Articles | Volume 16, issue 1
https://doi.org/10.5194/cp-16-29-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-29-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
NALPS19: sub-orbital-scale climate variability recorded in northern Alpine speleothems during the last glacial period
Institute of Geology, University of Innsbruck, Innrain 52, 6020
Innsbruck, Austria
Christoph Spötl
Institute of Geology, University of Innsbruck, Innrain 52, 6020
Innsbruck, Austria
Susanne Brandstätter
Institute of Geology, University of Innsbruck, Innrain 52, 6020
Innsbruck, Austria
Tobias Erhardt
Climate and Environmental Physics and Oeschger Center for Climate
Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
Marc Luetscher
Institute of Geology, University of Innsbruck, Innrain 52, 6020
Innsbruck, Austria
Swiss Institute for Speleology and Karst Studies (SISKA), 2301 La
Chaux-de-Fonds, Switzerland
R. Lawrence Edwards
School of Earth Sciences, University of Minnesota, John T. Tate Hall, 116 Church Street SE, Minneapolis, MN 55455-0149, USA
Related authors
Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, and Gina E. Moseley
Clim. Past, 20, 1521–1535, https://doi.org/10.5194/cp-20-1521-2024, https://doi.org/10.5194/cp-20-1521-2024, 2024
Short summary
Short summary
We present a reconstruction of permafrost and snow cover on the British Isles for the Younger Dryas period, a time of extremely cold winters that happened approximately 12 000 years ago. Our results indicate that seasonal sea ice in the North Atlantic was most likely a crucial factor to explain the observed climate shifts during this time.
Anika Donner, Paul Töchterle, Christoph Spötl, Irka Hajdas, Xianglei Li, R. Lawrence Edwards, and Gina E. Moseley
Clim. Past, 19, 1607–1621, https://doi.org/10.5194/cp-19-1607-2023, https://doi.org/10.5194/cp-19-1607-2023, 2023
Short summary
Short summary
This study investigates the first finding of fine-grained cryogenic cave minerals in Greenland, a type of speleothem that has been notably difficult to date. We present a successful approach for determining the age of these minerals using 230Th / U disequilibrium and 14C dating. We relate the formation of the cryogenic cave minerals to a well-documented extreme weather event in 1889 CE. Additionally, we provide a detailed report on the mineralogical and isotopic composition of these minerals.
Paul Töchterle, Simon D. Steidle, R. Lawrence Edwards, Yuri Dublyansky, Christoph Spötl, Xianglei Li, John Gunn, and Gina E. Moseley
Geochronology, 4, 617–627, https://doi.org/10.5194/gchron-4-617-2022, https://doi.org/10.5194/gchron-4-617-2022, 2022
Short summary
Short summary
Cryogenic cave carbonates (CCCs) provide a marker for past permafrost conditions. Their formation age is determined by Th / U dating. However, samples can be contaminated with small amounts of Th at formation, which can cause inaccurate ages and require correction. We analysed multiple CCCs and found that varying degrees of contamination can cause an apparent spread of ages, when samples actually formed within distinguishable freezing events. A correction method using isochrons is presented.
Xianglei Li, Kathleen A. Wendt, Yuri Dublyansky, Gina E. Moseley, Christoph Spötl, and R. Lawrence Edwards
Geochronology, 3, 49–58, https://doi.org/10.5194/gchron-3-49-2021, https://doi.org/10.5194/gchron-3-49-2021, 2021
Short summary
Short summary
In this study, we built a statistical model to determine the initial δ234U in submerged calcite crusts that coat the walls of Devils Hole 2 (DH2) cave (Nevada, USA) and, using a 234U–238U dating method, extended the chronology of the calcite deposition beyond previous well-established 230Th ages and determined the oldest calcite deposited in this cave, a time marker for cave genesis. The novel method presented here may be used in future speleothem studies in similar hydrogeological settings.
Lilian Schuster, Fabien Maussion, Lukas Langhamer, and Gina E. Moseley
Weather Clim. Dynam., 2, 1–17, https://doi.org/10.5194/wcd-2-1-2021, https://doi.org/10.5194/wcd-2-1-2021, 2021
Short summary
Short summary
Precipitation and moisture sources over an arid region in northeast Greenland are investigated from 1979 to 2017 by a Lagrangian moisture source diagnostic driven by reanalysis data. Dominant winter moisture sources are the North Atlantic above 45° N. In summer local and north Eurasian continental sources dominate. In positive phases of the North Atlantic Oscillation, evaporation and moisture transport from the Norwegian Sea are stronger, resulting in more precipitation.
M. Luetscher, M. Borreguero, G. E. Moseley, C. Spötl, and R. L. Edwards
The Cryosphere, 7, 1073–1081, https://doi.org/10.5194/tc-7-1073-2013, https://doi.org/10.5194/tc-7-1073-2013, 2013
Sarah Ann Rowan, Marc Luetscher, Thomas Laemmel, Anna Harrison, Sönke Szidat, and Franziska A. Lechleitner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3775, https://doi.org/10.5194/egusphere-2024-3775, 2024
Short summary
Short summary
We explored CO2 from soil to subsurface at Milandre cave, finding very high concentrations at all depths. While forest soils produced modern CO2 year-round, cave and meadow soil CO2 influences varies with temperature controlled cave ventilation, with older CO2 input in winter from old organic matter stored underground. These findings show that CO2 fluxes in karst systems are highly dynamic, and a better understanding of them is important for accurate carbon cycle modelling.
Jakob Schwander, Thomas F. Stocker, Remo Walther, Samuel Marending, Tobias Erhardt, Chantal Zeppenfeld, and Jürg Jost
The Cryosphere, 18, 5613–5617, https://doi.org/10.5194/tc-18-5613-2024, https://doi.org/10.5194/tc-18-5613-2024, 2024
Short summary
Short summary
The RADIX (Rapid Access Drilling and Ice eXtraction) optical dust logger is part of the exploratory 20 mm drilling system at the University of Bern and is inserted into the hole after drilling. Temperature and attitude sensors were successfully tested but not the dust sensor, as no RADIX hole reached the required bubble-free ice. In 2023, we tested the logger with an adapter for the deep borehole of the East Greenland Ice-core Project and obtained a good Late Glacial–Early Holocene dust record.
Juan Luis Bernal-Wormull, Ana Moreno, Yuri Dublyansky, Christoph Spötl, Reyes Giménez, Carlos Pérez-Mejías, Miguel Bartolomé, Martin Arriolabengoa, Eneko Iriarte, Isabel Cacho, Richard Lawrence Edwards, and Hai Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2024-3612, https://doi.org/10.5194/egusphere-2024-3612, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We present in this manuscript a record of temperature changes during the last deglaciation and the Holocene using isotopes of fluid inclusions in stalagmites from the northeastern region of the Iberian Peninsula. This innovative climate proxy for this study region provides a quantitative understanding of the abrupt temperature changes in southern Europe of the last 16500 years before present.
Timothy J. Pollard, Jon D. Woodhead, Russell N. Drysdale, R. Lawrence Edwards, Xianglei Li, Ashlea N. Wainwright, Mathieu Pythoud, Hai Cheng, John C. Hellstrom, Ilaria Isola, Eleonora Regattieri, Giovanni Zanchetta, and Dylan S. Parmenter
EGUsphere, https://doi.org/10.5194/egusphere-2024-3594, https://doi.org/10.5194/egusphere-2024-3594, 2024
Short summary
Short summary
The uranium-thorium and uranium-lead radiometric dating methods are both capable of dating carbonate samples ranging in age from about 400,000 to 650,000 years. Here we test agreement between the two methods by 'double dating' speleothems (i.e. secondary cave mineral deposits) that grew within this age range. We demonstrate excellent agreement between the two dating methods and discuss their relative strengths and weaknesses.
Alexander H. Jarosch, Paul Hofer, and Christoph Spötl
The Cryosphere, 18, 4811–4816, https://doi.org/10.5194/tc-18-4811-2024, https://doi.org/10.5194/tc-18-4811-2024, 2024
Short summary
Short summary
Mechanical damage to stalagmites is commonly observed in mid-latitude caves. In this study we investigate ice flow along the cave bed as a possible mechanism for stalagmite damage. Utilizing models which simulate forces created by ice flow, we study the structural integrity of different stalagmite geometries. Our results suggest that structural failure of stalagmites caused by ice flow is possible, albeit unlikely.
