Articles | Volume 16, issue 1
https://doi.org/10.5194/cp-16-265-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-265-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modal shift in North Atlantic seasonality during the last deglaciation
Geert-Jan A. Brummer
NIOZ Royal Netherlands Institute for Sea Research, Department of Ocean
Systems, 1790 AB, Den Burg, and Utrecht University, the Netherlands
Earth and Climate Cluster, Department of Earth Sciences, Faculty of
Science, VU University Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam,
the Netherlands
Earth and Climate Cluster, Department of Earth Sciences, Faculty of
Science, VU University Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam,
the Netherlands
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Wouter Feldmeijer
Earth and Climate Cluster, Department of Earth Sciences, Faculty of
Science, VU University Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam,
the Netherlands
now at: Nebest B.V., Marconiweg 2, 4131 PD, Vianen, the Netherlands
Maarten A. Prins
Earth and Climate Cluster, Department of Earth Sciences, Faculty of
Science, VU University Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam,
the Netherlands
Jasmijn van 't Hoff
Earth and Climate Cluster, Department of Earth Sciences, Faculty of
Science, VU University Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam,
the Netherlands
now at: Institute of Geology and Mineralogy, University of Cologne,
Zuelpicher Str. 49a, 50674 Cologne, Germany
Gerald M. Ganssen
Earth and Climate Cluster, Department of Earth Sciences, Faculty of
Science, VU University Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam,
the Netherlands
Related authors
Miriam Pfeiffer, Hideko Takayanagi, Lars Reuning, Takaaki Konabe Watanabe, Saori Ito, Dieter Garbe-Schönberg, Tsuyoshi Watanabe, Chung-Che Wu, Chuan-Chou Shen, Jens Zinke, Geert-Jan Brummer, and Sri Yudawati Cahyarini
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-25, https://doi.org/10.5194/cp-2024-25, 2024
Revised manuscript accepted for CP
Short summary
Short summary
A coral reconstruction of past climate shows changes in the seasonal cycle of sea surface temperature in the SE tropical Indian Ocean. An enhanced seasonal cycle suggests that the tropical rainfall belt shifted northwards between 1855–1917. We explain this with greater warming in the NE Indian Ocean relative to the SE, which strengthens surface winds and coastal upwelling, leading to greater cooling in the eastern Indian Ocean south of the Equator.
Michal Kučera and Geert-Jan A. Brummer
J. Micropalaeontol., 42, 33–34, https://doi.org/10.5194/jm-42-33-2023, https://doi.org/10.5194/jm-42-33-2023, 2023
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Maike Leupold, Miriam Pfeiffer, Takaaki K. Watanabe, Lars Reuning, Dieter Garbe-Schönberg, Chuan-Chou Shen, and Geert-Jan A. Brummer
Clim. Past, 17, 151–170, https://doi.org/10.5194/cp-17-151-2021, https://doi.org/10.5194/cp-17-151-2021, 2021
Marijke W. de Bar, Jenny E. Ullgren, Robert C. Thunnell, Stuart G. Wakeham, Geert-Jan A. Brummer, Jan-Berend W. Stuut, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 1705–1727, https://doi.org/10.5194/bg-16-1705-2019, https://doi.org/10.5194/bg-16-1705-2019, 2019
Short summary
Short summary
We analyzed sediment traps from the Cariaco Basin, the tropical Atlantic and the Mozambique Channel to evaluate seasonal imprints in the concentrations and fluxes of long-chain diols (LDIs), in addition to the long-chain diol index proxy (sea surface temperature proxy) and the diol index (upwelling indicator). Despite significant degradation, LDI-derived temperatures were very similar for the sediment traps and seafloor sediments, and corresponded to annual mean sea surface temperatures.
Laura F. Korte, Franziska Pausch, Scarlett Trimborn, Corina P. D. Brussaard, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Laura T. Schreuder, Chris I. Munday, and Jan-Berend W. Stuut
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-484, https://doi.org/10.5194/bg-2018-484, 2018
Revised manuscript not accepted
Short summary
Short summary
This paper shows the differences of nutrient release after dry and wet Saharan dust deposition in the tropical North Atlantic Ocean at 12° N. Incubation experiments were conducted along an east-west transect. Large differences were observed between both deposition types with wet deposition being the dominant source of phosphate, silicate, and iron. Both deposition types suggest that Saharan dust particles might be incorporated into marine snow aggregates and act as ballast mineral.
Catarina V. Guerreiro, Karl-Heinz Baumann, Geert-Jan A. Brummer, Gerhard Fischer, Laura F. Korte, Ute Merkel, Carolina Sá, Henko de Stigter, and Jan-Berend W. Stuut
Biogeosciences, 14, 4577–4599, https://doi.org/10.5194/bg-14-4577-2017, https://doi.org/10.5194/bg-14-4577-2017, 2017
Short summary
Short summary
Our study provides insights into the factors governing the spatio-temporal variability of coccolithophores in the equatorial North Atlantic and illustrates how this supposedly oligotrophic and stable open-ocean region actually reveals significant ecological variability. We provide evidence for Saharan dust and the Amazon River acting as fertilizers for phytoplankton and highlight the the importance of the thermocline depth for coccolithophore productivity in the lower photic zone.
Laura F. Korte, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Rick Hennekam, Johannes A. van Hateren, Dirk Jong, Chris I. Munday, Stefan Schouten, and Jan-Berend W. Stuut
Atmos. Chem. Phys., 17, 6023–6040, https://doi.org/10.5194/acp-17-6023-2017, https://doi.org/10.5194/acp-17-6023-2017, 2017
Short summary
Short summary
We collected Saharan dust at the Mauritanian coast as well as in the deep the North Atlantic Ocean, along a transect at 12 °N, using an array of moored sediment traps. We demonstrated that the lithogenic particles collected in the ocean are from the same source as dust collected on the African coast. With increasing distance from the source, lithogenic elements associated with clay minerals become more important relative to quartz which is settling out faster. Seasonality is prominent, but weak.
Michèlle van der Does, Laura F. Korte, Chris I. Munday, Geert-Jan A. Brummer, and Jan-Berend W. Stuut
Atmos. Chem. Phys., 16, 13697–13710, https://doi.org/10.5194/acp-16-13697-2016, https://doi.org/10.5194/acp-16-13697-2016, 2016
Short summary
Short summary
We studied seasonal and spatial variations in particle size of Saharan dust deposition along a transect in the Atlantic Ocean, using an array of moored submarine sediment traps. We show a downwind decrease in particle size, but seasonal changes are also prominent. In addition, the dust is much coarser than previously suggested and incorporated into climate models.
Dana Felicitas Christine Riechelmann, Jens Fohlmeister, Rik Tjallingii, Klaus Peter Jochum, Detlev Konrad Richter, Geert-Jan A. Brummer, and Denis Scholz
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-18, https://doi.org/10.5194/cp-2016-18, 2016
Revised manuscript not accepted
B. Metcalfe, W. Feldmeijer, M. de Vringer-Picon, G.-J. A. Brummer, F. J. C. Peeters, and G. M. Ganssen
Biogeosciences, 12, 4781–4807, https://doi.org/10.5194/bg-12-4781-2015, https://doi.org/10.5194/bg-12-4781-2015, 2015
Short summary
Short summary
Iron biogeochemical budgets during the natural ocean fertilisation experiment KEOPS-2 showed that complex circulation and transport pathways were responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. The exchange of iron between dissolved, biogenic and lithogenic pools was highly dynamic, resulting in a decoupling of iron supply and carbon export and controlling the efficiency of fertilisation.
