P., van de Wal, R. S. W., van der Wel, G., Vaughn, B. H.,
Vinther, B., Waddington, E., Wegner, A., Weikusat, I., White, J. W. C.,
Wilhelms, F., Winstrup, M., Witrant, E., Wolff, E. W., Xiao, C., and Zheng, J.:
Eemian interglacial reconstructed from a Greenland folded ice core, Nature, 493, 489–494, 2013.
NorthGRIP, Andersen, K. K., Azuma, N., Barnola, J. M., Bigler, M., Biscaye,
P., Caillon, N., Chappellaz, J., Clausen, H. B., DahlJensen, D., Fischer, H.,
Fluckiger, J., Fritzsche, D., Fujii, Y., Goto-Azuma, K., Gronvold, K.,
Gundestrup, N. S., Hansson, M., Huber, C., Hvidberg, C.S., Johnsen, S. J.,
Jonsell, U., Jouzel, J., Kipfstuhl, S., Landais, A., Leuenberger, M.,
Lorrain, R., Masson-Delmotte, V., Miller, H., Motoyama, H., Narita, H.,
Popp, T., Rasmussen, S. O., Raynaud, D., Rothlisberger, R., Ruth, U., Samyn,
D., Schwander, J., Shoji, H., Siggard-Andersen, M. L., Steffensen, J. P.,
Stocker, T., Sveinbjornsdottir, A. E., Svensson, A., Takata, M., Tison, J. L.,
Thorsteinsson, T., Watanabe, O., Wilhelms, F., and White, J. W. C.: High-resolution
record of Northern Hemisphere climate extending into the last interglacial
period, Nature, 431, 147–151, 2004.
Parrenin, F., Dreyfus, G., Durand, G., Fujita, S., Gagliardini, O., Gillet, F., Jouzel, J., Kawamura, K., Lhomme, N., Masson-Delmotte, V., Ritz, C., Schwander, J., Shoji, H., Uemura, R., Watanabe, O., and Yoshida, N.: 1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica, Clim. Past, 3, 243–259, https://doi.org/10.5194/cp-3-243-2007, 2007.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile,
I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M.,
Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz,
C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history of the
past 420,000 years from the Vostok ice core, Antarctica, Nature, 399,
429–436, 1999.
Pollard, D. and DeConto, R. M.: Description of a hybrid ice sheet-shelf model, and application to Antarctica, Geosci. Model Dev., 5, 1273–1295, https://doi.org/10.5194/gmd-5-1273-2012, 2012.
Pollard, D., Chang, W., Haran, M., Applegate, P., and DeConto, R.: Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques, Geosci. Model Dev., 9, 1697–1723, https://doi.org/10.5194/gmd-9-1697-2016, 2016.
Price, S. F., Conway, H., and Waddington, E. D.: Evidence for late pleistocene
thinning of Siple Dome, West Antarctica, J. Geophys. Res.-Earth, 112, https://doi.org/10.1029/2006JF000725, 2007.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice Flow of the Antarctic Ice
Sheet, Science, 333, 1427–1430, 2011.
Severinghaus, J. P., Grachev, A., and Battle, M.: Thermal fractionation of air
in polar firn by seasonal temperature
gradients, Geochem. Geophy. Geosy., 2, https://doi.org/10.1029/2000GC000146, 2001.
Sodemann, H. and Stohl, A.: Asymmetries in the moisture origin of Antarctic
precipitation, Geophys. Res. Lett., 36, https://doi.org/10.1029/2009GL040242, 2009.
Steig, E. J., Fastook, J. L., Zweck, C., Goodwin, I. D., Licht, K., White,
J. W. C., and Ackert, R. P.: West Antarctic ice-sheet elevation changes, in:
Environment of the West Antarctic Ice Sheet, edited by: Alley, R. and Bindschadler, R., Antarctic Research Series,
75–90, 2001.
Steig, E. J., Ding, Q., White, J. W. C., Kuttel, M., Rupper, S. B., Neumann,
T. A., Neff, P. D., Gallant, A. J. E., Mayewski, P. A., Taylor, K. C., Hoffmann,
G., Dixon, D. A., Schoenemann, S. W., Markle, B. R., Fudge, T. J., Schneider,
D. P., Teel, R. P., Vaughn, B. H., Burgener, L., Williams, J., and Korotkikh,
E.: Recent climate and ice-sheet changes in West Antarctica compared with
the past 2,000 years, Nat. Geosci., 6, 372–375, 2013.