Amir Sedaghatkish, Frédéric Doumenc, Pierre-Yves Jeannin, and Marc Luetscher
The Cryosphere, 18, 4531–4546, https://doi.org/10.5194/tc-18-4531-2024, https://doi.org/10.5194/tc-18-4531-2024, 2024
Short summary
Short summary
We developed a model to simulate the natural convection of water within frozen rock crevices subject to daily warming in mountain permafrost regions. Traditional models relying on conduction and latent heat flux typically overlook free convection. The results reveal that free convection can significantly accelerate the melting rate by an order of magnitude compared to conduction-based models. Our results are important for assessing the impact of climate change on mountain infrastructure.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Hai Cheng, and R. Lawrence Edwards
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-54, https://doi.org/10.5194/cp-2024-54, 2024
Revised manuscript accepted for CP
Short summary
Short summary
This study presents a new speleothem record of the western Mediterranean region that offers new insights into the timeline of glacial terminations TIV, TIII, and TIII.a. The comparison among the studied deglaciations reveals differences in terms of intensity and duration and opens the opportunity to evaluate marine sediment chronologies based on orbital tuning from the North Atlantic and the Western Mediterranean.
Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, and Gina E. Moseley
Clim. Past, 20, 1521–1535, https://doi.org/10.5194/cp-20-1521-2024, https://doi.org/10.5194/cp-20-1521-2024, 2024
Short summary
Short summary
We present a reconstruction of permafrost and snow cover on the British Isles for the Younger Dryas period, a time of extremely cold winters that happened approximately 12 000 years ago. Our results indicate that seasonal sea ice in the North Atlantic was most likely a crucial factor to explain the observed climate shifts during this time.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Chiara I. Paleari, Florian Mekhaldi, Tobias Erhardt, Minjie Zheng, Marcus Christl, Florian Adolphi, Maria Hörhold, and Raimund Muscheler
Clim. Past, 19, 2409–2422, https://doi.org/10.5194/cp-19-2409-2023, https://doi.org/10.5194/cp-19-2409-2023, 2023
Short summary
Short summary
In this study, we test the use of excess meltwater from continuous flow analysis from a firn core from Greenland for the measurement of 10Be for solar activity reconstructions. We show that the quality of results is similar to the measurements on clean firn, which opens the possibility to obtain continuous 10Be records without requiring large amounts of clean ice. Furthermore, we investigate the possibility of identifying solar storm signals in 10Be records from Greenland and Antarctica.
Tobias Erhardt, Camilla Marie Jensen, Florian Adolphi, Helle Astrid Kjær, Remi Dallmayr, Birthe Twarloh, Melanie Behrens, Motohiro Hirabayashi, Kaori Fukuda, Jun Ogata, François Burgay, Federico Scoto, Ilaria Crotti, Azzurra Spagnesi, Niccoló Maffezzoli, Delia Segato, Chiara Paleari, Florian Mekhaldi, Raimund Muscheler, Sophie Darfeuil, and Hubertus Fischer
Earth Syst. Sci. Data, 15, 5079–5091, https://doi.org/10.5194/essd-15-5079-2023, https://doi.org/10.5194/essd-15-5079-2023, 2023
Short summary
Short summary
The presented paper provides a 3.8 kyr long dataset of aerosol concentrations from the East Greenland Ice coring Project (EGRIP) ice core. The data consists of 1 mm depth-resolution profiles of calcium, sodium, ammonium, nitrate, and electrolytic conductivity as well as decadal averages of these profiles. Alongside the data a detailed description of the measurement setup as well as a discussion of the uncertainties are given.
Giselle Utida, Francisco W. Cruz, Mathias Vuille, Angela Ampuero, Valdir F. Novello, Jelena Maksic, Gilvan Sampaio, Hai Cheng, Haiwei Zhang, Fabio Ramos Dias de Andrade, and R. Lawrence Edwards
Clim. Past, 19, 1975–1992, https://doi.org/10.5194/cp-19-1975-2023, https://doi.org/10.5194/cp-19-1975-2023, 2023
Short summary
Short summary
We reconstruct the Intertropical Convergence Zone (ITCZ) behavior during the past 3000 years over northeastern Brazil based on oxygen stable isotopes of stalagmites. Paleoclimate changes were mainly forced by the tropical South Atlantic and tropical Pacific sea surface temperature variability. We describe an ITCZ zonal behavior active around 1100 CE and the period from 1500 to 1750 CE. The dataset also records historical droughts that affected modern human population in this area of Brazil.
Anika Donner, Paul Töchterle, Christoph Spötl, Irka Hajdas, Xianglei Li, R. Lawrence Edwards, and Gina E. Moseley
Clim. Past, 19, 1607–1621, https://doi.org/10.5194/cp-19-1607-2023, https://doi.org/10.5194/cp-19-1607-2023, 2023
Short summary
Short summary
This study investigates the first finding of fine-grained cryogenic cave minerals in Greenland, a type of speleothem that has been notably difficult to date. We present a successful approach for determining the age of these minerals using 230Th / U disequilibrium and 14C dating. We relate the formation of the cryogenic cave minerals to a well-documented extreme weather event in 1889 CE. Additionally, we provide a detailed report on the mineralogical and isotopic composition of these minerals.
Charlotte Honiat, Gabriella Koltai, Yuri Dublyansky, R. Lawrence Edwards, Haiwei Zhang, Hai Cheng, and Christoph Spötl
Clim. Past, 19, 1177–1199, https://doi.org/10.5194/cp-19-1177-2023, https://doi.org/10.5194/cp-19-1177-2023, 2023
Short summary
Short summary
A look at the climate evolution during the last warm period may allow us to test ground for future climate conditions. We quantified the temperature evolution during the Last Interglacial using a tiny amount of water trapped in the crystals of precisely dated stalagmites in caves from the southeastern European Alps. Our record indicates temperatures up to 2 °C warmer than today and an unstable climate during the first half of the Last Interglacial.
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023, https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
Short summary
In this work we study the microclimate and the geomorphological features of Devaux ice cave in the Central Pyrenees. The research is based on cave monitoring, geomorphology, and geochemical analyses. We infer two different thermal regimes. The cave is impacted by flooding in late winter/early spring when the main outlets freeze, damming the water inside. Rock temperatures below 0°C and the absence of drip water indicate frozen rock, while relict ice formations record past damming events.
Paul Töchterle, Simon D. Steidle, R. Lawrence Edwards, Yuri Dublyansky, Christoph Spötl, Xianglei Li, John Gunn, and Gina E. Moseley
Geochronology, 4, 617–627, https://doi.org/10.5194/gchron-4-617-2022, https://doi.org/10.5194/gchron-4-617-2022, 2022
Short summary
Short summary
Cryogenic cave carbonates (CCCs) provide a marker for past permafrost conditions. Their formation age is determined by Th / U dating. However, samples can be contaminated with small amounts of Th at formation, which can cause inaccurate ages and require correction. We analysed multiple CCCs and found that varying degrees of contamination can cause an apparent spread of ages, when samples actually formed within distinguishable freezing events. A correction method using isochrons is presented.
Maria Wind, Friedrich Obleitner, Tanguy Racine, and Christoph Spötl
The Cryosphere, 16, 3163–3179, https://doi.org/10.5194/tc-16-3163-2022, https://doi.org/10.5194/tc-16-3163-2022, 2022
Short summary
Short summary
We present a thorough analysis of the thermal conditions of a sag-type ice cave in the Austrian Alps using temperature measurements for the period 2008–2021. Apart from a long-term increasing temperature trend in all parts of the cave, we find strong interannual and spatial variations as well as a characteristic seasonal pattern. Increasing temperatures further led to a drastic decrease in cave ice. A first attempt to model ablation based on temperature shows promising results.