J. Steinhardt, C. Cléroux, L. J. de Nooijer, G.-J. Brummer, R. Zahn, G. Ganssen, and G.-J. Reichart
Biogeosciences, 12, 2411–2429, https://doi.org/10.5194/bg-12-2411-2015, https://doi.org/10.5194/bg-12-2411-2015, 2015
Short summary
Short summary
In this paper we present, for the first time, results from single-chamber Mg/Ca analyses combined with single-shell δ18O and δ13C for four planktonic foraminiferal species from a sediment trap in the Mozambique Channel. Eddy-induced hydrographic variability is reflected in test carbonate chemistry of these different species. A species-specific depth-resolved mass balance model confirms distinctive migration and calcification patterns for each species as a function of hydrography.
Miriam Pfeiffer, Hideko Takayanagi, Lars Reuning, Takaaki Konabe Watanabe, Saori Ito, Dieter Garbe-Schönberg, Tsuyoshi Watanabe, Chung-Che Wu, Chuan-Chou Shen, Jens Zinke, Geert-Jan Brummer, and Sri Yudawati Cahyarini
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-25, https://doi.org/10.5194/cp-2024-25, 2024
Revised manuscript accepted for CP
Short summary
Short summary
A coral reconstruction of past climate shows changes in the seasonal cycle of sea surface temperature in the SE tropical Indian Ocean. An enhanced seasonal cycle suggests that the tropical rainfall belt shifted northwards between 1855–1917. We explain this with greater warming in the NE Indian Ocean relative to the SE, which strengthens surface winds and coastal upwelling, leading to greater cooling in the eastern Indian Ocean south of the Equator.
Michal Kučera and Geert-Jan A. Brummer
J. Micropalaeontol., 42, 33–34, https://doi.org/10.5194/jm-42-33-2023, https://doi.org/10.5194/jm-42-33-2023, 2023
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Bryan C. Lougheed and Brett Metcalfe
Biogeosciences, 19, 1195–1209, https://doi.org/10.5194/bg-19-1195-2022, https://doi.org/10.5194/bg-19-1195-2022, 2022
Short summary
Short summary
Measurements on sea-dwelling shelled organisms called foraminifera retrieved from deep-sea sediment cores have been used to reconstruct sea surface temperature (SST) variation. To evaluate the method, we use a computer model to simulate millions of single foraminifera and how they become mixed in the sediment after being deposited on the seafloor. We compare the SST inferred from the single foraminifera in the sediment core to the true SST in the water, thus quantifying method uncertainties.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Maike Leupold, Miriam Pfeiffer, Takaaki K. Watanabe, Lars Reuning, Dieter Garbe-Schönberg, Chuan-Chou Shen, and Geert-Jan A. Brummer
Clim. Past, 17, 151–170, https://doi.org/10.5194/cp-17-151-2021, https://doi.org/10.5194/cp-17-151-2021, 2021
Johannes Albert van Hateren, Unze van Buuren, Sebastiaan Martinus Arens, Ronald Theodorus van Balen, and Maarten Arnoud Prins
Earth Surf. Dynam., 8, 527–553, https://doi.org/10.5194/esurf-8-527-2020, https://doi.org/10.5194/esurf-8-527-2020, 2020
Short summary
Short summary
In this paper, we introduce a new technique that can be used to identify how sediments were transported to their place of deposition (transport mode). The traditional method is based on the size of sediment grains, ours on the size and the shape. A test of the method on windblown sediments indicates that it can be used to identify the transport mode with less ambiguity, and therefore it improves our ability to extract information, such as climate from the past, from sediment deposits.
Brett Metcalfe, Bryan C. Lougheed, Claire Waelbroeck, and Didier M. Roche
Clim. Past, 16, 885–910, https://doi.org/10.5194/cp-16-885-2020, https://doi.org/10.5194/cp-16-885-2020, 2020
Short summary
Short summary
Planktonic foraminifera construct a shell that, post mortem, settles to the seafloor, prior to collection by Palaeoclimatologists for use as proxies. Such organisms in life are sensitive to the ambient conditions (e.g. temperature, salinity), which therefore means our proxies maybe skewed toward the ecology of organisms. Using a proxy system model, Foraminifera as Modelled Entities (FAME), we assess the potential of extracting ENSO signal from tropical Pacific planktonic foraminifera.
Bryan C. Lougheed, Philippa Ascough, Andrew M. Dolman, Ludvig Löwemark, and Brett Metcalfe
Geochronology, 2, 17–31, https://doi.org/10.5194/gchron-2-17-2020, https://doi.org/10.5194/gchron-2-17-2020, 2020
Short summary
Short summary
The current geochronological state of the art for applying the radiocarbon (14C) method to deep-sea sediment archives lacks key information on sediment bioturbation, which could affect palaeoclimate interpretations made from deep-sea sediment. We use a computer model that simulates the 14C activity and bioturbation history of millions of single foraminifera at the sea floor, allowing us to evaluate the current state of the art at the most fundamental level.
Marijke W. de Bar, Jenny E. Ullgren, Robert C. Thunnell, Stuart G. Wakeham, Geert-Jan A. Brummer, Jan-Berend W. Stuut, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 1705–1727, https://doi.org/10.5194/bg-16-1705-2019, https://doi.org/10.5194/bg-16-1705-2019, 2019
Short summary
Short summary
We analyzed sediment traps from the Cariaco Basin, the tropical Atlantic and the Mozambique Channel to evaluate seasonal imprints in the concentrations and fluxes of long-chain diols (LDIs), in addition to the long-chain diol index proxy (sea surface temperature proxy) and the diol index (upwelling indicator). Despite significant degradation, LDI-derived temperatures were very similar for the sediment traps and seafloor sediments, and corresponded to annual mean sea surface temperatures.
Hilde Pracht, Brett Metcalfe, and Frank J. C. Peeters
Biogeosciences, 16, 643–661, https://doi.org/10.5194/bg-16-643-2019, https://doi.org/10.5194/bg-16-643-2019, 2019
Short summary
Short summary
In palaeoceanography the shells of single-celled foraminifera are routinely used as proxies to reconstruct the temperature, salinity and circulation of the ocean in the past. Traditionally a number of specimens were pooled for a single stable isotope measurement; however, technical advances now mean that a single shell or chamber of a shell can be measured individually. Three different hypotheses regarding foraminiferal biology and ecology were tested using this approach.
Laura F. Korte, Franziska Pausch, Scarlett Trimborn, Corina P. D. Brussaard, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Laura T. Schreuder, Chris I. Munday, and Jan-Berend W. Stuut
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-484, https://doi.org/10.5194/bg-2018-484, 2018
Revised manuscript not accepted
Short summary
Short summary
This paper shows the differences of nutrient release after dry and wet Saharan dust deposition in the tropical North Atlantic Ocean at 12° N. Incubation experiments were conducted along an east-west transect. Large differences were observed between both deposition types with wet deposition being the dominant source of phosphate, silicate, and iron. Both deposition types suggest that Saharan dust particles might be incorporated into marine snow aggregates and act as ballast mineral.