Stenni, B., Buiron, D., Frezzotti, M., Albani, S., Barbante, C., Bard, E.,
Barnola, J. M., Baroni, M., Baumgartner, M., Bonazza, M., Capron, E.,
Castellano, E., Chappellaz, J., Delmonte, B., Falourd, S., Genoni, L.,
Iacumin, P., Jouzel, J., Kipfstuhl, S., Landais, A., Lemieux-Dudon, B.,
Maggi, V., Masson-Delmotte, V., Mazzola, C., Minster, B., Montagnat, M.,
Mulvaney, R., Narcisi, B., Oerter, H., Parrenin, F., Petit, J. R., Ritz, C.,
Scarchilli, C., Schilt, A., Schupbach, S., Schwander, J., Selmo, E., Severi,
M., Stocker, T. F., and Udisti, R.: Expression of the bipolar see-saw in
Antarctic climate records during the last deglaciation, Nat. Geosci., 4, 46–49, 2011.
Van der Veen, C. J., Mosley-Thompson, E., Gow, A. J., and Mark, B. G.:
Accumulation at South Pole: comparison of two 900-year records, Geophys. Res. Lett., 104,
31067–31076, 1999.
Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S. O., Severi, M., Svensson, A., Vinther, B., and Wolff, E. W.: The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years, Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, 2013.
Vinther, B. M., Buchardt, S. L., Clausen, H. B., Dahl-Jensen, D., Johnsen,
S. J., Fisher, D. A., Koerner, R. M., Raynaud, D., Lipenkov, V., Andersen,
K. K., Blunier, T., Rasmussen, S. O., Steffensen, J. P., and Svensson, A. M.:
Holocene thinning of the Greenland ice sheet, Nature, 461, 385–388, 2009.
Waddington, E. D., Bolzan, J. F., and Alley, R. B.: Potential for stratigraphic
folding near ice-sheet centers, J. Glaciol., 47, 639–648, 2001.
Waddington, E. D., Conway, H., Steig, E. J., Alley, R. B., Brook, E. J., Taylor,
K. C., and White, J. W. C.: Decoding the dipstick: Thickness of Siple Dome, West
Antarctica, at the Last Glacial Maximum, Geology, 33, 281–284, 2005.
Waddington, E. D., Neumann, T. A., Koutnik, M. R., Marshall, H. P., and Morse,
D. L.: Inference of accumulation-rate patterns from deep layers in glaciers
and ice sheets, J. Glaciol., 53, 694–712, 2007.
WAIS Divide Project Members: Onset of deglacial warming in West
Antarctica driven by local orbital forcing, Nature, 500, 440–444, 2013.
Whillans, I. M., Jezek, K. C., Drew, A. R., and Gundestrup, N.: Ice flow leading
to the deep core hole at dye-3, Greenland, Ann. Glaciol., 5, 185–190, 1984.
Winski, D. A., Fudge, T. J., Ferris, D. G., Osterberg, E. C., Fegyveresi, J. M., Cole-Dai, J., Thundercloud, Z., Cox, T. S., Kreutz, K. J., Ortman, N., Buizert, C., Epifanio, J., Brook, E. J., Beaudette, R., Severinghaus, J., Sowers, T., Steig, E. J., Kahle, E. C., Jones, T. R., Morris, V., Aydin, M., Nicewonger, M. R., Casey, K. A., Alley, R. B., Waddington, E. D., Iverson, N. A., Dunbar, N. W., Bay, R. C., Souney, J. M., Sigl, M., and McConnell, J. R.: The SP19 chronology for the South Pole Ice Core – Part 1: volcanic matching and annual layer counting, Clim. Past, 15, 1793–1808, https://doi.org/10.5194/cp-15-1793-2019, 2019.
Short summary
A 1750 m ice core at the South Pole was recently drilled. The oldest ice is ~55 000 years old. Since ice at the South Pole flows at 10 m per year, the ice in the core originated upstream, where the climate is different. We made measurements of the ice flow, snow accumulation, and temperature upstream. We determined the ice came from ~150 km away near the Titan Dome where the accumulation rate was similar but the temperature was colder. Our measurements improve the interpretation of the ice core.
A 1750 m ice core at the South Pole was recently drilled. The oldest ice is ~55 000 years old....