Jan Pfeiffer, Thomas Zieher, Jan Schmieder, Thom Bogaard, Martin Rutzinger, and Christoph Spötl
Nat. Hazards Earth Syst. Sci., 22, 2219–2237, https://doi.org/10.5194/nhess-22-2219-2022, https://doi.org/10.5194/nhess-22-2219-2022, 2022
Short summary
Short summary
The activity of slow-moving deep-seated landslides is commonly governed by pore pressure variations within the shear zone. Groundwater recharge as a consequence of precipitation therefore is a process regulating the activity of landslides. In this context, we present a highly automated geo-statistical approach to spatially assess groundwater recharge controlling the velocity of a deep-seated landslide in Tyrol, Austria.
Giulia Sinnl, Mai Winstrup, Tobias Erhardt, Eliza Cook, Camilla Marie Jensen, Anders Svensson, Bo Møllesøe Vinther, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 18, 1125–1150, https://doi.org/10.5194/cp-18-1125-2022, https://doi.org/10.5194/cp-18-1125-2022, 2022
Short summary
Short summary
A new Greenland ice-core timescale, covering the last 3800 years, was produced using the machine learning algorithm StratiCounter. We synchronized the ice cores using volcanic eruptions and wildfires. We compared the new timescale to the tree-ring timescale, finding good alignment both between the common signatures of volcanic eruptions and of solar activity. Our Greenlandic timescales is safe to use for the Late Holocene, provided one uses our uncertainty estimate.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Nicolas Stoll, Maria Hörhold, Tobias Erhardt, Jan Eichler, Camilla Jensen, and Ilka Weikusat
The Cryosphere, 16, 667–688, https://doi.org/10.5194/tc-16-667-2022, https://doi.org/10.5194/tc-16-667-2022, 2022
Short summary
Short summary
We mapped and analysed solid inclusion in the upper 1340 m of the EGRIP ice core with Raman spectroscopy and microstructure mapping, based on bulk dust content derived via continuous flow analysis. We observe a large variety in mineralogy throughout the core and samples. The main minerals are sulfates, especially gypsum, and terrestrial dust minerals, such as quartz, mica, and feldspar. A change in mineralogy occurs around 900 m depth indicating a climate-related imprint.
Nicolas Stoll, Jan Eichler, Maria Hörhold, Tobias Erhardt, Camilla Jensen, and Ilka Weikusat
The Cryosphere, 15, 5717–5737, https://doi.org/10.5194/tc-15-5717-2021, https://doi.org/10.5194/tc-15-5717-2021, 2021
Short summary
Short summary
We did a systematic analysis of the location of inclusions in the EGRIP ice core, the first ice core from an ice stream. We combine this with crystal orientation and grain size data, enabling the first overview about the microstructure of this unique ice core. Micro-inclusions show a strong spatial variability and patterns (clusters or horizontal layers); roughly one-third is located at grain boundaries. More holistic approaches are needed to understand deformation processes in the ice better.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Kathleen A. Wendt, Xianglei Li, R. Lawrence Edwards, Hai Cheng, and Christoph Spötl
Clim. Past, 17, 1443–1454, https://doi.org/10.5194/cp-17-1443-2021, https://doi.org/10.5194/cp-17-1443-2021, 2021
Short summary
Short summary
In this study, we tested the upper limits of U–Th dating precision by analyzing three stalagmites from the Austrian Alps that have high U concentrations. The composite record spans the penultimate interglacial (MIS 7) with an average 2σ age uncertainty of 400 years. This unprecedented age control allows us to constrain the timing of temperature shifts in the Alps during MIS 7 while offering new insight into millennial-scale changes in the North Atlantic leading up to Terminations III and IIIa.
Nathalie Van der Putten, Florian Adolphi, Anette Mellström, Jesper Sjolte, Cyriel Verbruggen, Jan-Berend Stuut, Tobias Erhardt, Yves Frenot, and Raimund Muscheler
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-69, https://doi.org/10.5194/cp-2021-69, 2021
Manuscript not accepted for further review
Short summary
Short summary
In recent decades, Southern Hemisphere westerlies (SHW) moved equator-ward during periods of low solar activity leading to increased winds/precipitation at 46° S, Indian Ocean. We present a terrestrial SHW proxy-record and find stronger SHW influence at Crozet, shortly after 2.8 ka BP, synchronous with a climate shift in the Northern Hemisphere, attributed to a major decline in solar activity. The bipolar response to solar forcing is supported by a climate model forced by solar irradiance only.
Gabriella Koltai, Christoph Spötl, Alexander H. Jarosch, and Hai Cheng
Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021, https://doi.org/10.5194/cp-17-775-2021, 2021
Short summary
Short summary
This paper utilises a novel palaeoclimate archive from caves, cryogenic cave carbonates, which allow for precisely constraining permafrost thawing events in the past. Our study provides new insights into the climate of the Younger Dryas (12 800 to 11 700 years BP) in mid-Europe from the perspective of a high-elevation cave sensitive to permafrost development. We quantify seasonal temperature and precipitation changes by using a heat conduction model.
Chao-Jun Chen, Dao-Xian Yuan, Jun-Yun Li, Xian-Feng Wang, Hai Cheng, You-Feng Ning, R. Lawrence Edwards, Yao Wu, Si-Ya Xiao, Yu-Zhen Xu, Yang-Yang Huang, Hai-Ying Qiu, Jian Zhang, Ming-Qiang Liang, and Ting-Yong Li
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-20, https://doi.org/10.5194/cp-2021-20, 2021
Manuscript not accepted for further review
Xianglei Li, Kathleen A. Wendt, Yuri Dublyansky, Gina E. Moseley, Christoph Spötl, and R. Lawrence Edwards
Geochronology, 3, 49–58, https://doi.org/10.5194/gchron-3-49-2021, https://doi.org/10.5194/gchron-3-49-2021, 2021
Short summary
Short summary
In this study, we built a statistical model to determine the initial δ234U in submerged calcite crusts that coat the walls of Devils Hole 2 (DH2) cave (Nevada, USA) and, using a 234U–238U dating method, extended the chronology of the calcite deposition beyond previous well-established 230Th ages and determined the oldest calcite deposited in this cave, a time marker for cave genesis. The novel method presented here may be used in future speleothem studies in similar hydrogeological settings.
Lilian Schuster, Fabien Maussion, Lukas Langhamer, and Gina E. Moseley
Weather Clim. Dynam., 2, 1–17, https://doi.org/10.5194/wcd-2-1-2021, https://doi.org/10.5194/wcd-2-1-2021, 2021
Short summary
Short summary
Precipitation and moisture sources over an arid region in northeast Greenland are investigated from 1979 to 2017 by a Lagrangian moisture source diagnostic driven by reanalysis data. Dominant winter moisture sources are the North Atlantic above 45° N. In summer local and north Eurasian continental sources dominate. In positive phases of the North Atlantic Oscillation, evaporation and moisture transport from the Norwegian Sea are stronger, resulting in more precipitation.
Seyedhamidreza Mojtabavi, Frank Wilhelms, Eliza Cook, Siwan M. Davies, Giulia Sinnl, Mathias Skov Jensen, Dorthe Dahl-Jensen, Anders Svensson, Bo M. Vinther, Sepp Kipfstuhl, Gwydion Jones, Nanna B. Karlsson, Sergio Henrique Faria, Vasileios Gkinis, Helle Astrid Kjær, Tobias Erhardt, Sarah M. P. Berben, Kerim H. Nisancioglu, Iben Koldtoft, and Sune Olander Rasmussen
Clim. Past, 16, 2359–2380, https://doi.org/10.5194/cp-16-2359-2020, https://doi.org/10.5194/cp-16-2359-2020, 2020
Short summary
Short summary
We present a first chronology for the East Greenland Ice-core Project (EGRIP) over the Holocene and last glacial termination. After field measurements and processing of the ice-core data, the GICC05 timescale is transferred from the NGRIP core to the EGRIP core by means of matching volcanic events and common patterns (381 match points) in the ECM and DEP records. The new timescale is named GICC05-EGRIP-1 and extends back to around 15 kyr b2k.