Didier M. Roche, Claire Waelbroeck, Brett Metcalfe, and Thibaut Caley
Geosci. Model Dev., 11, 3587–3603, https://doi.org/10.5194/gmd-11-3587-2018, https://doi.org/10.5194/gmd-11-3587-2018, 2018
Short summary
Short summary
The oxygen-18 signal recorded in fossil planktonic foraminifers has been used for over 50 years in many geoscience applications. However, different planktonic foraminifer species from the same sediment core generally yield distinct oxygen-18 signals, as a consequence of their specific living habitat in the water column and along the year. To explicitly take into account this variability for five common planktonic species, we developed the portable module FAME (Foraminifers As Modeled Entities).
Bryan C. Lougheed, Brett Metcalfe, Ulysses S. Ninnemann, and Lukas Wacker
Clim. Past, 14, 515–526, https://doi.org/10.5194/cp-14-515-2018, https://doi.org/10.5194/cp-14-515-2018, 2018
Short summary
Short summary
Palaeoclimate reconstructions from deep-sea sediment archives provide valuable insight into past rapid climate change, but only a small proportion of the ocean is suitable for such reconstructions using the existing state of the art, i.e. the age–depth approach. We use dual radiocarbon (14C) and stable isotope analysis on single foraminifera to bypass the long-standing age–depth approach, thus facilitating past ocean chemistry reconstructions from vast, previously untapped ocean areas.
Catarina V. Guerreiro, Karl-Heinz Baumann, Geert-Jan A. Brummer, Gerhard Fischer, Laura F. Korte, Ute Merkel, Carolina Sá, Henko de Stigter, and Jan-Berend W. Stuut
Biogeosciences, 14, 4577–4599, https://doi.org/10.5194/bg-14-4577-2017, https://doi.org/10.5194/bg-14-4577-2017, 2017
Short summary
Short summary
Our study provides insights into the factors governing the spatio-temporal variability of coccolithophores in the equatorial North Atlantic and illustrates how this supposedly oligotrophic and stable open-ocean region actually reveals significant ecological variability. We provide evidence for Saharan dust and the Amazon River acting as fertilizers for phytoplankton and highlight the the importance of the thermocline depth for coccolithophore productivity in the lower photic zone.
Kees Nooren, Wim Z. Hoek, Tim Winkels, Annika Huizinga, Hans Van der Plicht, Remke L. Van Dam, Sytze Van Heteren, Manfred J. Van Bergen, Maarten A. Prins, Tony Reimann, Jakob Wallinga, Kim M. Cohen, Philip Minderhoud, and Hans Middelkoop
Earth Surf. Dynam., 5, 529–556, https://doi.org/10.5194/esurf-5-529-2017, https://doi.org/10.5194/esurf-5-529-2017, 2017
Short summary
Short summary
We demonstrate that the world's largest beach-ridge plain in southern Mexico was formed under an ample long-term fluvial sediment supply. The beach-ridge elevation is strongly influenced by aeolian accretion during the time when the ridge is located next to the beach. The beach-ridge elevation is negatively correlated with the progradation rate, which we relate to the variability in sediment supply to the coastal zone, reflecting decadal-scale precipitation changes within the river catchment.
Laura F. Korte, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Rick Hennekam, Johannes A. van Hateren, Dirk Jong, Chris I. Munday, Stefan Schouten, and Jan-Berend W. Stuut
Atmos. Chem. Phys., 17, 6023–6040, https://doi.org/10.5194/acp-17-6023-2017, https://doi.org/10.5194/acp-17-6023-2017, 2017
Short summary
Short summary
We collected Saharan dust at the Mauritanian coast as well as in the deep the North Atlantic Ocean, along a transect at 12 °N, using an array of moored sediment traps. We demonstrated that the lithogenic particles collected in the ocean are from the same source as dust collected on the African coast. With increasing distance from the source, lithogenic elements associated with clay minerals become more important relative to quartz which is settling out faster. Seasonality is prominent, but weak.
Michèlle van der Does, Laura F. Korte, Chris I. Munday, Geert-Jan A. Brummer, and Jan-Berend W. Stuut
Atmos. Chem. Phys., 16, 13697–13710, https://doi.org/10.5194/acp-16-13697-2016, https://doi.org/10.5194/acp-16-13697-2016, 2016
Short summary
Short summary
We studied seasonal and spatial variations in particle size of Saharan dust deposition along a transect in the Atlantic Ocean, using an array of moored submarine sediment traps. We show a downwind decrease in particle size, but seasonal changes are also prominent. In addition, the dust is much coarser than previously suggested and incorporated into climate models.
Sjoerd Kluiving, Tim de Ridder, Marcel van Dasselaar, Stan Roozen, and Maarten Prins
SOIL, 2, 271–285, https://doi.org/10.5194/soil-2-271-2016, https://doi.org/10.5194/soil-2-271-2016, 2016
Short summary
Short summary
In medieval times the city of Vlaardingen (the Netherlands) was strategically located on the confluence of three rivers, the Maas, the Merwede, and the Vlaarding. Combined research on the history and soil of this city was initiated by an archaeological research question, following Dutch legislation. The start of fluvial system 2 in AD 600 correlates with evidence of the church that was present at least in AD 726/727. Results record the period before and after the flooding in AD 1170.
Dana Felicitas Christine Riechelmann, Jens Fohlmeister, Rik Tjallingii, Klaus Peter Jochum, Detlev Konrad Richter, Geert-Jan A. Brummer, and Denis Scholz
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-18, https://doi.org/10.5194/cp-2016-18, 2016
Revised manuscript not accepted
B. Metcalfe, W. Feldmeijer, M. de Vringer-Picon, G.-J. A. Brummer, F. J. C. Peeters, and G. M. Ganssen
Biogeosciences, 12, 4781–4807, https://doi.org/10.5194/bg-12-4781-2015, https://doi.org/10.5194/bg-12-4781-2015, 2015
Short summary
Short summary
Iron biogeochemical budgets during the natural ocean fertilisation experiment KEOPS-2 showed that complex circulation and transport pathways were responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. The exchange of iron between dissolved, biogenic and lithogenic pools was highly dynamic, resulting in a decoupling of iron supply and carbon export and controlling the efficiency of fertilisation.
J. Steinhardt, C. Cléroux, L. J. de Nooijer, G.-J. Brummer, R. Zahn, G. Ganssen, and G.-J. Reichart
Biogeosciences, 12, 2411–2429, https://doi.org/10.5194/bg-12-2411-2015, https://doi.org/10.5194/bg-12-2411-2015, 2015
Short summary
Short summary
In this paper we present, for the first time, results from single-chamber Mg/Ca analyses combined with single-shell δ18O and δ13C for four planktonic foraminiferal species from a sediment trap in the Mozambique Channel. Eddy-induced hydrographic variability is reflected in test carbonate chemistry of these different species. A species-specific depth-resolved mass balance model confirms distinctive migration and calcification patterns for each species as a function of hydrography.