Jann Schrod, Dominik Kleinhenz, Maria Hörhold, Tobias Erhardt, Sarah Richter, Frank Wilhelms, Hubertus Fischer, Martin Ebert, Birthe Twarloh, Damiano Della Lunga, Camilla M. Jensen, Joachim Curtius, and Heinz G. Bingemer
Atmos. Chem. Phys., 20, 12459–12482, https://doi.org/10.5194/acp-20-12459-2020, https://doi.org/10.5194/acp-20-12459-2020, 2020
Short summary
Short summary
Ice-nucleating particle (INP) concentrations of the last 6 centuries are presented from an ice core in Greenland. The data are accompanied by physical and chemical aerosol data. INPs are correlated to the dust signal from the ice core and seem to follow the annual input of mineral dust. We find no clear trend in the INP concentration. However, modern-day concentrations are higher and more variable than the concentrations of the past. This might have significant atmospheric implications.
Anders Svensson, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Thomas Blunier, Sune O. Rasmussen, Bo M. Vinther, Paul Vallelonga, Emilie Capron, Vasileios Gkinis, Eliza Cook, Helle Astrid Kjær, Raimund Muscheler, Sepp Kipfstuhl, Frank Wilhelms, Thomas F. Stocker, Hubertus Fischer, Florian Adolphi, Tobias Erhardt, Michael Sigl, Amaelle Landais, Frédéric Parrenin, Christo Buizert, Joseph R. McConnell, Mirko Severi, Robert Mulvaney, and Matthias Bigler
Clim. Past, 16, 1565–1580, https://doi.org/10.5194/cp-16-1565-2020, https://doi.org/10.5194/cp-16-1565-2020, 2020
Short summary
Short summary
We identify signatures of large bipolar volcanic eruptions in Greenland and Antarctic ice cores during the last glacial period, which allows for a precise temporal alignment of the ice cores. Thereby the exact timing of unexplained, abrupt climatic changes occurring during the last glacial period can be determined in a global context. The study thus provides a step towards a full understanding of elements of the climate system that may also play an important role in the future.
Ole Valk, Michiel M. Rutgers van der Loeff, Walter Geibert, Sandra Gdaniec, S. Bradley Moran, Kate Lepore, Robert Lawrence Edwards, Yanbin Lu, Viena Puigcorbé, Nuria Casacuberta, Ronja Paffrath, William Smethie, and Matthieu Roy-Barman
Ocean Sci., 16, 221–234, https://doi.org/10.5194/os-16-221-2020, https://doi.org/10.5194/os-16-221-2020, 2020
Short summary
Short summary
After 2007 230Th decreased significantly in the central Amundsen Basin. This decrease is accompanied by a circulation change, indicated by changes in salinity. Ventilation of waters is most likely not the reason for the observed depletion in 230Th as atmospherically derived tracers do not reveal an increase in ventilation rate. It is suggested that these interior waters have undergone enhanced scavenging of Th during transit from Fram Strait and the Barents Sea to the central Amundsen Basin.
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Ashish Sinha, Gayatri Kathayat, and Hanying Li
Clim. Past, 16, 211–225, https://doi.org/10.5194/cp-16-211-2020, https://doi.org/10.5194/cp-16-211-2020, 2020
Short summary
Short summary
Few studies have paid attention to the important effect of nonsummer monsoon (NSM) precipitation on the speleothem δ18O in SE China. We find the summer monsoon precipitation is equivalent to NSM precipitation amount in the area of spring persistent rain in SE China, and we discuss the relationships between seasonal precipitation amount, moisture source, δ18O, and ENSO. Characterizing the spatial differences in seasonal precipitation is key to interpreting the speleothem δ18O record.
Damiano Della Lunga, Hörhold Maria, Birthe Twarloh, Behrens Melanie, Dallmayr Remi, Erhardt Tobias, Jensen Camille Marie, and Wilhelms Frank
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-215, https://doi.org/10.5194/tc-2019-215, 2019
Preprint withdrawn
Short summary
Short summary
The extent of sea ice plays a major role in the present Arctic warming, and it is possibly one of its first victims, since it has been predicted to disappear in the near future, if warming proceed. Our manuscript validates ice core proxies for the reconstruction of the variability of sea ice extent around Greenland in the last 600 years, and simultanesouly infers the evolution of the proxy-sources with time. Understanding past sea ice extent variability, is thus crucial in predicting its future.
Mike Rogerson, Yuri Dublyansky, Dirk L. Hoffmann, Marc Luetscher, Paul Töchterle, and Christoph Spötl
Clim. Past, 15, 1757–1769, https://doi.org/10.5194/cp-15-1757-2019, https://doi.org/10.5194/cp-15-1757-2019, 2019
Short summary
Short summary
Rainfall in North Africa is known to vary through time and is likely to change as global climate warms. Here, we provide a new level of understanding about past rainfall in North Africa by looking at a stalagmite which formed within northeastern Libya between 67 and 30 thousand years ago. We find that at times more rain falls, and the associated moisture is mostly derived from the western Mediterranean during winter storms. Sometimes, water comes from the eastern Mediterranean.
Tobias Erhardt, Emilie Capron, Sune Olander Rasmussen, Simon Schüpbach, Matthias Bigler, Florian Adolphi, and Hubertus Fischer
Clim. Past, 15, 811–825, https://doi.org/10.5194/cp-15-811-2019, https://doi.org/10.5194/cp-15-811-2019, 2019
Short summary
Short summary
The cause of the rapid warming events documented in proxy records across the Northern Hemisphere during the last glacial has been a long-standing puzzle in paleo-climate research. Here, we use high-resolution ice-core data from to cores in Greenland to investigate the progression during the onset of these events on multi-annual timescales to test their plausible triggers. We show that atmospheric circulation changes preceded the warming in Greenland and the collapse of the sea ice by a decade.
Hanying Li, Hai Cheng, Ashish Sinha, Gayatri Kathayat, Christoph Spötl, Aurèle Anquetil André, Arnaud Meunier, Jayant Biswas, Pengzhen Duan, Youfeng Ning, and Richard Lawrence Edwards
Clim. Past, 14, 1881–1891, https://doi.org/10.5194/cp-14-1881-2018, https://doi.org/10.5194/cp-14-1881-2018, 2018
Short summary
Short summary
The
4.2 ka eventbetween 4.2 and 3.9 ka has been widely discussed in the Northern Hemsiphere but less reported in the Southern Hemisphere. Here, we use speleothem records from Rodrigues in the southwestern Indian Ocean spanning from 6000 to 3000 years ago to investigate the regional hydro-climatic variability. Our records show no evidence for an unusual climate anomaly between 4.2 and 3.9 ka. Instead, it shows a multi-centennial drought between 3.9 and 3.5 ka.
Gayatri Kathayat, Hai Cheng, Ashish Sinha, Max Berkelhammer, Haiwei Zhang, Pengzhen Duan, Hanying Li, Xianglei Li, Youfeng Ning, and R. Lawrence Edwards
Clim. Past, 14, 1869–1879, https://doi.org/10.5194/cp-14-1869-2018, https://doi.org/10.5194/cp-14-1869-2018, 2018
Short summary
Short summary
The 4.2 ka event is generally characterized as an approximately 300-year period of major global climate anomaly. However, the climatic manifestation of this event remains unclear in the Indian monsoon domain. Our high-resolution and precisely dated speleothem record from Meghalaya, India, characterizes the event as consisting of a series of multi-decadal droughts between 3.9 and 4.0 ka rather than a singular pulse of multi-centennial drought as previously thought.
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Gayatri Kathayat, Ashish Sinha, R. Lawrence Edwards, and Liangcheng Tan
Clim. Past, 14, 1805–1817, https://doi.org/10.5194/cp-14-1805-2018, https://doi.org/10.5194/cp-14-1805-2018, 2018
Short summary
Short summary
The collapses of several Neolithic cultures in China are considered to have been associated with abrupt climate change during the 4.2 ka BP event; however, the hydroclimate of this event in China is still poorly known. Based on stalagmite records from monsoonal China, we found that north China was dry but south China was wet during this event. We propose that the rain belt remained longer at its southern position, giving rise to a pronounced humidity gradient between north and south China.