W. Feldmeijer, L. J. de Nooijer, G.-J. Reichart, and G.M. Ganssen
Clim. Past Discuss., https://doi.org/10.5194/cpd-10-3847-2014, https://doi.org/10.5194/cpd-10-3847-2014, 2014
Revised manuscript not accepted
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Pleistocene
Monsoon-driven changes in aeolian and fluvial sediment input to the central Red Sea recorded throughout the last 200 000 years
Orbital CO2 reconstruction using boron isotopes during the late Pleistocene, an assessment of accuracy
Bayesian age models and stacks: combining age inferences from radiocarbon and benthic δ18O stratigraphic alignment
A 600 kyr reconstruction of deep Arctic seawater δ18O from benthic foraminiferal δ18O and ostracode Mg ∕ Ca paleothermometry
Antarctic sea ice over the past 130 000 years – Part 1: a review of what proxy records tell us
Reorganization of Atlantic Waters at sub-polar latitudes linked to deep-water overflow in both glacial and interglacial climate states
Parallel between the isotopic composition of coccolith calcite and carbon levels across Termination II: developing a new paleo-CO2 probe
A global climatology of the ocean surface during the Last Glacial Maximum mapped on a regular grid (GLOMAP)
Contrasting late-glacial paleoceanographic evolution between the upper and lower continental slope of the western South Atlantic
Technical note: PaleoDataView – a software toolbox for the collection, homogenization and visualization of marine proxy data
Sensitivity to species selection indicates the effect of nuisance variables on marine microfossil transfer functions
Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels
Extreme lowering of deglacial seawater radiocarbon recorded by both epifaunal and infaunal benthic foraminifera in a wood-dated sediment core
A Late Quaternary climate record based on long-chain diol proxies from the Chilean margin
Moving beyond the age–depth model paradigm in deep-sea palaeoclimate archives: dual radiocarbon and stable isotope analysis on single foraminifera
Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies
Water and carbon stable isotope records from natural archives: a new database and interactive online platform for data browsing, visualizing and downloading
Palaeo-sea-level and palaeo-ice-sheet databases: problems, strategies, and perspectives
Multiproxy reconstruction for Kuroshio responses to northern hemispheric oceanic climate and the Asian Monsoon since Marine Isotope Stage 5.1 (∼88 ka)
Hydrographic changes in the Agulhas Recirculation Region during the late Quaternary
Salinity changes in the Agulhas leakage area recorded by stable hydrogen isotopes of C37 alkenones during Termination I and II
Mismatch between the depth habitat of planktonic foraminifera and the calibration depth of SST transfer functions may bias reconstructions
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, Hartmut Schulz, and Gerhard Schmiedl
Clim. Past, 20, 37–52, https://doi.org/10.5194/cp-20-37-2024, https://doi.org/10.5194/cp-20-37-2024, 2024
Short summary
Short summary
Climatic and associated hydrological changes controlled the aeolian versus fluvial transport processes and the composition of the sediments in the central Red Sea through the last ca. 200 kyr. We identify source areas of the mineral dust and pulses of fluvial discharge based on high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. We provide a detailed reconstruction of changes in aridity/humidity.
Elwyn de la Vega, Thomas B. Chalk, Mathis P. Hain, Megan R. Wilding, Daniel Casey, Robin Gledhill, Chongguang Luo, Paul A. Wilson, and Gavin L. Foster
Clim. Past, 19, 2493–2510, https://doi.org/10.5194/cp-19-2493-2023, https://doi.org/10.5194/cp-19-2493-2023, 2023
Short summary
Short summary
We evaluate how faithfully the boron isotope composition of foraminifera records atmospheric CO2 by comparing it to the high-fidelity CO2 record from the Antarctic ice cores. We evaluate potential factors and find that partial dissolution of foraminifera shells, assumptions of seawater chemistry, and the biology of foraminifera all have a negligible effect on reconstructed CO2. This gives confidence in the use of boron isotopes beyond the interval when ice core CO2 is available.
Taehee Lee, Devin Rand, Lorraine E. Lisiecki, Geoffrey Gebbie, and Charles Lawrence
Clim. Past, 19, 1993–2012, https://doi.org/10.5194/cp-19-1993-2023, https://doi.org/10.5194/cp-19-1993-2023, 2023
Short summary
Short summary
Understanding of past climate change depends, in part, on how accurately we can estimate the ages of events recorded in geologic archives. Here we present a new software package, called BIGMACS, to improve age estimates for paleoclimate data from ocean sediment cores. BIGMACS creates multiproxy age estimates that reduce age uncertainty by probabilistically combining information from direct age estimates, such as radiocarbon dates, and the alignment of regional paleoclimate time series.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Dakota E. Holmes, Tali L. Babila, Ulysses Ninnemann, Gordon Bromley, Shane Tyrrell, Greig A. Paterson, Michelle J. Curran, and Audrey Morley
Clim. Past, 18, 989–1009, https://doi.org/10.5194/cp-18-989-2022, https://doi.org/10.5194/cp-18-989-2022, 2022
Short summary
Short summary
Our proxy-based observations of the glacial inception following MIS 11 advance our mechanistic understanding of (and elucidates antecedent conditions that can lead to) high-magnitude climate instability during low- and intermediate-ice boundary conditions. We find that irrespective of the magnitude of climate variability or boundary conditions, the reorganization between Polar Water and Atlantic Water at subpolar latitudes appears to influence deep-water flow in the Nordic Seas.
Camille Godbillot, Fabrice Minoletti, Franck Bassinot, and Michaël Hermoso
Clim. Past, 18, 449–464, https://doi.org/10.5194/cp-18-449-2022, https://doi.org/10.5194/cp-18-449-2022, 2022
Short summary
Short summary
We test a new method to reconstruct past atmospheric CO2 levels based on the geochemistry of pelagic algal biominerals (coccoliths), which recent culture and numerical experiments have related to ambient CO2 concentrations. By comparing the isotopic composition of fossil coccoliths to the inferred surface ocean CO2 level at the time they calcified, we outline a transfer function and argue that coccolith vital effects can be used to reconstruct geological pCO2 beyond the ice core record.
André Paul, Stefan Mulitza, Rüdiger Stein, and Martin Werner
Clim. Past, 17, 805–824, https://doi.org/10.5194/cp-17-805-2021, https://doi.org/10.5194/cp-17-805-2021, 2021
Short summary
Short summary
Maps and fields of near-sea-surface temperature differences between the past and present can be used to visualize and quantify climate changes and perform simulations with climate models. We used a statistical method to map sparse and scattered data for the Last Glacial Maximum time period (23 000 to 19 000 years before present) to a regular grid. The estimated global and tropical cooling would imply an equilibrium climate sensitivity in the lower to middle part of the currently accepted range.
Leticia G. Luz, Thiago P. Santos, Timothy I. Eglinton, Daniel Montluçon, Blanca Ausin, Negar Haghipour, Silvia M. Sousa, Renata H. Nagai, and Renato S. Carreira
Clim. Past, 16, 1245–1261, https://doi.org/10.5194/cp-16-1245-2020, https://doi.org/10.5194/cp-16-1245-2020, 2020
Short summary
Short summary
Two sediment cores retrieved from the SE Brazilian continental margin were studied using multiple organic (alkenones) and inorganic (oxygen isotopes in carbonate shells and water) proxies to reconstruct the sea surface temperature (SST) over the last 50 000 years. The findings indicate the formation of strong thermal gradients in the region during the last climate transition, a feature that may become more frequent in the future scenario of global water circulation changes.
Michael Langner and Stefan Mulitza
Clim. Past, 15, 2067–2072, https://doi.org/10.5194/cp-15-2067-2019, https://doi.org/10.5194/cp-15-2067-2019, 2019
Short summary
Short summary
Collections of paleoclimate data provide valuable information on the functioning of the Earth system but are often difficult to manage due to the inconsistency of data formats and reconstruction methods. We present a software toolbox that combines a simple document-based database with functionality for the visualization and management of marine proxy data. The program allows the efficient homogenization of larger paleoceanographic data sets into quality-controlled and transparent data products.