Florian Adolphi, Christopher Bronk Ramsey, Tobias Erhardt, R. Lawrence Edwards, Hai Cheng, Chris S. M. Turney, Alan Cooper, Anders Svensson, Sune O. Rasmussen, Hubertus Fischer, and Raimund Muscheler
Clim. Past, 14, 1755–1781, https://doi.org/10.5194/cp-14-1755-2018, https://doi.org/10.5194/cp-14-1755-2018, 2018
Short summary
Short summary
The last glacial period was characterized by a number of rapid climate changes seen, for example, as abrupt warmings in Greenland and changes in monsoon rainfall intensity. However, due to chronological uncertainties it is challenging to know how tightly coupled these changes were. Here we exploit cosmogenic signals caused by changes in the Sun and Earth magnetic fields to link different climate archives and improve our understanding of the dynamics of abrupt climate change.
Arno Hartmann, Marc Luetscher, Ralf Wachter, Philipp Holz, Elisabeth Eiche, and Thomas Neumann
Hydrol. Earth Syst. Sci., 22, 4281–4293, https://doi.org/10.5194/hess-22-4281-2018, https://doi.org/10.5194/hess-22-4281-2018, 2018
Short summary
Short summary
We have developed a new mobile automated water sampling device for environmental research and other applications where waters need to be tested for compliance with environmental/health regulations. It has two main advantages over similar devices: firstly, it injects water samples directly into airtight vials to prevent any change in sample properties through contamination, evaporation and gas exchange. Secondly, it can hold up to 160 sample vials, while other devices only hold up to 24 vials.
Marius Folden Simonsen, Llorenç Cremonesi, Giovanni Baccolo, Samuel Bosch, Barbara Delmonte, Tobias Erhardt, Helle Astrid Kjær, Marco Potenza, Anders Svensson, and Paul Vallelonga
Clim. Past, 14, 601–608, https://doi.org/10.5194/cp-14-601-2018, https://doi.org/10.5194/cp-14-601-2018, 2018
Short summary
Short summary
Ice core dust size distributions are more often measured today by an Abakus laser sensor than by the more technically demanding but also very accurate Coulter counter. However, Abakus measurements consistently give larger particle sizes. We show here that this bias exists because the particles are flat and elongated. Correcting for this gives more accurate Abakus measurements. Furthermore, the shape of the particles can be extracted from a combination of Coulter counter and Abakus measurements.
Gabriella Koltai, Hai Cheng, and Christoph Spötl
Clim. Past, 14, 369–381, https://doi.org/10.5194/cp-14-369-2018, https://doi.org/10.5194/cp-14-369-2018, 2018
Short summary
Short summary
Here we present a multi-proxy study of flowstones in fractures of crystalline rocks with the aim of assessing the palaeoclimate significance of this new type of speleothem archive. Our results indicate a high degree of spatial heterogeneity, whereby changes in speleothem mineralogy and carbon isotope composition are likely governed by aquifer-internal processes. In contrast, the oxygen isotope composition reflects first-order climate variability.
Pascal Bohleber, Tobias Erhardt, Nicole Spaulding, Helene Hoffmann, Hubertus Fischer, and Paul Mayewski
Clim. Past, 14, 21–37, https://doi.org/10.5194/cp-14-21-2018, https://doi.org/10.5194/cp-14-21-2018, 2018
Short summary
Short summary
The Colle Gnifetti (CG) glacier is the only drilling site in the European Alps offering ice core records back to some 1000 years. We aim to fully exploit these unique long-term records by establishing a reliable long-term age scale and an improved ice core proxy interpretation for reconstructing temperature. Our findings reveal a site-specific temperature-related signal in the trends of the mineral dust proxy Ca2+ that may supplement other proxy evidence over the last millennium.
Ny Riavo Gilbertinie Voarintsoa, Loren Bruce Railsback, George Albert Brook, Lixin Wang, Gayatri Kathayat, Hai Cheng, Xianglei Li, Richard Lawrence Edwards, Amos Fety Michel Rakotondrazafy, and Marie Olga Madison Razanatseheno
Clim. Past, 13, 1771–1790, https://doi.org/10.5194/cp-13-1771-2017, https://doi.org/10.5194/cp-13-1771-2017, 2017
Short summary
Short summary
This research has been an investigation of two stalagmites from two caves in NW Madagascar to reconstruct the region's paleoenvironmental changes, and to understand the linkage of such changes to the dynamics of the ITCZ. Stable isotopes, mineralogy, and petrography suggest wetter climate conditions than today during the early and late Holocene, when the mean ITCZ was south, and drier during the mid-Holocene when the ITCZ was north.
Stef Vansteenberge, Sophie Verheyden, Hai Cheng, R. Lawrence Edwards, Eddy Keppens, and Philippe Claeys
Clim. Past, 12, 1445–1458, https://doi.org/10.5194/cp-12-1445-2016, https://doi.org/10.5194/cp-12-1445-2016, 2016
Short summary
Short summary
The use of stalagmites for last interglacial continental climate reconstructions in Europe has been successful in the past; however to expand the geographical coverage, additional data from Belgium is presented. It has been shown that stalagmite growth, morphology and stable isotope content reflect regional and local climate conditions, with Eemian optimum climate occurring between 125.3 and 117.3 ka. The start the Weichselian is expressed by a stop of growth caused by a drying climate.
C. Spötl and H. Cheng
Clim. Past, 10, 1349–1362, https://doi.org/10.5194/cp-10-1349-2014, https://doi.org/10.5194/cp-10-1349-2014, 2014
M. Luetscher, M. Borreguero, G. E. Moseley, C. Spötl, and R. L. Edwards
The Cryosphere, 7, 1073–1081, https://doi.org/10.5194/tc-7-1073-2013, https://doi.org/10.5194/tc-7-1073-2013, 2013
V. E. Johnston, A. Borsato, C. Spötl, S. Frisia, and R. Miorandi
Clim. Past, 9, 99–118, https://doi.org/10.5194/cp-9-99-2013, https://doi.org/10.5194/cp-9-99-2013, 2013
Related subject area
Subject: Teleconnections | Archive: Terrestrial Archives | Timescale: Millenial/D-O
Abrupt warming and alpine glacial retreat through the last deglaciation in Alaska interrupted by modest Northern Hemisphere cooling
Aridity synthesis for eight selected key regions of the global climate system during the last 60 000 years
A South Atlantic island record uncovers shifts in westerlies and hydroclimate during the last glacial
Annual proxy data from Lago Grande di Monticchio (southern Italy) between 76 and 112 ka: new chronological constraints and insights on abrupt climatic oscillations
NALPS: a precisely dated European climate record 120–60 ka
Joseph P. Tulenko, Jason P. Briner, Nicolás E. Young, and Joerg M. Schaefer
Clim. Past, 20, 625–636, https://doi.org/10.5194/cp-20-625-2024, https://doi.org/10.5194/cp-20-625-2024, 2024
Short summary
Short summary
We take advantage of a site in Alaska – where climate records are limited and a former alpine glacier deposited a dense sequence of moraines spanning the full deglaciation – to construct a proxy summer temperature record. Building on age constraints for moraines in the valley, we reconstruct paleo-glacier surfaces and estimate the summer temperatures (relative to the Little Ice Age) for each moraine. The record suggests that the influence of North Atlantic climate forcing extended to Alaska.
Florian Fuhrmann, Benedikt Diensberg, Xun Gong, Gerrit Lohmann, and Frank Sirocko
Clim. Past, 16, 2221–2238, https://doi.org/10.5194/cp-16-2221-2020, https://doi.org/10.5194/cp-16-2221-2020, 2020
Short summary
Short summary
Proxy data of sediment cores, speleothem, pollen and isotope data were used to reconstruct past aridity of eight regions of the world over the last 60 000 years. These regions show humid conditions during the early MIS3 (60 to 45 ka). Also the early Holocene (14 to 6 ka) was humid throughout the regions. In contrast, MIS2 and the LGM were arid in Northern Nemisphere records. On- and offsets of aridity/humidity differ between the regions. All this is in good agreement with recent model results.