Lukas Jonkers and Michal Kučera
Clim. Past, 15, 881–891, https://doi.org/10.5194/cp-15-881-2019, https://doi.org/10.5194/cp-15-881-2019, 2019
Short summary
Short summary
Fossil plankton assemblages have been widely used to reconstruct SST. In such approaches, full taxonomic resolution is often used. We assess whether this is required for reliable reconstructions as some species may not respond to SST. We find that only a few species are needed for low reconstruction errors but that species selection has a pronounced effect on reconstructions. We suggest that the sensitivity of a reconstruction to species pruning can be used as a measure of its robustness.
Marcus P. S. Badger, Thomas B. Chalk, Gavin L. Foster, Paul R. Bown, Samantha J. Gibbs, Philip F. Sexton, Daniela N. Schmidt, Heiko Pälike, Andreas Mackensen, and Richard D. Pancost
Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, https://doi.org/10.5194/cp-15-539-2019, 2019
Short summary
Short summary
Understanding how atmospheric CO2 has affected the climate of the past is an important way of furthering our understanding of how CO2 may affect our climate in the future. There are several ways of determining CO2 in the past; in this paper, we ground-truth one method (based on preserved organic matter from alga) against the record of CO2 preserved as bubbles in ice cores over a glacial–interglacial cycle. We find that there is a discrepancy between the two.
Patrick A. Rafter, Juan-Carlos Herguera, and John R. Southon
Clim. Past, 14, 1977–1989, https://doi.org/10.5194/cp-14-1977-2018, https://doi.org/10.5194/cp-14-1977-2018, 2018
Short summary
Short summary
Carbon’s radioactive isotope (radiocarbon) is a useful tool for oceanographers investigating carbon cycling in the modern ocean and ice age oceans (using foraminifera microfossils). Here we used sediment cores with excellent age constraints and abundant foraminifera microfossils to examine interspecies radiocarbon differences. All species demonstrate the same extreme radiocarbon depletion, and we argue that these observations represent important changes in seawater carbon chemistry.
Marijke W. de Bar, Dave J. Stolwijk, Jerry F. McManus, Jaap S. Sinninghe Damsté, and Stefan Schouten
Clim. Past, 14, 1783–1803, https://doi.org/10.5194/cp-14-1783-2018, https://doi.org/10.5194/cp-14-1783-2018, 2018
Short summary
Short summary
We present a past sea surface temperature and paleoproductivity record over the last 150 000 years for ODP Site 1234 (Chilean margin). We tested the applicability of long-chain diol proxies for the reconstrucion of SST (LDI), past upwelling conditions (diol index), and nutrient concentrations (NDI). The LDI likely reflects past temperature changes, but the diol index and NDI are perhaps more indicative of Proboscia diatom productivity rather than upwelling and/or nutrient conditions.
Bryan C. Lougheed, Brett Metcalfe, Ulysses S. Ninnemann, and Lukas Wacker
Clim. Past, 14, 515–526, https://doi.org/10.5194/cp-14-515-2018, https://doi.org/10.5194/cp-14-515-2018, 2018
Short summary
Short summary
Palaeoclimate reconstructions from deep-sea sediment archives provide valuable insight into past rapid climate change, but only a small proportion of the ocean is suitable for such reconstructions using the existing state of the art, i.e. the age–depth approach. We use dual radiocarbon (14C) and stable isotope analysis on single foraminifera to bypass the long-standing age–depth approach, thus facilitating past ocean chemistry reconstructions from vast, previously untapped ocean areas.
Lukas Jonkers and Michal Kučera
Clim. Past, 13, 573–586, https://doi.org/10.5194/cp-13-573-2017, https://doi.org/10.5194/cp-13-573-2017, 2017
Short summary
Short summary
Planktonic foraminifera – the most important proxy carriers in palaeoceanography – adjust their seasonal and vertical habitat. They are thought to do so in a way that minimises the change in their environment, implying that proxy records based on these organisms may not capture the full amplitude of past climate change. Here we demonstrate that they indeed track a particular thermal habitat and suggest that this could lead to a 40 % underestimation of reconstructed temperature change.
Timothé Bolliet, Patrick Brockmann, Valérie Masson-Delmotte, Franck Bassinot, Valérie Daux, Dominique Genty, Amaelle Landais, Marlène Lavrieux, Elisabeth Michel, Pablo Ortega, Camille Risi, Didier M. Roche, Françoise Vimeux, and Claire Waelbroeck
Clim. Past, 12, 1693–1719, https://doi.org/10.5194/cp-12-1693-2016, https://doi.org/10.5194/cp-12-1693-2016, 2016
Short summary
Short summary
This paper presents a new database of past climate proxies which aims to facilitate the distribution of data by using a user-friendly interface. Available data from the last 40 years are often fragmented, with lots of different formats, and online libraries are sometimes nonintuitive. We thus built a new dynamic web portal for data browsing, visualizing, and batch downloading of hundreds of datasets presenting a homogeneous format.
André Düsterhus, Alessio Rovere, Anders E. Carlson, Benjamin P. Horton, Volker Klemann, Lev Tarasov, Natasha L. M. Barlow, Tom Bradwell, Jorie Clark, Andrea Dutton, W. Roland Gehrels, Fiona D. Hibbert, Marc P. Hijma, Nicole Khan, Robert E. Kopp, Dorit Sivan, and Torbjörn E. Törnqvist
Clim. Past, 12, 911–921, https://doi.org/10.5194/cp-12-911-2016, https://doi.org/10.5194/cp-12-911-2016, 2016
Short summary
Short summary
This review/position paper addresses problems in creating new interdisciplinary databases for palaeo-climatological sea-level and ice-sheet data and gives an overview on new advances to tackle them. The focus therein is to define and explain strategies and highlight their importance to allow further progress in these fields. It also offers important insights into the general problem of designing competitive databases which are also applicable to other communities within the palaeo-environment.
X. Shi, Y. Wu, J. Zou, Y. Liu, S. Ge, M. Zhao, J. Liu, A. Zhu, X. Meng, Z. Yao, and Y. Han
Clim. Past, 10, 1735–1750, https://doi.org/10.5194/cp-10-1735-2014, https://doi.org/10.5194/cp-10-1735-2014, 2014
D. K. Naik, R. Saraswat, N. Khare, A. C. Pandey, and R. Nigam
Clim. Past, 10, 745–758, https://doi.org/10.5194/cp-10-745-2014, https://doi.org/10.5194/cp-10-745-2014, 2014
S. Kasper, M. T. J. van der Meer, A. Mets, R. Zahn, J. S. Sinninghe Damsté, and S. Schouten
Clim. Past, 10, 251–260, https://doi.org/10.5194/cp-10-251-2014, https://doi.org/10.5194/cp-10-251-2014, 2014
R. J. Telford, C. Li, and M. Kucera
Clim. Past, 9, 859–870, https://doi.org/10.5194/cp-9-859-2013, https://doi.org/10.5194/cp-9-859-2013, 2013
Cited articles
Balmaseda, M. A., Mogensen, K., and Weaver, A. T.: Evaluation of
the ECMWF ocean reanalysis system ORAS4, Q. J. Roy.
Meteorol. Soc., 139, 1132–1161, 2013.
Bard, E.: Paleoceanographic implications of the difference in deep-sea
sediment mixing between large and fine particles, Paleoceanography, 16,
235–239, 2001.
Bard, E., Arnold, M., Duprat, J., Moyes, J., and Duplessy, J.-C.:
Reconstruction of the last deglaciation: deconvolved records of δ18O profiles, micropaleontological variations and accelerator mass
spectrometric 14C dating, Clim. Dynam., 1, 101–112, 1987.
Bauch, D., Darling, K., Simstich, J., Bauch, H. A., Erlenkeuser, H., and
Kroon, D.: Palaeoceanographic implications of genetic variation in living
North Atlantic N. pachyderma, Nature, 424, 299–302, 2003.
Berger, W. H.: Deep-sea carbonate and the deglaciation preservation spike in pteropods and foraminifera, Nature, 269, 301–304, 1977.
Billups, K. and Spero, H. J.: Reconstructing the stable isotope geochemistry
and paleotemperatures of the equatorial Atlantic during the last 150 000
years: Results from individual foraminifera, Paleoceanography, 11, 217–238, https://doi.org/10.1029/95PA03773,
1996.
Breitenbach, S. F. M. and Bernasconi, S. M.: Carbon and oxygen isotope
analysis of small carbonate samples (20 to 100 µg) with a GasBench II
preparation device, Rap. Commun. Mass Spec., 25,
1910–1914, 2011.
Brummer, G.-J. A., Hemleben, C., and Spindler, M.: Planktonic foraminiferal
ontogeny and new perspectives for micropalaeontology, Nature, 319, 50–52,
1986.
Brummer, G.-J. A., Hemleben, C., and Spindler, M.: Ontogeny of extant
spinose planktonic foraminifera (Globigerinidae): A concept exemplified by
Globigerinoides sacculifer (Brady) and G. ruber (d'Orbigny), Mar. Micropaleontol., 12, 357–381, 1987.
Brummer, G.-J. A., Metcalfe, B., Feldmeijer, W., Prins, M. A., van 't Hoff, J., and Ganssen, G. M.: Modal shift in North Atlantic seasonality during the last deglaciation (Version 1) [Data set], Climate of the Past, Zenodo, https://doi.org/10.5281/zenodo.3604118, 2020.
Darling, K., Wade, C. M., Steward, I. A., Kroon, D., Dingle, R., and Leigh
Brown, A. J.: Molecular evidence for genetic mixing of Arctic and Antarctic
subpolar populations of planktonic foraminifers, Nature, 405, 43–47, 2000.
Darling, K. F., Kučera, M., Kroon, D., and Wade, C. M.: A resolution for
the coiling direction paradox in Neogloboquadrina pachyderma, Paleoceanography, 21, PA2011, https://doi.org/10.1029/2005PA001189 2006.
Dempster, A. P., Laird, N. M., and Rubin, D. B.: Maximum likelihood from
incomplete data via the EM algorithm, J. Roy. Stat.
Soc. B, 39, 1–38, 1977.
Duplessy, J. C., Labeyrie, L., Juilletleclerc, A., Maitre, F., Duprat, J.,
and Sarnthein, M.: Surface salinity reconstruction of the north-atlantic
ocean during the last glacial maximum, Oceanologica Acta, 14, 311–324, 1991.
Duplessy, J. C., Labeyrie, L., Arnold, M., Paterne, M., Duprat, J., and van
Weering, T. C. E.: Changes in surface salinity of the North Atlantic Ocean
during the last deglaciation, Nature, 358, 485–488, 1992.
Duplessy, J. C., Labeyrie, L., and Paterne, M.: North Atlantic sea surface
conditions during the Younger Dryas cold event, in: Late Quarternary
Palaeoceanography of the North Atlantic Margins, edited by: Andrews, J. T., Austin, W.
E. N., Bergsten, H., and Jennings, A. E., Geological Society Special
Publication, 1996.
Emiliani, C.: Depth habitats of some species of pelagic foraminifera as
indicated by oxygen isotope ratios, Am. J. Sci., 252,
149–158, 1954.
Epstein, S. and Mayeda, T.: Variation of O18 content of waters from
natural sources, Geochim. Cosmochim. Acta, 4, 213–224, 1953.
Falkowski, P. G. and Oliver, M. J.: Mix and match: how climate selects phytoplankton, Nat. Rev. Microbiol., 5, 813–819, https://doi.org/10.1038/nrmicro1751, 2007.
Feldmeijer, W., Metcalfe, B., Brummer, G. J. A., and Ganssen, G. M.:
Reconstructing the depth of the permanent thermocline through the morphology
and geochemistry of the deep dwelling planktonic foraminifer Globorotalia truncatulinoides,
Paleoceanography, 30, 1–22, 2015.
Frew, R. D., Dennis, P. F., Heywood, K. J., Meredith, M. P., and Boswell, S. M.:
The oxygen isotope composition of water masses in the northern North
Atlantic, Deep-Sea Res. I, 47, 2265–2286, 2000.
Fritz-Endres, T., Dekens, P. S., Fehnrenbacher, J., Spero, H. J., and Stine,
A.: Application of individual foraminifera Mg∕Ca and δ18O analyses
for paleoceanographic reconstruction in active depositional environments,
Paleoceanogr. Paleoclimatol., 34, 1610–1624, https://doi.org/10.1029/2019PA003633, 2019.
Ganssen, G. M. and Kroon, D.: The isotopic signature of planktonic
foraminifera from NE Atlantic surface sediments: implications for the
reconstruction of past oceanic conditions, J. Geol.
Soc., 157, 693–699, 2000.
Ganssen, G. M., Peeters, F. J. C., Metcalfe, B., Anand, P., Jung, S. J. A., Kroon, D., and Brummer, G.-J. A.: Quantifying sea surface temperature ranges of the Arabian Sea for the past 20 000 years, Clim. Past, 7, 1337–1349, https://doi.org/10.5194/cp-7-1337-2011, 2011.
Grant, K., Rohling, E., Bar-Matthews, M., Ayalon, A., Medina-Elizalde, M., Bronk Ramsey, C., Satow, C., and Roberts, A. P.: Rapid coupling between ice volume and polar temperature over the past 150,000 years, Nature, 491, 744–747, https://doi.org/10.1038/nature11593, 2012.
Groeneveld, J., Ho, S. L., Mackensen, A., Mohtadi, M., and Laepple, T.:
Deciphering the variability in Mg∕Ca and stable oxygen isotopesof individual
foraminifera, Paleoceanogr. Paleoclimatol., https://doi.org/10.1029/2018PA003533, 2019.
Gruber, N., Keeling, C. D., and Bates, N. R.: Interannual Variability in the
North Atlantic Ocean Carbon Sink, Science, 298, 2374–2378, 2002.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological
Statistics software package for education and data analysis, Palaeontologica
Electronica, 4, 9 pp., 2001.
Hemleben, C., Spindler, M., Breitinger, I., and Deuser, W. G.: Field and
laboratory studies on the ontogeny and ecology of some globorotaliid species
from the Sargasso Sea off Bermuda, J. Foramin. Res.,
15, 254–272, 1985.
Huybers, P.: Early Pleistocene Glacial Cycles and the Integrated Summer
Insolation Forcing, Science, 313, 508–511, 2006.
Jones, G. A. and Ruddiman, W. F.: Assessing the Global Meltwater Spike, Quarternary Res., 17, 148–172, https://doi.org/10.1016/0033-5894(82)90056-4, 1982.
Jonkers, L. and Kučera, M.: Global analysis of seasonality in the shell flux of extant planktonic Foraminifera, Biogeosciences, 12, 2207–2226, https://doi.org/10.5194/bg-12-2207-2015, 2015.