Svante Björck, Jesper Sjolte, Karl Ljung, Florian Adolphi, Roger Flower, Rienk H. Smittenberg, Malin E. Kylander, Thomas F. Stocker, Sofia Holmgren, Hui Jiang, Raimund Muscheler, Yamoah K. K. Afrifa, Jayne E. Rattray, and Nathalie Van der Putten
Clim. Past, 15, 1939–1958, https://doi.org/10.5194/cp-15-1939-2019, https://doi.org/10.5194/cp-15-1939-2019, 2019
Short summary
Short summary
Southern Hemisphere westerlies play a key role in regulating global climate. A lake sediment record on a mid-South Atlantic island shows changes in the westerlies and hydroclimate 36.4–18.6 ka. Before 31 ka the westerlies shifted in concert with the bipolar seesaw mechanism in a fairly warm climate, followed by southerly westerlies and falling temperatures. After 27.5 ka temperatures dropped 3 °C with drier conditions and with shifting westerlies possibly triggering the variable LGM CO2 levels.
C. Martin-Puertas, A. Brauer, S. Wulf, F. Ott, S. Lauterbach, and P. Dulski
Clim. Past, 10, 2099–2114, https://doi.org/10.5194/cp-10-2099-2014, https://doi.org/10.5194/cp-10-2099-2014, 2014
R. Boch, H. Cheng, C. Spötl, R. L. Edwards, X. Wang, and Ph. Häuselmann
Clim. Past, 7, 1247–1259, https://doi.org/10.5194/cp-7-1247-2011, https://doi.org/10.5194/cp-7-1247-2011, 2011
Cited articles
Abbott, P. M., Davies, S. M., Steffensen, J. P., Pearce, N. J. G., Bigler,
M., Johnsen, S. J., Seierstad, I. K., Scensson, A., and Wastegard, S.: A
detailed framework of Marine Isotope Stages 4 and 5 volcanic events recorded
in two Greenland ice-cores, Quaternary Sci. Rev., 36, 59–77,
https://doi.org/10.1016/j.quascirev.2011.05.001, 2012.
Adolphi, F., Bronk Ramsey, C., Erhardt, T., Edwards, R. L., Cheng, H., Turney, C. S. M., Cooper, A., Svensson, A., Rasmussen, S. O., Fischer, H., and Muscheler, R.: Connecting the Greenland ice-core and U/Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events, Clim. Past, 14, 1755–1781, https://doi.org/10.5194/cp-14-1755-2018, 2018.
Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C., and
Clark, P. U.: Holocene climatic instability: a prominent, widespread event
8200 years ago, Geology, 25, 483–486,
https://doi.org/10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2,
1997.
Ambach, W., Dansgaard, W., Eisner, H., and Møller, J.: The altitude
effect on the isotopic composition of precipitation and glacier ice in the
Alps, Tellus, 20, 595–600, https://doi.org/10.3402/tellusa.v20i4.10040, 1968.
Barker, S., Knorr, G., Edwards, R. L., Parrenin, F., Putnam, A. E., Skinner,
L. C., Wolff, E., and Ziegler, M.: 800,000 Years of Abrupt Climate
Variability, Science, 334, 347–351, https://doi.org/10.1126/science.1203580, 2011.
Boch, R., Cheng, H., Spötl, C., Edwards, R. L., Wang, X., and Häuselmann, Ph.: NALPS: a precisely dated European climate record 120–60 ka, Clim. Past, 7, 1247–1259, https://doi.org/10.5194/cp-7-1247-2011, 2011.
Björck, S., Kromer, B., Johnsen, S., Bennike, O., Hammarlund, D.,
Lemdahl, G., Possnert, G., Rasmussen, T. L., Wohlfarth, B., Hammer, C. U.,
and Spurk, M.: Synchronized terrestrial-atmospheric deglacial records around
the North Atlantic, Science, 274, 1155–1160,
https://doi.org/10.1126/science.274.5290.1155, 1996.
Bohleber, P., Wagenbach, D., Schöner, W., and Böhm, R.: To what
extent do water isotope records from low accumulation Alpine ice cores
reproduce instrumental temperature series?, Tellus, 65, 20148,
https://doi.org/10.3402/tellusb.v65i0.20148, 2013.
Broecker, W. S.: Massive iceberg discharges as triggers for global climate
change, Nature, 372, 421–424, https://doi.org/10.1038/372421a0, 1994.
Bronk Ramsey, C.: Deposition models for chronological records,
Quaternary Sci. Rev., 27, 42–60, https://doi.org/10.1016/j.quascirev.2007.01.019, 2008.
Bronk Ramsey, C. and Lee, S.: Recent and Planned Developments of the
Program OxCal, Radiocarbon, 55, 720–730, https://doi.org/10.1017/S0033822200057878,
2013.
Capron, E., Landais, A., Chappellaz, J., Schilt, A., Buiron, D., Dahl-Jensen, D., Johnsen, S. J., Jouzel, J., Lemieux-Dudon, B., Loulergue, L., Leuenberger, M., Masson-Delmotte, V., Meyer, H., Oerter, H., and Stenni, B.: Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period, Clim. Past, 6, 345–365, https://doi.org/10.5194/cp-6-345-2010, 2010a.
Capron, E., Landais, A., Lemieux-Dudon, B., Schilt, A., Masson-Delmotte, V.,
Buiron, D., Chappellaz, J., Dahl-Jensen, D., Johnsen, S., Leuenberger, M.,
Loulergue, L., and Oerter, H.: Synchronising EDML and NorthGRIP ice cores
using δ18O of atmospheric oxygen (δ18Oatm) and CH4
measurements over MIS5 (80–123 kyr), Quaternary Sci. Rev., 29, 222–234, https://doi.org/10.1016/j.quascirev.2009.07.014, 2010b.
Cheng, H., Edwards, R. L., Broecker, W. S., Denton, G. H., Kong, X., Wang, Y.,
Zhang, R., and Wang, X.: Ice age terminations, Science, 326, 248–252, https://doi.org/10.1126/science.1177840, 2009.
Cheng, H., Edwards, R. L., Sinha, A., Spötl, C., Yi, L., Chen, S.,
Kelly, M., Kathayat, G., Wang, X., Li, X., Kong, X., Wang, Y., Ning, Y., and
Zhang, H.: The Asian monsoon over the past 640,000 years and ice age
terminations, Nature, 534, 640–646, https://doi.org/10.1038/nature18591, 2016.
Clark, I. and Fritz, P.: Environmental Isotopes in Hydrology, Lewis
Publishers, New York, 1997.
Clark, P. U., Marshall, S. J., Clarke, G. K. C., Hostetler, S. W.,
Licciardi, J. M., and Teller, J. T.: Freshwater forcing of abrupt climate
change during the last glaciation, Science 293, 283–287,
https://doi.org/10.1126/science.1062517, 2001.
Dansgaard, S. W.: Stable isotopes in precipitation, Tellus, 16, 436–468, https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964.
Dansgaard, W., Johnsen, S. J., Clausenm H. B., Dahl-Jensen, D., Gundestrup,
N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P.,
Sveinbjörnsdottir, A. W., Jouzel, J., and Bond, G.: Evidence for general
instability of past climate from a 250-kyr ice-core record, Nature, 364,
218–220, https://doi.org/10.1038/364218a0, 1993.
Deininger, M., Werner, M., and McDermott, F.: North Atlantic Oscillation controls on oxygen and hydrogen isotope gradients in winter precipitation across Europe; implications for palaeoclimate studies, Clim. Past, 12, 2127–2143, https://doi.org/10.5194/cp-12-2127-2016, 2016.
Dorale, J. A. and Liu, Z.: Limitations of Hendy test criteria in judging
the paleoclimatic suitability of speleothems and the need for replication,
J. Cave Karst Stud., 71, 73–80, 2004.
Dorale, J. A., Edwards, R. L., Alexander Jr., C. A., Shen, C. -C.,
Richards, D. A., and Cheng, H.: Uranium-series dating of speleothems:
Current techniques, limits & applications, in: Studies of Cave Sediments: Physical and Chemical
Records of Paleoclimate, edited by: Sasowsky, I. D. and
Mylroie, J. E., Kluwer Academic/Plenum Publishers, New
York, 177–197, 2004.
Dray, M., Ferhi, A. A., Jusserand, C., and Olive, P: Paleoclimatic indicators
deduced from isotopic data in the main French deep aquifers, in: Isotope
Techniques in the Study of Environmental Change, 683–692, IAEA, Vienna,
1998.
Edwards, R. L., Chen, J. H., and Wasserburg, G. J.: 238U-234U-230Th-232Th
systematics and the precise measurement of time over the past 500,000 years,
Earth Planet Sc. Lett., 81, 175–192, https://doi.org/10.1016/0012-821X(87)90154-3, 1987.
Erhardt, T., Capron, E., Rasmussen, S. O., Schüpbach, S., Bigler, M., Adolphi, F., and Fischer, H.: Decadal-scale progression of the onset of Dansgaard–Oeschger warming events, Clim. Past, 15, 811–825, https://doi.org/10.5194/cp-15-811-2019, 2019.
Extier, T., Landais, A., Bréant, C., Prié, F., Bazin, L., Dreyfus,
G., Roche, D. M., and Leuenberger, M.: On the use of δ18Oatm for ice core dating, Quaternary Sci. Rev., 185, 244–257,
https://doi.org/10.1016/j.quascirev.2018.02.008, 2018
Fischer, T. G., Smith, D. G., and Andrews, J. T.: Preboreal oscillation
caused by a glacial Lake Agassiz flood, Quaternary Sci. Rev. 21, 873–978,
https://doi.org/10.1016/S0277-3791(01)00148-2, 2002.
Fleitmann, D., Mudelsee, M., Burns, S. J., Bradley, R. S., Kramers, J., and
Matter, A.: Evidence for a widespread climatic anomaly at around 9.2 ka
before present, Paleoceanography, 23, PA1102, https://doi.org/10.1029/2007PA001519,
2008.
Grant, K. M., Rohling, E. J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde,
M., Bronk-Ramsey, C., Satow, C., and Roberts, A. P.: Rapid coupling between
ice volume and polar temperature over the past 150,000 years, Nature, 491,
744–747, https://doi.org/10.1038/nature11593, 2012.
Guillou, H., Scao, V., Nomade, S., Van Vliet-Lanöe, B., Liorzou, C., and
Guðmundsson, Á.: 40Ar/39Ar dating of the Thorsmork ignimbrite and
Icelandic sub-glacial rhyolites, Quaternary Sci. Rev., 209, 52–62, https://doi.org/10.1016/j.quascirev.2019.02.014, 2019.
Hager, B. and Foelsche, U.: Stable isotope composition of precipitation in
Austria, Austrian J. Earth Sci., 108, 2–13, https://doi.org/10.17738/ajes.2015.0012,
2015.
Hall, I. R., Moran, S. B., Zahn, R., Knutz, P. C., Shen, C. C., and Edwards,
R. L.: Accelerated drawdown of meridional overturning in the late-glacial
Atlantic triggered by transient pre-H event freshwater perturbation,
Geophys. Res. Lett., 33, L16616, https://doi.org/10.1029/2006GL026239, 2006.
Häuselmann, A. D., Fleitmann, D., Cheng, H., Tabersky, D., Günther,
D., and Edwards, R. L.: Timing and nature of the penultimate deglaciation in
a high alpine stalagmite from Switzerland, Quaternary Sci. Rev., 126, 264–275,
https://doi.org/10.1016/j.quascirev.2015.08.026, 2015.
Hendy, C. H.: The isotopic geochemistry of speleothems-I. The calculation of
the effects of different modes of formation on the isotopic composition of
speleothems and their applicability as palaeoclimatic indicators, Geochim.
Cosmochim. Ac., 35, 801–824, https://doi.org/10.1016/0016-7037(71)90127-X, 1971.
Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A.
M., and Keigwin, L. D.: North Atlantic ocean circulation and abrupt climate
change during the last glaciation, Science, 353, 470–474,
https://doi.org/10.1126/science.aaf5529, 2016.
Hürkamp, K., Zentner, N., Anne Reckerth, A., Weishaupt, S., Wetzel,
K-F., Tschiersch, J., and Stumpp, C.: Spatial and temporal variability of
snow isotopic composition on Mt. Zugspitze, Bavarian Alps, Germany,
J. Hydrol. Hydromech., 67, 49–58, https://doi.org/10.2478/johh-2018-0019, 2019.
IAEA: International Atomic Energy Agency Global Network of Isotopes in Precipitation (GNIP), available at: https://www.iaea.org/services/networks/gnip (last access: 1 December 2018), 2018.
Ivanovich, M. and Harmon, R. S.: Uranium-series Disequilibrium:
Applications to Earth, Marine, and
Environmental Sciences, Clarendon Press, Oxford, 910 pp., 1992.
Jiang, X., Wang, X., He, Y., Hu, H-M., Li, Z., Spötl, C., and Shen,
C-C.: Precisely dated multidecadally resolved Asian summer monsoon dynamics
113.5–86.6 thousand years ago, Quaternary Sci. Rev., 143, 1–12,
https://doi.org/10.1016/j.quascirev.2016.05.003, 2016.
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Fuhrer, K., Gundestrup, N.,
Hammer, C. U., Iversen, P., Jouzel, J., Stauffer, B., and Steffensen, J. P.:
Irregular glacial interstadials recorded in a new Greenland ice core,
Nature, 359, 311–313, https://doi.org/10.1038/359311a0, 1992.
Johnsen, S. J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J. P.,
Clausen, H. B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdottir, A.
E., and White, J.: Oxygen isotope and palaeotemperature records from six
Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and
NorthGRIP, J. Quaternary Sci., 16, 299–307, https://doi.org/10.1002/jqs.622, 2001.
Kaiser, A., Scheiflinger, H., Kralik, M., Papesch, W., Rank, D., and
Stichler, W.: Links between Meteorological Conditions and Spatial/temporal
Variations in Long term Isotopic Records from the Austrian Precipitation
Network, in Study of Environmental Change Using Isotope Techniques, C&S
Paper Series 13/P, International Atomic Energy Agency, 67–76, 2002.
Kelly, M. J.: Characterization of Asian Monsoon variability since the
Penultimate Interglacial on orbital and sub-orbital timescales, Dongge Cave,
China, PhD Thesis, University of Minnesota, USA, 221 pp., 2010.
Kelly, M. J., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin,
Y., and An, Z.: High resolution characterization of the Asian Monsoon
between 146,000 and 99,000 years B.P. from Dongge Cave, China and global
correlation of events surrounding Termination II, Palaeogeogr. Palaeocl.,
236, 20–38, https://doi.org/10.1016/j.palaeo.2005.11.042, 2006.
Klampfer, A, Plan, L., Büchel, E., and Spötl., C.: Neubearbeitung
und Forschung im Schneckenloch, der längsten Höhle im Bregenzerwald,
Die Höhle, 68, 14–30, 2017.
Ludwig, K. R. and Titterington, D. M.: Calculation of 230Th/U isochrons,
ages and errors, Geochim. Cosmochim. Ac., 58, 5031–5042,
https://doi.org/10.1016/0016-7037(94)90229-1, 1994.
Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Edwards, R.
L., Frisia, S., Hof, F., and Müller, W.: North Atlantic storm track
changes during the Last Glacial Maximum recorded by Alpine speleothems, Nat.
Commun., 6, 6344–6350, https://doi.org/10.1038/ncomms7344, 2015.
McManus, J. F., Oppo, D. W., and Cullen, J. L.: A 0.5-million-year record of
millennial-scale climate variability in the North Atlantic, Science, 283,
971–975, https://doi.org/10.1126/science.283.5404.971, 1999.
Moseley, G. E., Spötl, C., Svensson, A., Cheng, H., Brandstätter,
S., and Lawrence Edwards, R. L.: Multi-speleothem record reveals tightly
coupled climate between central Europe and Greenland during Marine Isotope
Stage 3, Geology, 42, 1043–1046, https://doi.org/10.1130/G36063.1, 2014.
Moseley, G. E., Spötl, C., Cheng, H., Boch, R., Min, A., and Edwards, R.
L.: Termination-II interstadial/stadial climate change recorded in two
stalagmites from the north European Alps, Quaternary Sci. Rev., 127, 229–239,
https://doi.org/10.1016/j.quascirev.2015.07.012, 2015.
Mudelsee, M.: Ramp function regression: a tool for quantifying climate
transitions, Comput. Geosci., 26, 293–307, https://doi.org/10.1016/S0098-3004(99)00141-7, 2000.
North Greenland Ice Core Project members: High-resolution record of Northern
Hemisphere climate extending into the last interglacial period, Nature, 431,
147–151, https://doi.org/10.1038/nature02805, 2004.
Offenbecher, K.-H.: Stabile Isotope in Stalagmiten als Indikatoren der
Klimaentwicklung im Quartär in den österreichischen Alpen, PhD
thesis, University of
Innsbruck, Austria, 230 pp., 2004.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer,
H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp,
T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P.,
Vinther, B. M., Walker, M. J., Wheatley, J. J., and Winstrup, M.: A
stratigraphic framework for abrupt climatic changes during the Last Glacial
period based on three synchronized Greenland ice-core records: refining and
extending the INTIMATE event stratigraphy, Quaternary Sci. Rev. 106, 14–28,
https://doi.org/10.1016/j.quascirev.2014.09.007, 2014.
Rittig, P.: Geologie und Karst-Geomorphologie im Gebiet der Hundsalm –
Angerberg/Tirol, Höhlenkundliche Mitteilungen, 65, 13–21, 2012.
Rohling, E. J.: Oxygen Isotope Composition of Seawater, Encyclopedia of
Quaternary Science, 2, 915–922, 2013.
Rozanski, K., Araguás-Araguás, L., and
Gonfiantini, R.: Isotopic patterns in modern global precipitation, in:
Climate Change
in Continental Isotopic Records, edited by: Swart, P. K., Lohmann, K. L., McKenzie, J., and Savin, S., American Geophysical Union, Washington, DC,
1–37, 1993.
Ruth, U., Bigler, M., Röthlisberger, R., Siggaard-Andersen, M.-L., Kipfstuhl,
S., Goto-Azuma, K., Hansson, M. E., Johnson, S. J., Lu, H., and Steffensen,
J. P.: Ice core evidence for a very tight link between North Atlantic and
eastAsian glacial climate, Geophys. Res. Lett. 34, L03706,
https://doi.org/10.1029/2006GL027876, 2007.
Shen, C.-C., Wu, C.-C., Cheng, H., Edwards, R. L., Hsieh, Y.-T., Gallet, S.,
Chang, C.-C., Li, T.-Y., Lam, D. D., Kano, A., Hori, M., and Spötl,
C.: High-precision and high resolution carbonate 230Th dating by MC-ICP-MS
with SEM protocols, Geochim. Cosmochim. Ac., 99, 71–86, https://doi.org/10.1016/j.gca.2012.09.018, 2012.
Sodemann, H. and Zubler, E.: Seasonal and interannual variability of the
moisture sources for Alpine precipitation during 1995–2002, Int. J.
Climatol., 30, 947–961, https://doi.org/10.1002/joc.1932, 2010.
Spötl, C.: Long-term performance of the Gasbench IRMS system for stable isotope analysis of carbonate microsamples, Rapid Comm. Mass Spectrom., 25, 1683–1685, https://doi.org/10.1002/rcm.5037, 2011.
Spötl, C. and Mangini, A: Stalagmite from the Austrian Alps reveals
Dansgaard-Oeschger events during istotope stage 3: implications for the
absolute chronology of Greenland ice cores, Earth Planet. Sc. Lett., 203,
507–518, https://doi.org/10.1016/S0012-821X(02)00837-3, 2002.
Spötl, C., Mangini, A., and Richards, D. A.: Chronology and
paleoenvironment of Marine Isotope Stage 3 from two high-elevation
speleothems, Austrian Alps, Quaternary Sci. Rev., 25, 1127–1136,
https://doi.org/10.1016/j.quascirev.2005.10.006, 2006.
Spötl, C., Boch, R., and Wolf, A.: Eiszeitliche Klimadynamik im
Spiegel eines Stalagmiten aus dem Hölloch (Bayern/Vorarlberg), Die
Höhle, 62, 46–53, 2011.
Stanford, J. D., Rohling, E. J., Hunter, S.E., Roberts, A. P., Rasmussen, S.
O., Bard, E., McManus, J., and Fairbanks, R. G.: Timing of meltwater pulse
1a and climate responses to meltwater injections, Paleoceanography, 21,
PA4103, https://doi.org/10.1029/2006PA001340, 2006.
Steffensen, J. P., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen,
D., Fischer, H., Goto-Azuma, K., Hansson, M. E., Johnsen, S. J., Jouzel, J.,
Masson-Delmotte, V., Popp, T., Rasmussen, S. O., Röthlisberger, R.,
Ruth, U., Staufer, B., Siggaard-Andersen, M.-L., Sveinbjörnsdottir,
A. E., Svensson, A., and White, J. W. C.: High-Resolution Greenland Ice Core
Data Show Abrupt Climate Change Happens in Few Years, Science, 321,
680–684, https://doi.org/10.1126/science.1157707, 2008.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008.
Teller, J. T., Leverington, D. W., and Mann, J. D.: Freshwater outbursts to
the oceans from glacial Lake Agassiz and their role in climate change during
the last deglaciation, Quaternary Sci. Rev., 21, 879–997, https://doi.org/10.1016/S0277-3791(01)00145-7, 2002.
Vallelonga, P., Bertagna, G., Blunier, T., Kjær, H. A., Popp, T. J., Rasmussen, S. O., Steffensen, J. P., Stowasser, C., Svensson, A. S., Warming, E., Winstrup, M., Bigler, M., and Kipfstuhl, S.: Duration of Greenland Stadial 22 and ice-gas Δage from counting of annual layers in Greenland NGRIP ice core, Clim. Past, 8, 1839–1847, https://doi.org/10.5194/cp-8-1839-2012, 2012.
Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S. O., Severi, M., Svensson, A., Vinther, B., and Wolff, E. W.: The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years, Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, 2013.
Wang, X., Auler, A. S., Edwards, R. L., Cheng, H., Cristalli, P. S., Smart,
P. L., Richards, D. A., and Shen, C-C.: Wet periods in northeastern Brazil
over the past 210 kyr linked to distant climate anomalies, Nature, 432,
740–743, https://doi.org/10.1038/nature03067, 2004.
Wang, Y. J. Cheng, H., Edwards, R.L., Kong, X., Shao, X., Cheng, S., Wu, J.,
Jiang, X., Wang, X., and An, Z.: Millennial- and orbital- scale changes in
the East Asian Monsoon over the past 224,000 years, Nature, 451, 1090–1093,
https://doi.org/10.1038/nature06692, 2008.
Wanner, H., Rickli, R., Salvisberg, E., Schmutz, C., and Schüepp, M.:
Global climate change and variability and its influence on Alpine climate –
concepts and observations, Theor. Appl. Climatol., 58, 221–243, https://doi.org/10.1007/BF00865022, 1997.
Wedepohl, K. H.: The composition of the continental crust, Geochim.
Cosmochim. Ac., 59, 1217–1239, https://doi.org/10.1016/0016-7037(95)00038-2, 1995.
Wolf, A.: Vermessung und Dokumentation der Höhle, in: Das Hölloch im Mahdtal, edited by: Stautz, G. and
Wolf, A., Sonthofen, Höhlenverein
Sonthofen, 273–286, 2006.
Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O., and Svensson,
A.: Millennial-scale variability during the last glacial: The ice core
record, Quaternary Sci. Rev., 29, 2828–2838, https://doi.org/10.1016/j.quascirev.2009.10.013, 2010.
Yu, S. Y., Colman, S. M., Lowell, T. V., Milne, G. A., Fisher, T. G.,
Breckenridge, A., Boyd, M., and Teller, J.T.: Freshwater outburst from Lake
Superior as a trigger for the cold event 9300 years ago, Science, 328,
1262–1266, https://doi.org/10.1126/science.1187860, 2010.
ZAMG: Klima/Klimaforschung/Datensätze/Klimanormalperiode 1981–2010, available at: https://www.zamg.ac.at/cms/de/klima/klimaforschung/datensaetze/klimanormalperiode-198120132010, last access: 1 December 2018.
Short summary
Abrupt climate change during the last ice age can be used to provide important insights into the timescales on which the climate is capable of changing and the mechanisms that drive those changes. In this study, we construct climate records for the period 60 to 120 ka using stalagmites that formed in caves along the northern rim of the European Alps and find good agreement with the timing of climate changes in Greenland and the Asian monsoon.
Abrupt climate change during the last ice age can be used to provide important insights into the...