Jonkers, L., Brummer, G. J. A., Peeters, F. J. C., van Aken, H. M., and De
Jong, M. F.: Seasonal stratification, shell flux, and oxygen isotope
dynamics of left-coiling N. pachyderma and T. quinqueloba in the western subpolar North Atlantic, Paleoceanography, 25, PA2204, https://doi.org/10.1029/2009PA001849 2010.
Jonkers, L., van Heuven, S., Zahn, R., and Peeters, F. J. C.: Seasonal patterns of shell flux, δ18O and δ13C of small and large N. pachyderma (s) and G. bulloides in the subpolar North Atlantic, Paleoceanography, 28, 164–174, https://doi.org/10.1002/palo.20018, 2013.
Killingley, J. S., Johnson, R. F., and Berger, W. H.: Oxygen and carbon isotopes of individual shells of planktonic foraminifera from Ontong-Java Plateau, Equatorial Pacific, Palaeogeogr. Palaeocl., 33, 193–204, 1981.
Kohfeld, K. E., Fairbanks, R. G., Smith, S. L., and Walsh, I. D.: Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments, Paleoceanography, 11, 679–699, 1996, https://doi.org/10.1029/96PA02617, 1996.
Koutavas, A. and Joanides, S.: El Niño–Southern Oscillation extrema in
the Holocene and Last Glacial Maximum, Paleoceanography, 27, PA4208,
https://doi.org/10.1029/2012PA002378, 2012.
Koutavas, A., deMenocal, P. B., Olive, G. C., and Lynch-Stieglitz, J.:
Mid-Holocene El Niño–Southern Oscillation (ENSO) attenuation revealed
by individual foraminifera in eastern tropical Pacific sediments, Geology,
34, 993, https://doi.org/10.1130/G22810A.1, 2006.
Kozdon, R., Ushikubo, T., Kita, N. T., Spicuzza, M., and Valley, J. W.:
Intratest oxygen isotope variability in the planktonic foraminifer N. pachyderma: Real
vs. apparent vital effects by ion microprobe, Chem. Geol., 258,
327–337, 2009.
Kretschmer, K., Kucera, M., and Schulz, M.: Modeling the distribution and
seasonality of Neogloboquadrina pachyderma in the North Atlantic Ocean during Heinrich Stadial 1,
Paleoceanography, 31, 986–1010, 2016.
Kroon, D., Austin, W. E. N., Chapman, M. R., and Ganssen, G. M.: Deglacial
surface circulation changes in the northeastern Atlantic: Temperature and
salinity records off NW Scotland on a century scale, Paleoceanography, 12,
755–763, 1997.
Kučera, M. and Darling, K. F.: Cryptic species of planktonic
foraminifera: their effect on palaeoceanographic reconstructions,
Philos. T. Roy. Soc. A, 360, 695–718, 2002.
Kučera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C., and
Weinelt, M.: Multiproxy approach for the reconstruction of the glacial ocean
surface (MARGO), Quaternary Sci. Rev., 24, 813–819, 2005.
Leduc, G., Vidal, L., Cartapanis, O., and Bard, E.: Modes of eastern equatorial Pacific thermocline variability: Implications for ENSO dynamics over the last glacial period, Paleoceanography, 24, PA3202, https://doi.org/10.1029/2008PA001701, 2009.
Lototskaya, A. and Ganssen, G. M.: The structure of Termination II
(penultimate deglaciation and Eemian) in the North Atlantic, Quaternary
Sci. Rev., 18, 1641–1654, 1999.
Lougheed, B. C. and Obrochta, S.: MatCal: Open Source Bayesian 14C
Age Calibration in Matlab, J. Open Res. Softw., 4, e42, https://doi.org/10.5334/jors.130, 2016.
Lougheed, B. C., Metcalfe, B., Ninnemann, U. S., and Wacker, L.: Moving beyond the age–depth model paradigm in deep-sea palaeoclimate archives: dual radiocarbon and stable isotope analysis on single foraminifera, Clim. Past, 14, 515–526, https://doi.org/10.5194/cp-14-515-2018, 2018.
Löwemark, L.: Importance and Usefulness of Trace fossils and
Bioturbation in Paleoceanography, in: Trace Fossils: Concepts, Problems,
Prospects, edited by: Miller, W., Elsevier, Amsterdam, 2007.
Löwemark, L. and Grootes, P. M.: Large age differences between planktic
foraminifers caused by abundance variations and Zoophycos bioturbation, Paleoceanography, 19, PA2001, https://doi.org/10.1029/2003PA000949, 2004.
Löwemark, L., Konstantinou, K. I., and Steinke, S.: Bias in
foraminiferal multispecies reconstructions of paleohydrographic conditions
caused by foraminiferal abundance variations and bioturbational mixing: A
model approach, Mar. Geol., 256, 101–106, 2008.
Mikis, A., Hendry, K. R., Pike, J., Schmidt, D. N., Edgar, K. M., Peck, V., Peeters, F. J. C., Leng, M. J., Meredith, M. P., Todd, C. L., Stammerjohn, S., and Ducklow, H.: Temporal variability in foraminiferal morphology and geochemistry at the West Antarctic Peninsula: a sediment trap study, Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019, 2019.
Metcalfe, B., Feldmeijer, W., de Vringer-Picon, M., Brummer, G.-J. A., Peeters, F. J. C., and Ganssen, G. M.: Late Pleistocene glacial–interglacial shell-size–isotope variability in planktonic foraminifera as a function of local hydrography, Biogeosciences, 12, 4781–4807, https://doi.org/10.5194/bg-12-4781-2015, 2015.
Metcalfe, B., Feldmeijer, W., and Ganssen, G. M.: Oxygen isotope variability of planktonic foraminifera provide clues to past upper ocean seasonal variability, Paleoceanography and Paleoclimatology, 34, 374–393, https://doi.org/10.1029/2018PA003475, 2019.
Mix, A. C.: The oxygen-isotope record of deglaciation, in: North America and
adjacent oceans during the last deglaciation, in: The Geology of America,
edited by: Ruddiman, W. F. and Wright, H. E. J., Geological Society of America,
Boulder, Colorado, 1987.
Morard, R., Reinelt, M., Chiessi, C. M., Groeneveld, J., and Kucera, M.:
Tracing shifts of oceanic fronts using the cryptic diversity of the
planktonic foraminifera Globorotalia inflata, Paleoceanography, 31, 1193–1205, 2016.
Mulitza, S., Dürkoop, A., Hale, W., Wefer, G., and Niebler, H. S.:
Planktonic foraminifera as recorders of past surface-water stratification,
Geology, 25, 335–338, 1997.
Oba, T.: Paleoceanographic information obtained by the isotopic measurement of individual foraminiferal specimens, in: Proceedings First International Conference Asian Marine Geology, Shanghai, 1988, China Ocean Press, Beijing, 169–180, 1990.
Oba, T.: Oxygen and carbon isotopic composition of planktonic foraminifera tests collected with sediment traps from the Japan Trench, La mer – Societe franco-japonaise d’oceanographie, 29, 190–192, 1991.
Pearson, P.: Oxygen isotopes in foraminifera: Overview and historical
review, Reconstructing Earth's Deep-Time Climate – The State of the Art in
2012, Paleontological Society Short Course, 1–38, 2012.
Peeters, F. J. C., Ivanova, E., Conan, S. M. H., Brummer, G.-J. A., Ganssen,
G. M., Troelstra, S., and van Hinte, J.: A size analysis of planktic
foraminifera from the Arabian Sea, Mar. Micropaleontol., 36, 31–63,
1999.
Pracht, H., Metcalfe, B., and Peeters, F. J. C.: Oxygen isotope composition of the final chamber of planktic foraminifera provides evidence of vertical migration and depth-integrated growth, Biogeosciences, 16, 643–661, https://doi.org/10.5194/bg-16-643-2019, 2019.
Rasmussen, S. O., Seierstad, I. K., Andersen, K. K., Bigler, M.,
Dahl-Jensen, D., and Johnsen, S. J.: Synchronization of the NGRIP, GRIP, and
GISP2 ice cores across MIS 2 and palaeoclimatic implications, Quaternary
Sci. Rev., 27, 18–28, 2008.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk
Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., and Friedrich, M.:
IntCal13 and Marine13 Radiocarbon age calibration curves 0–50,000 years cal
BP, Radiocarbon, 55, 1869–1887, 2013.
Reynolds, C. E., Richey, J. N., Fehrenbacher, J. S., Rosenheim, B. E., and
Spero, H. J.: Environmental controls on the geochemistry of Globorotalia truncatulinoides in the Gulf of Mexico: Implications for paleoceanographic
reconstructions, Mar. Micropaleontol., 142, 92–104, 2018.
Richter, T. O., van der Gaast, S., Koster, B., Vaars, A., Gieles, R., de
Stigter, H. C., De Haas, H., and van Weering, T. C. E.: The Avaatech XRF
Core Scanner: technical description and applications to NE Atlantic
sediments, Geol. Soc. London Spec. Publ., 267, 39–50,
2006.
Roche, D. M., Waelbroeck, C., Metcalfe, B., and Caley, T.: FAME (v1.0): a simple module to simulate the effect of planktonic foraminifer species-specific habitat on their oxygen isotopic content, Geosci. Model Dev., 11, 3587–3603, https://doi.org/10.5194/gmd-11-3587-2018, 2018.
Schiffelbein, P. and Hills, S.: Direct assessment of stable isotope variability in planktonic foraminifera populations, Palaeogeography, Palaeoclimatology, Palaeoecology, 48, 197–213, https://doi.org/10.1016/0031-0182(84)90044-0, 1984.
Schmidt, D. N., Renaud, S., Bollmann, J., Schiebel, R., and Thierstein, H.
R.: Size distribution of Holocene planktic foraminifer assemblages:
biogeography, ecology and adaptation, Mar. Micropaleontol., 50, 319–338,
2004a.
Schmidt, D. N., Thierstein, H. R., Bollmann, J., and Schiebel, R.: Abiotic
Forcing of Plankton Evolution in the Cenozoic, Science, 303, 207–210, 2004b.
Schmittner, A., Urban, N. M., Shakun, J. D., Mahowald, N. M., Clark, P. U.,
Bartlein, P. J., Mix, A. C., and Rosell-Melé, A.: Climate sensitivity
estimated from temperature reconstructions of the Last Glacial Maximum,
Science, 334, 1385–1388, 2011.
Scussolini, P., van Sebille, E., and Durgadoo, J. V.: Paleo Agulhas rings enter the subtropical gyre during the penultimate deglaciation, Clim. Past, 9, 2631–2639, https://doi.org/10.5194/cp-9-2631-2013, 2013.
Shackleton, N. J.: Oxygen isotopes, ice volume and sea level, Quaternary Sci. Rev., 6, 183–190, https://doi.org/10.1016/0277-3791(87)90003-5, 1987.
Spötl, C. and Vennemann, T. W.: Continuous-flow isotope ratio mass
spectrometric analysis of carbonate minerals, Rapid Commun. Mass
Spectrom., 17, 1004–1006, 2003.
Steinhardt, J., de Nooijer, L., Brummer, G.-J. A., and Reichart, G. J.:
Profiling planktonic foraminiferal crust formation, Geochem.
Geophys. Geosy., 16, 2409–2430, 2015.
Straub, M., Tremblay, M. M., Sigman, D. M., Studer, A. S., Ren, H.,
Toggweiler, J. R., and Haug, G. H.: Nutrient conditions in the subpolar
North Atlantic during the last glacial period reconstructed from
foraminifera-bound nitrogen isotopes, Paleoceanography, 28, 79–90, 2013.
Takagi, H., Moriya, K., Ishimura, T., Suzuki, A., Kawahata, H., and Hirano,
H.: Exploring photosymbiotic ecology of planktc foraminifers from
chamber-by-chamber isotopic history of individual foraminifers,
Paleobiology, 41, 108–121, 2015.
Takagi, H., Moriya, K., Ishimura, T., Suzuki, A., Kawahata, H., and Hirano,
H.: Individual migration pathways of modern planktic foraminifers:
Chamber-by-chamber assessment of stable isotopes, Paleontol. Res.,
20, 268–284, 2016.
van Sebille, E., Scussolini, P., Durgadoo, J. V., Peeters, F. J. C., Biastoch,
A., Weijer, W., Turney, C., Paris, C. B., and Zahn R.: Ocean currents
generate large footprints in marine palaeoclimate proxies, Nat.
Commun., 6, 6521, https://doi.org/10.1038/ncomms7521, 2015.
Waelbroeck, C., Duplessy, J.-C., Michel, E., Labeyrie, L., Paillard, D., and
Duprat, J.: The timing of the last deglaciation in North Atlantic climate
records, Nature, 412, 724–727, 2001.
Waelbroeck, C., Labeyrie, L., Michel, E. , Duplessy, J. C., McManus, J. F., Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records, Quaternary Sci. Rev., 21, 295–305, https://doi.org/10.1016/S0277-3791(01)00101-9, 2002.
Waelbroeck, C., Mulitza, S., Spero, H., Dokken, T., Kiefer, T., and Cortijo,
E.: A global compilation of late Holocene planktonic foraminiferal 18O:
relationship between surface water temperature and 18O, Quaternary
Sci. Rev., 24, 853–868, 2005.
Weltje, G. J.: End-member modeling of compositional data:
Numerical-statistical algorithms for solving the explicit mixing problem,
Mathemat. Geol., 29, 503–549, 1997.
Weltje, G. J. and Prins, M. A.: Muddled or mixed? Inferring palaeoclimate
from size distributions of deep-sea clastics, Sediment. Geol., 162,
39–62, 2003.
Weltje, G. J. and Tjallingii, R.: Calibration of XRF core scanners for
quantitative geochemical logging of sediment cores: Theory and application,
Earth Planet. Sc. Lett., 274, 423–438, 2008.
Wit, J. C., Reichart, G. J. A., Jung, S. J., and Kroon, D.: Approaches to
unravel seasonality in sea surface temperatures using paired single-specimen
foraminiferal δ18O and Mg∕Ca analyses, Paleoceanography, 25, PA4220, https://doi.org/10.1029/2009PA001857, 2010.
Wit, J. C., Reichart, G. J., and Ganssen, G. M.: Unmixing of stable isotope
signals using single specimen δ18O analyses, Geochem.
Geophys. Geosy., 14, 1312–1320, 2013.
Wolfteich, C. M.: Satellite-derived sea surface temperature, mesoscale
variability, and foraminiferal production in the North Atlantic, M.Sc.,
Massachusetts Institute of Technology/Woodshole Oceanographic Institution,
1994, 80 pp., 1994.
Short summary
Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope composition between individual shells of the commonly used (sub)polar planktonic foraminifera species in ocean-climate reconstruction, N. pachyderma and G. bulloides. Single-specimen isotope measurements during the deglacial period revealed a surprising bimodality, the cause of which was investigated.
Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope...