Articles | Volume 15, issue 2
https://doi.org/10.5194/cp-15-849-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/cp-15-849-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Low terrestrial carbon storage at the Last Glacial Maximum: constraints from multi-proxy data
Aurich Jeltsch-Thömmes
CORRESPONDING AUTHOR
Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Gianna Battaglia
Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Olivier Cartapanis
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Institute of Geological Sciences, University of Bern, Bern, Switzerland
Samuel L. Jaccard
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Institute of Geological Sciences, University of Bern, Bern, Switzerland
Fortunat Joos
Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Related authors
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang T. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
Markus Adloff, Aurich Jeltsch-Thömmes, Frerk Pöppelmeier, Thomas F. Stocker, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-1754, https://doi.org/10.5194/egusphere-2024-1754, 2024
Short summary
Short summary
We used an Earth system model to simulate how different processes changed the amount of carbon in the ocean and atmosphere over the last eight glacial cycles. We found that the effects of interactive marine sediments enlarge the carbon fluxes that result from these processes, especially in the ocean. Comparison with proxy data showed that no single process explains the global carbon cycle changes over glacial cycles, but individual processes can dominate regional and proxy-specific changes.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Markus Adloff, Frerk Pöppelmeier, Aurich Jeltsch-Thömmes, Thomas F. Stocker, and Fortunat Joos
Clim. Past, 20, 1233–1250, https://doi.org/10.5194/cp-20-1233-2024, https://doi.org/10.5194/cp-20-1233-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an ocean current that transports heat into the North Atlantic. Over the ice age cycles, AMOC strength and its spatial pattern varied. We tested the role of heat forcing for these AMOC changes by simulating the temperature changes of the last eight glacial cycles. In our model, AMOC shifts between four distinct circulation modes caused by heat and salt redistributions that reproduce reconstructed long-term North Atlantic SST changes.
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Anne L. Morée, Jörg Schwinger, Ulysses S. Ninnemann, Aurich Jeltsch-Thömmes, Ingo Bethke, and Christoph Heinze
Clim. Past, 17, 753–774, https://doi.org/10.5194/cp-17-753-2021, https://doi.org/10.5194/cp-17-753-2021, 2021
Short summary
Short summary
This modeling study of the Last Glacial Maximum (LGM, ~ 21 000 years ago) ocean explores the biological and physical changes in the ocean needed to satisfy marine proxy records, with a focus on the carbon isotope 13C. We estimate that the LGM ocean may have been up to twice as efficient at sequestering carbon and nutrients at depth as compared to preindustrial times. Our work shows that both circulation and biogeochemical changes must have occurred between the LGM and preindustrial times.
Frerk Pöppelmeier, Jeemijn Scheen, Aurich Jeltsch-Thömmes, and Thomas F. Stocker
Clim. Past, 17, 615–632, https://doi.org/10.5194/cp-17-615-2021, https://doi.org/10.5194/cp-17-615-2021, 2021
Short summary
Short summary
The stability of the Atlantic Meridional Overturning Circulation (AMOC) critically depends on its mean state. We simulate the response of the AMOC to North Atlantic freshwater perturbations under different glacial boundary conditions. We find that a closed Bering Strait greatly increases the AMOC's sensitivity to freshwater hosing. Further, the shift from mono- to bistability strongly depends on the chosen boundary conditions, with weaker circulation states exhibiting more abrupt transitions.
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Short summary
The Zero Emissions Commitment (ZEC) is the change in global temperature expected to occur following the complete cessation of CO2 emissions. Here we use 18 climate models to assess the value of ZEC. For our experiment we find that ZEC 50 years after emissions cease is between −0.36 to +0.29 °C. The most likely value of ZEC is assessed to be close to zero. However, substantial continued warming for decades or centuries following cessation of CO2 emission cannot be ruled out.
Aurich Jeltsch-Thömmes and Fortunat Joos
Clim. Past, 16, 423–451, https://doi.org/10.5194/cp-16-423-2020, https://doi.org/10.5194/cp-16-423-2020, 2020
Short summary
Short summary
Perturbations in atmospheric CO2 and in its isotopic composition, e.g., in response to carbon release from the land biosphere or from fossil fuel burning, evolve differently in time. We use an Earth system model of intermediate complexity to show that fluxes to and from the solid Earth play an important role in removing these perturbations from the atmosphere over thousands of years.
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang T. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
Fortunat Joos, Sebastian Lienert, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2024-1972, https://doi.org/10.5194/egusphere-2024-1972, 2024
Short summary
Short summary
How plants regulate their exchange of CO2 and water with the atmosphere under global warming is critical for their carbon uptake and their cooling influence. We analyze the isotope ratio of atmospheric CO2 and detect no significant decadal trends in the seasonal cycle amplitude. The data are consistent with the regulation towards leaf CO2 and intrinsic water use efficiency to grow proportionally to atmospheric CO2, in contrast to recent suggestions of downregulation of CO2 and water fluxes.
Markus Adloff, Aurich Jeltsch-Thömmes, Frerk Pöppelmeier, Thomas F. Stocker, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-1754, https://doi.org/10.5194/egusphere-2024-1754, 2024
Short summary
Short summary
We used an Earth system model to simulate how different processes changed the amount of carbon in the ocean and atmosphere over the last eight glacial cycles. We found that the effects of interactive marine sediments enlarge the carbon fluxes that result from these processes, especially in the ocean. Comparison with proxy data showed that no single process explains the global carbon cycle changes over glacial cycles, but individual processes can dominate regional and proxy-specific changes.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Xi Yi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1584, https://doi.org/10.5194/egusphere-2024-1584, 2024
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 per year in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Markus Adloff, Frerk Pöppelmeier, Aurich Jeltsch-Thömmes, Thomas F. Stocker, and Fortunat Joos
Clim. Past, 20, 1233–1250, https://doi.org/10.5194/cp-20-1233-2024, https://doi.org/10.5194/cp-20-1233-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an ocean current that transports heat into the North Atlantic. Over the ice age cycles, AMOC strength and its spatial pattern varied. We tested the role of heat forcing for these AMOC changes by simulating the temperature changes of the last eight glacial cycles. In our model, AMOC shifts between four distinct circulation modes caused by heat and salt redistributions that reproduce reconstructed long-term North Atlantic SST changes.
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernadello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-488, https://doi.org/10.5194/egusphere-2024-488, 2024
Short summary
Short summary
We apply the Adaptive Emission Reduction Approach with Earth System Models to provide simulations in which all ESMs converge at 1.5 °C and 2 °C warming levels. These simulations provide compatible emission pathways for a given warming level, uncovering uncertainty ranges previously missing in the CMIP scenarios. This new type of target-based emission-driven simulations offers a more coherent assessment across ESMs for studying both the carbon cycle and impacts under climate stabilization.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, Almut Arneth, Stefanie Falk, Atul K. Jain, Fortunat Joos, Daniel Kennedy, Jürgen Knauer, Stephen Sitch, Michael O'Sullivan, Naiqing Pan, Qing Sun, Hanqin Tian, Nicolas Vuichard, and Sönke Zaehle
Earth Syst. Dynam., 14, 767–795, https://doi.org/10.5194/esd-14-767-2023, https://doi.org/10.5194/esd-14-767-2023, 2023
Short summary
Short summary
Nitrogen (N) is an essential limiting nutrient to terrestrial carbon (C) sequestration. We evaluate N cycling in an ensemble of terrestrial biosphere models. We find that variability in N processes across models is large. Models tended to overestimate C storage per unit N in vegetation and soil, which could have consequences for projecting the future terrestrial C sink. However, N cycling measurements are highly uncertain, and more are necessary to guide the development of N cycling in models.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Helen Eri Amsler, Lena Mareike Thöle, Ingrid Stimac, Walter Geibert, Minoru Ikehara, Gerhard Kuhn, Oliver Esper, and Samuel Laurent Jaccard
Clim. Past, 18, 1797–1813, https://doi.org/10.5194/cp-18-1797-2022, https://doi.org/10.5194/cp-18-1797-2022, 2022
Short summary
Short summary
We present sedimentary redox-sensitive trace metal records from five sediment cores retrieved from the SW Indian Ocean. These records are indicative of oxygen-depleted conditions during cold periods and enhanced oxygenation during interstadials. Our results thus suggest that deep-ocean oxygenation changes were mainly controlled by ocean ventilation and that a generally more sluggish circulation contributed to sequestering remineralized carbon away from the atmosphere during glacial periods.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Frerk Pöppelmeier, David J. Janssen, Samuel L. Jaccard, and Thomas F. Stocker
Biogeosciences, 18, 5447–5463, https://doi.org/10.5194/bg-18-5447-2021, https://doi.org/10.5194/bg-18-5447-2021, 2021
Short summary
Short summary
Chromium (Cr) is a redox-sensitive element that holds promise as a tracer of ocean oxygenation and biological activity. We here implemented the oxidation states Cr(III) and Cr(VI) in the Bern3D model to investigate the processes that shape the global Cr distribution. We find a Cr ocean residence time of 5–8 kyr and that the benthic source dominates the tracer budget. Further, regional model–data mismatches suggest strong Cr removal in oxygen minimum zones and a spatially variable benthic source.
Loïc Schmidely, Christoph Nehrbass-Ahles, Jochen Schmitt, Juhyeong Han, Lucas Silva, Jinwha Shin, Fortunat Joos, Jérôme Chappellaz, Hubertus Fischer, and Thomas F. Stocker
Clim. Past, 17, 1627–1643, https://doi.org/10.5194/cp-17-1627-2021, https://doi.org/10.5194/cp-17-1627-2021, 2021
Short summary
Short summary
Using ancient gas trapped in polar glaciers, we reconstructed the atmospheric concentrations of methane and nitrous oxide over the penultimate deglaciation to study their response to major climate changes. We show this deglaciation to be characterized by modes of methane and nitrous oxide variability that are also found during the last deglaciation and glacial cycle.
Jurek Müller and Fortunat Joos
Biogeosciences, 18, 3657–3687, https://doi.org/10.5194/bg-18-3657-2021, https://doi.org/10.5194/bg-18-3657-2021, 2021
Short summary
Short summary
We present long-term projections of global peatland area and carbon with a continuous transient history since the Last Glacial Maximum. Our novel results show that large parts of today’s northern peatlands are at risk from past and future climate change, with larger emissions clearly connected to larger risks. The study includes comparisons between different emission and land-use scenarios, driver attribution through factorial simulations, and assessments of uncertainty from climate forcing.
Anne L. Morée, Jörg Schwinger, Ulysses S. Ninnemann, Aurich Jeltsch-Thömmes, Ingo Bethke, and Christoph Heinze
Clim. Past, 17, 753–774, https://doi.org/10.5194/cp-17-753-2021, https://doi.org/10.5194/cp-17-753-2021, 2021
Short summary
Short summary
This modeling study of the Last Glacial Maximum (LGM, ~ 21 000 years ago) ocean explores the biological and physical changes in the ocean needed to satisfy marine proxy records, with a focus on the carbon isotope 13C. We estimate that the LGM ocean may have been up to twice as efficient at sequestering carbon and nutrients at depth as compared to preindustrial times. Our work shows that both circulation and biogeochemical changes must have occurred between the LGM and preindustrial times.
Frerk Pöppelmeier, Jeemijn Scheen, Aurich Jeltsch-Thömmes, and Thomas F. Stocker
Clim. Past, 17, 615–632, https://doi.org/10.5194/cp-17-615-2021, https://doi.org/10.5194/cp-17-615-2021, 2021
Short summary
Short summary
The stability of the Atlantic Meridional Overturning Circulation (AMOC) critically depends on its mean state. We simulate the response of the AMOC to North Atlantic freshwater perturbations under different glacial boundary conditions. We find that a closed Bering Strait greatly increases the AMOC's sensitivity to freshwater hosing. Further, the shift from mono- to bistability strongly depends on the chosen boundary conditions, with weaker circulation states exhibiting more abrupt transitions.
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021, https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
Jurek Müller and Fortunat Joos
Biogeosciences, 17, 5285–5308, https://doi.org/10.5194/bg-17-5285-2020, https://doi.org/10.5194/bg-17-5285-2020, 2020
Short summary
Short summary
We present an in-depth model analysis of transient peatland area and carbon dynamics over the last 22 000 years. Our novel results show that the consideration of both gross positive and negative area changes are necessary to understand the transient evolution of peatlands and their net effect on atmospheric carbon. The study includes the attributions to drivers through factorial simulations, assessments of uncertainty from climate forcing, and determination of the global net carbon balance.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Ashley Dinauer, Florian Adolphi, and Fortunat Joos
Clim. Past, 16, 1159–1185, https://doi.org/10.5194/cp-16-1159-2020, https://doi.org/10.5194/cp-16-1159-2020, 2020
Short summary
Short summary
Despite intense focus on the ~ 190 ‰ drop in Δ14C across the deglacial
mystery interval, the specific mechanisms responsible for the apparent Δ14C excess in the glacial atmosphere have received considerably less attention. Sensitivity experiments with the computationally efficient Bern3D Earth system model suggest that our inability to reproduce the elevated Δ14C levels during the last glacial may reflect an underestimation of 14C production and/or a biased-high reconstruction of Δ14C.
Fortunat Joos, Renato Spahni, Benjamin D. Stocker, Sebastian Lienert, Jurek Müller, Hubertus Fischer, Jochen Schmitt, I. Colin Prentice, Bette Otto-Bliesner, and Zhengyu Liu
Biogeosciences, 17, 3511–3543, https://doi.org/10.5194/bg-17-3511-2020, https://doi.org/10.5194/bg-17-3511-2020, 2020
Short summary
Short summary
Results of the first globally resolved simulations of terrestrial carbon and nitrogen (N) cycling and N2O emissions over the past 21 000 years are compared with reconstructed N2O emissions. Modelled and reconstructed emissions increased strongly during past abrupt warming events. This evidence appears consistent with a dynamic response of biological N fixation to increasing N demand by ecosystems, thereby reducing N limitation of plant productivity and supporting a land sink for atmospheric CO2.
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Short summary
The Zero Emissions Commitment (ZEC) is the change in global temperature expected to occur following the complete cessation of CO2 emissions. Here we use 18 climate models to assess the value of ZEC. For our experiment we find that ZEC 50 years after emissions cease is between −0.36 to +0.29 °C. The most likely value of ZEC is assessed to be close to zero. However, substantial continued warming for decades or centuries following cessation of CO2 emission cannot be ruled out.
Lukas Jonkers, Olivier Cartapanis, Michael Langner, Nick McKay, Stefan Mulitza, Anne Strack, and Michal Kucera
Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, https://doi.org/10.5194/essd-12-1053-2020, 2020
Angélique Hameau, Thomas L. Frölicher, Juliette Mignot, and Fortunat Joos
Biogeosciences, 17, 1877–1895, https://doi.org/10.5194/bg-17-1877-2020, https://doi.org/10.5194/bg-17-1877-2020, 2020
Short summary
Short summary
Ocean deoxygenation and warming are observed and projected to intensify under continued greenhouse gas emissions. Whereas temperature is considered the main climate change indicator, we show that in certain regions, thermocline doxygenation may be detectable before warming.
Aurich Jeltsch-Thömmes and Fortunat Joos
Clim. Past, 16, 423–451, https://doi.org/10.5194/cp-16-423-2020, https://doi.org/10.5194/cp-16-423-2020, 2020
Short summary
Short summary
Perturbations in atmospheric CO2 and in its isotopic composition, e.g., in response to carbon release from the land biosphere or from fossil fuel burning, evolve differently in time. We use an Earth system model of intermediate complexity to show that fluxes to and from the solid Earth play an important role in removing these perturbations from the atmosphere over thousands of years.
Hubertus Fischer, Jochen Schmitt, Michael Bock, Barbara Seth, Fortunat Joos, Renato Spahni, Sebastian Lienert, Gianna Battaglia, Benjamin D. Stocker, Adrian Schilt, and Edward J. Brook
Biogeosciences, 16, 3997–4021, https://doi.org/10.5194/bg-16-3997-2019, https://doi.org/10.5194/bg-16-3997-2019, 2019
Short summary
Short summary
N2O concentrations were subject to strong variations accompanying glacial–interglacial but also rapid climate changes over the last 21 kyr. The sources of these N2O changes can be identified by measuring the isotopic composition of N2O in ice cores and using the distinct isotopic composition of terrestrial and marine N2O. We show that both marine and terrestrial sources increased from the last glacial to the Holocene but that only terrestrial emissions responded quickly to rapid climate changes.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Angélique Hameau, Juliette Mignot, and Fortunat Joos
Biogeosciences, 16, 1755–1780, https://doi.org/10.5194/bg-16-1755-2019, https://doi.org/10.5194/bg-16-1755-2019, 2019
Short summary
Short summary
The observed decrease of oxygen and warming in the ocean may adversely affect marine ecosystems and their services. We analyse results from an Earth system model for the last millennium and the 21st century. We find changes in temperature and oxygen due to fossil fuel burning and other human activities to exceed natural variations in many ocean regions already today. Natural variability is biased low in earlier studies neglecting forcing from past volcanic eruptions and solar change.
Olivier Cartapanis, Eric D. Galbraith, Daniele Bianchi, and Samuel L. Jaccard
Clim. Past, 14, 1819–1850, https://doi.org/10.5194/cp-14-1819-2018, https://doi.org/10.5194/cp-14-1819-2018, 2018
Short summary
Short summary
A data-based reconstruction of carbon-bearing deep-sea sediment shows significant changes in the global burial rate over the last glacial cycle. We calculate the impact of these deep-sea changes, as well as hypothetical changes in continental shelf burial and volcanic outgassing. Our results imply that these geological fluxes had a significant impact on ocean chemistry and the global carbon isotopic ratio, and that the natural carbon cycle was not in steady state during the Holocene.
Gianna Battaglia and Fortunat Joos
Earth Syst. Dynam., 9, 797–816, https://doi.org/10.5194/esd-9-797-2018, https://doi.org/10.5194/esd-9-797-2018, 2018
Short summary
Short summary
Human-caused, climate change hazards in the ocean continue to aggravate over a very long time. For business as usual, we project the ocean oxygen content to decrease by 40 % over the next thousand years. This would likely have severe consequences for marine life. Global warming and oxygen loss are linked, and meeting the warming target of the Paris Climate Agreement effectively limits related marine hazards. Developments over many thousands of years should be considered to assess marine risks.
Fortunat Joos and Brigitte Buchmann
Atmos. Chem. Phys., 18, 7841–7842, https://doi.org/10.5194/acp-18-7841-2018, https://doi.org/10.5194/acp-18-7841-2018, 2018
Kuno M. Strassmann and Fortunat Joos
Geosci. Model Dev., 11, 1887–1908, https://doi.org/10.5194/gmd-11-1887-2018, https://doi.org/10.5194/gmd-11-1887-2018, 2018
Short summary
Short summary
The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle–climate model widely used in science and IPCC assessments. BernSCM supports up to decadal time steps with high accuracy and is suitable for studies with high computational load, e.g., integrated assessment models (IAMs). Further applications include climate risk assessment in a business, public, or educational context and the estimation of benefits of emission mitigation options.
Sebastian Lienert and Fortunat Joos
Biogeosciences, 15, 2909–2930, https://doi.org/10.5194/bg-15-2909-2018, https://doi.org/10.5194/bg-15-2909-2018, 2018
Short summary
Short summary
Deforestation, shifting cultivation and wood harvesting cause large carbon emissions, altering climate. We apply a dynamic global vegetation model in a probabilistic framework. Diverse observations are assimilated to establish an optimally performing model and a large ensemble of model versions. Land-use carbon emissions are reported for individual countries, regions and the world. We find that parameter-related uncertainties are on the same order of magnitude as process-related effects.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
Kathrin M. Keller, Sebastian Lienert, Anil Bozbiyik, Thomas F. Stocker, Olga V. Churakova (Sidorova), David C. Frank, Stefan Klesse, Charles D. Koven, Markus Leuenberger, William J. Riley, Matthias Saurer, Rolf Siegwolf, Rosemarie B. Weigt, and Fortunat Joos
Biogeosciences, 14, 2641–2673, https://doi.org/10.5194/bg-14-2641-2017, https://doi.org/10.5194/bg-14-2641-2017, 2017
Sifan Gu, Zhengyu Liu, Alexandra Jahn, Johannes Rempfer, Jiaxu Zhang, and Fortunat Joos
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-40, https://doi.org/10.5194/gmd-2017-40, 2017
Revised manuscript not accepted
Short summary
Short summary
This paper is the documentation of the implementation of neodymium (Nd) isotopes in the ocean model of CESM. Our model can simulate both Nd concentration and Nd isotope ratio in good agreement with observations. Our Nd-enabled ocean model makes it possible for direct model-data comparison in paleoceanographic studies, which can help to resolve some uncertainties and controversies in our understanding of past ocean evolution. Therefore, our model provides a useful tool for paleoclimate studies.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Chantal Camenisch, Kathrin M. Keller, Melanie Salvisberg, Benjamin Amann, Martin Bauch, Sandro Blumer, Rudolf Brázdil, Stefan Brönnimann, Ulf Büntgen, Bruce M. S. Campbell, Laura Fernández-Donado, Dominik Fleitmann, Rüdiger Glaser, Fidel González-Rouco, Martin Grosjean, Richard C. Hoffmann, Heli Huhtamaa, Fortunat Joos, Andrea Kiss, Oldřich Kotyza, Flavio Lehner, Jürg Luterbacher, Nicolas Maughan, Raphael Neukom, Theresa Novy, Kathleen Pribyl, Christoph C. Raible, Dirk Riemann, Maximilian Schuh, Philip Slavin, Johannes P. Werner, and Oliver Wetter
Clim. Past, 12, 2107–2126, https://doi.org/10.5194/cp-12-2107-2016, https://doi.org/10.5194/cp-12-2107-2016, 2016
Short summary
Short summary
Throughout the last millennium, several cold periods occurred which affected humanity. Here, we investigate an exceptionally cold decade during the 15th century. The cold conditions challenged the food production and led to increasing food prices and a famine in parts of Europe. In contrast to periods such as the “Year Without Summer” after the eruption of Tambora, these extreme climatic conditions seem to have occurred by chance and in relation to the internal variability of the climate system.
Pierre Burckel, Claire Waelbroeck, Yiming Luo, Didier M. Roche, Sylvain Pichat, Samuel L. Jaccard, Jeanne Gherardi, Aline Govin, Jörg Lippold, and François Thil
Clim. Past, 12, 2061–2075, https://doi.org/10.5194/cp-12-2061-2016, https://doi.org/10.5194/cp-12-2061-2016, 2016
Short summary
Short summary
In this paper, we compare new and published Atlantic sedimentary Pa/Th data with Pa/Th simulated using stream functions generated under various climatic conditions. We show that during Greenland interstadials of the 20–50 ka period, the Atlantic meridional overturning circulation was very different from that of the Holocene. Moreover, southern-sourced waters dominated the Atlantic during Heinrich stadial 2, a slow northern-sourced water mass flowing above 2500 m in the North Atlantic.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. Legrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Jean-Yves Peterschmidt, Francesco S.-R. Pausata, Steven Phipps, and Hans Renssen
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-106, https://doi.org/10.5194/cp-2016-106, 2016
Preprint retracted
Sonja G. Keel, Fortunat Joos, Renato Spahni, Matthias Saurer, Rosemarie B. Weigt, and Stefan Klesse
Biogeosciences, 13, 3869–3886, https://doi.org/10.5194/bg-13-3869-2016, https://doi.org/10.5194/bg-13-3869-2016, 2016
Short summary
Short summary
Records of stable oxygen isotope ratios in tree rings are valuable tools for reconstructing past climatic conditions. So far, they have not been used in global dynamic vegetation models. Here we present a model that simulates oxygen isotope ratios in tree rings. Our results compare well with measurements performed in European forests. The model is useful for studying oxygen isotope patterns of tree ring cellulose at large spatial and temporal scales.
Gianna Battaglia, Marco Steinacher, and Fortunat Joos
Biogeosciences, 13, 2823–2848, https://doi.org/10.5194/bg-13-2823-2016, https://doi.org/10.5194/bg-13-2823-2016, 2016
Short summary
Short summary
The marine cycle of calcium carbonate (CaCO3) influences the distribution of CO2 between atmosphere and ocean, and thereby climate. We constrain export of biogenic CaCO3 (globally: 0.72–1.05 Gt C yr−1) and dissolution within the water column (~ 80 %) in a novel Monte Carlo set-up with the Bern3D model based on alkalinity data. Whether CaCO3 dissolves in the upper ocean remains unresolved. We recommend using constant (saturation-independent) dissolution rates in Earth system models.
M. Steinacher and F. Joos
Biogeosciences, 13, 1071–1103, https://doi.org/10.5194/bg-13-1071-2016, https://doi.org/10.5194/bg-13-1071-2016, 2016
B. D. Stocker and F. Joos
Earth Syst. Dynam., 6, 731–744, https://doi.org/10.5194/esd-6-731-2015, https://doi.org/10.5194/esd-6-731-2015, 2015
Short summary
Short summary
Estimates for land use change CO2 emissions (eLUC) rely on different approaches, implying conceptual differences of what eLUC represents. We use an Earth System Model and quantify differences between two commonly applied methods to be ~20% for historical eLUC but increasing under a future scenario. We decompose eLUC into component fluxes, quantify them, and discuss best practices for global carbon budget accountings and model-data intercomparisons relying on different methods to estimate eLUC.
F. Lehner, F. Joos, C. C. Raible, J. Mignot, A. Born, K. M. Keller, and T. F. Stocker
Earth Syst. Dynam., 6, 411–434, https://doi.org/10.5194/esd-6-411-2015, https://doi.org/10.5194/esd-6-411-2015, 2015
Short summary
Short summary
We present the first last-millennium simulation with the Community Earth System Model (CESM) including an interactive carbon cycle in both ocean and land component. Volcanic eruptions emerge as the strongest forcing factor for the preindustrial climate and carbon cycle. We estimate the climate-carbon-cycle feedback in CESM to be at the lower bounds of empirical estimates (1.3ppm/°C). The time of emergence for interannual global land and ocean carbon uptake rates are 1947 and 1877, respectively.
B. D. Stocker, R. Spahni, and F. Joos
Geosci. Model Dev., 7, 3089–3110, https://doi.org/10.5194/gmd-7-3089-2014, https://doi.org/10.5194/gmd-7-3089-2014, 2014
Short summary
Short summary
Simulating the spatio-temporal dynamics of inundation is key to understanding the role of wetlands under past and future climate change. Here, we describe and assess the DYPTOP model that predicts the extent of inundation and the global spatial distribution of peatlands. DYPTOP makes use of high-resolution topography information and uses ecosystem water balance and peatland soil C balance criteria to simulate peatland spatial dynamics and carbon accumulation.
M. Gehlen, R. Séférian, D. O. B. Jones, T. Roy, R. Roth, J. Barry, L. Bopp, S. C. Doney, J. P. Dunne, C. Heinze, F. Joos, J. C. Orr, L. Resplandy, J. Segschneider, and J. Tjiputra
Biogeosciences, 11, 6955–6967, https://doi.org/10.5194/bg-11-6955-2014, https://doi.org/10.5194/bg-11-6955-2014, 2014
Short summary
Short summary
This study evaluates potential impacts of pH reductions on North Atlantic deep-sea ecosystems in response to latest IPCC scenarios.Multi-model projections of pH changes over the seafloor are analysed with reference to a critical threshold based on palaeo-oceanographic studies, contemporary observations and model results. By 2100 under the most severe IPCC CO2 scenario, pH reductions occur over ~23% of deep-sea canyons and ~8% of seamounts – including seamounts proposed as marine protected areas.
R. Roth, S. P. Ritz, and F. Joos
Earth Syst. Dynam., 5, 321–343, https://doi.org/10.5194/esd-5-321-2014, https://doi.org/10.5194/esd-5-321-2014, 2014
K. M. Keller, F. Joos, and C. C. Raible
Biogeosciences, 11, 3647–3659, https://doi.org/10.5194/bg-11-3647-2014, https://doi.org/10.5194/bg-11-3647-2014, 2014
B. Ringeval, S. Houweling, P. M. van Bodegom, R. Spahni, R. van Beek, F. Joos, and T. Röckmann
Biogeosciences, 11, 1519–1558, https://doi.org/10.5194/bg-11-1519-2014, https://doi.org/10.5194/bg-11-1519-2014, 2014
R. Schneider, J. Schmitt, P. Köhler, F. Joos, and H. Fischer
Clim. Past, 9, 2507–2523, https://doi.org/10.5194/cp-9-2507-2013, https://doi.org/10.5194/cp-9-2507-2013, 2013
R. Roth and F. Joos
Clim. Past, 9, 1879–1909, https://doi.org/10.5194/cp-9-1879-2013, https://doi.org/10.5194/cp-9-1879-2013, 2013
R. Spahni, F. Joos, B. D. Stocker, M. Steinacher, and Z. C. Yu
Clim. Past, 9, 1287–1308, https://doi.org/10.5194/cp-9-1287-2013, https://doi.org/10.5194/cp-9-1287-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
S. Zürcher, R. Spahni, F. Joos, M. Steinacher, and H. Fischer
Biogeosciences, 10, 1963–1981, https://doi.org/10.5194/bg-10-1963-2013, https://doi.org/10.5194/bg-10-1963-2013, 2013
V. Cocco, F. Joos, M. Steinacher, T. L. Frölicher, L. Bopp, J. Dunne, M. Gehlen, C. Heinze, J. Orr, A. Oschlies, B. Schneider, J. Segschneider, and J. Tjiputra
Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, https://doi.org/10.5194/bg-10-1849-2013, 2013
F. Joos, R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting, W. von Bloh, V. Brovkin, E. J. Burke, M. Eby, N. R. Edwards, T. Friedrich, T. L. Frölicher, P. R. Halloran, P. B. Holden, C. Jones, T. Kleinen, F. T. Mackenzie, K. Matsumoto, M. Meinshausen, G.-K. Plattner, A. Reisinger, J. Segschneider, G. Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A. Timmermann, and A. J. Weaver
Atmos. Chem. Phys., 13, 2793–2825, https://doi.org/10.5194/acp-13-2793-2013, https://doi.org/10.5194/acp-13-2793-2013, 2013
Related subject area
Subject: Carbon Cycle | Archive: Modelling only | Timescale: Milankovitch
Modeling the evolution of pulse-like perturbations in atmospheric carbon and carbon isotopes: the role of weathering–sedimentation imbalances
Response of the carbon cycle in an intermediate complexity model to the different climate configurations of the last nine interglacials
Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity
The Plio-Pleistocene climatic evolution as a consequence of orbital forcing on the carbon cycle
Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric pCO2 and seawater composition over the last 130 000 years: a model study
Impact of oceanic processes on the carbon cycle during the last termination
Impact of brine-induced stratification on the glacial carbon cycle
Glacial-interglacial atmospheric CO2 change: a possible "standing volume" effect on deep-ocean carbon sequestration
Aurich Jeltsch-Thömmes and Fortunat Joos
Clim. Past, 16, 423–451, https://doi.org/10.5194/cp-16-423-2020, https://doi.org/10.5194/cp-16-423-2020, 2020
Short summary
Short summary
Perturbations in atmospheric CO2 and in its isotopic composition, e.g., in response to carbon release from the land biosphere or from fossil fuel burning, evolve differently in time. We use an Earth system model of intermediate complexity to show that fluxes to and from the solid Earth play an important role in removing these perturbations from the atmosphere over thousands of years.
Nathaelle Bouttes, Didier Swingedouw, Didier M. Roche, Maria F. Sanchez-Goni, and Xavier Crosta
Clim. Past, 14, 239–253, https://doi.org/10.5194/cp-14-239-2018, https://doi.org/10.5194/cp-14-239-2018, 2018
Short summary
Short summary
Atmospheric CO2 is key for climate change. CO2 is lower during the oldest warm period of the last million years, the interglacials, than during the most recent ones (since 430 000 years ago). This difference has not been explained yet, but could be due to changes of ocean circulation. We test this hypothesis and the role of vegetation and ice sheets using an intermediate complexity model. We show that only small changes of CO2 can be obtained, underlying missing feedbacks or mechanisms.
Andrey Ganopolski and Victor Brovkin
Clim. Past, 13, 1695–1716, https://doi.org/10.5194/cp-13-1695-2017, https://doi.org/10.5194/cp-13-1695-2017, 2017
Short summary
Short summary
Ice cores reveal that atmospheric CO2 concentration varied synchronously with the global ice volume. Explaining the mechanism of glacial–interglacial variations of atmospheric CO2 concentrations and the link between CO2 and ice sheets evolution still remains a challenge. Here using the Earth system model of intermediate complexity we performed for the first time simulations of co-evolution of climate, ice sheets and carbon cycle using the astronomical forcing as the only external forcing.
Didier Paillard
Clim. Past, 13, 1259–1267, https://doi.org/10.5194/cp-13-1259-2017, https://doi.org/10.5194/cp-13-1259-2017, 2017
Short summary
Short summary
Ice ages are paced by astronomical parameters. On longer timescales, the astronomy also acts on climate, as evidenced by the 400 kyr signature observed in carbon isotopic records. In this paper, I present a conceptual model that links the astronomy to the dynamics of organic carbon in coastal areas. The model reproduces the carbon isotopic records and a two-step decrease in atmospheric CO2 that would explain the Pleistocene (~ 2.8 Myr BP) and mid-Pleistocene (~ 0.8 Myr BP) transition.
K. Wallmann, B. Schneider, and M. Sarnthein
Clim. Past, 12, 339–375, https://doi.org/10.5194/cp-12-339-2016, https://doi.org/10.5194/cp-12-339-2016, 2016
Short summary
Short summary
An Earth system model was set up and applied to evaluate the effects of sea-level change, ocean dynamics, and nutrient utilization on seawater composition and atmospheric pCO2 over the last glacial cycle. The model results strongly suggest that global sea-level change contributed significantly to the slow glacial decline in atmospheric pCO2 and the gradual pCO2 increase over the Holocene whereas the rapid deglacial pCO2 rise was induced by fast changes in ocean dynamics and nutrient utilization.
N. Bouttes, D. Paillard, D. M. Roche, C. Waelbroeck, M. Kageyama, A. Lourantou, E. Michel, and L. Bopp
Clim. Past, 8, 149–170, https://doi.org/10.5194/cp-8-149-2012, https://doi.org/10.5194/cp-8-149-2012, 2012
N. Bouttes, D. Paillard, and D. M. Roche
Clim. Past, 6, 575–589, https://doi.org/10.5194/cp-6-575-2010, https://doi.org/10.5194/cp-6-575-2010, 2010
L. C. Skinner
Clim. Past, 5, 537–550, https://doi.org/10.5194/cp-5-537-2009, https://doi.org/10.5194/cp-5-537-2009, 2009
Cited articles
Adkins, J. F.: The role of deep ocean circulation in setting glacial
climates
CO2, Paleoceanography, 28, 539–561, https://doi.org/10.1002/palo.20046, 2013. a
Archer, D. and Maier-Reimer, E.: Effect of deep-sea sedimentary calcite
preservation on atmospheric CO2 concentration, Nature, 367, 260–263,
https://doi.org/10.1038/367260a0, 1994. a
Archer, D., Khesgi, H., and Maier-Reimer, E.: Dynamics of fossil fuel
CO2
neutralization by marine CaCO3, Global Biogeochem. Cy., 12, 259–276,
1998. a
Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S. G.: A
new, mechanistic modelfor organic carbon fluxes in the ocean based on the
quantitative association of POC with ballast minerals, Deep-Sea Res.
Pt. II, 49, 219–236, 2002. a
Baldini, J. U., Bertram, R. A., and Ridley, H. E.: Ground air: A first
approximation of the Earth's second largest reservoir of carbon dioxide gas,
Sci. Total Environ., 616/617, 1007–1013,
https://doi.org/10.1016/j.scitotenv.2017.10.218, 2018. a, b
Battaglia, G. and Joos, F.: Marine N2O Emissions From Nitrification
and
Denitrification Constrained by Modern Observations and Projected in
Multimillennial Global Warming Simulations, Global Biogeochem. Cy.,
32, 92–121, https://doi.org/10.1002/2017GB005671, 2018a. a, b
Battaglia, G. and Joos, F.: Hazards of decreasing marine oxygen: the
near-term and millennial-scale benefits of meeting the Paris climate targets,
Earth Syst. Dynam., 9, 797–816, https://doi.org/10.5194/esd-9-797-2018,
2018b. a, b
Battaglia, G., Steinacher, M., and Joos, F.: A probabilistic assessment of
calcium carbonate export and dissolution in the modern ocean, Biogeosciences,
13, 2823–2848, https://doi.org/10.5194/bg-13-2823-2016, 2016. a, b, c
Bendtsen, J., Lundsgaard, C., Middelboe, M., and Archer, D.: Influence of
bacterial uptake on deep-ocean dissolved organic carbon, Global
Biogeochem. Cy., 16, 74-1–74-12, https://doi.org/10.1029/2002GB001947, 2002. a, b
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F.,
Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA Dome C
CO2 record from 800 to 600 kyr before present, Geophys. Res. Lett.,
42, 542–549, https://doi.org/10.1002/2014GL061957, 2015. a
Berger, A.: Long-Term Variations of Daily Insolation and Quaternary Climatic
Changes, J. Atmos. Sci., 35, 2362–2367, https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2, 1978. a
Berger, W. H.: Increase of carbon dioxide in the atmosphere during
deglaciation: the coral reef hypothesis, Naturwissenschaften, 69, 87–88,
https://doi.org/10.1007/BF00441228, 1982. a, b
Berger, W. H. and Keir, R. S.: Glacial-Holocene Changes in Atmospheric
CO2 and
the Deep-Sea Record, in: Climate Processes and Climate Sensitivity, edited
by: Hansen, J. E. and Takahashi, T., Vol. 29, American
Geophysical Union (AGU), Washington DC, 337–351, https://doi.org/10.1029/GM029p0337., 2013. a
Bird, M. I., Lloyd, J., and Farquhar, G. D.: Terrestrial carbon storage at
the
LGM, Nature, 371, 566–566, https://doi.org/10.1038/371566a0, 1994. a, b, c
Bird, M. I., Lloyd, J., and Farquhar, G. D.: Terrestrial carbon-storage from
the last glacial maximum to the present, Chemosphere, 33, 1675–1685,
https://doi.org/10.1016/0045-6535(96)00187-7, 1996. a, b
Broecker, W. S. and Clark, E.: Glacial-to-Holocene Redistribution of
Carbonate
Ion in the Deep Sea, Science, 294, 2152–2155, 2001. a
Brovkin, V., Ganopolski, A., Archer, D., and Rahmstorf, S.: Lowering of
glacial atmospheric CO2 in response to changes on oceanic circulation and
marine biogeochemistry, Paleoceanography, 22, 1–14,
https://doi.org/10.1029/2006PA001380, 2007. a
Brovkin, V., Ganopolski, A., Archer, D., and Munhoven, G.: Glacial
CO2 cycle as a succession of key physical and biogeochemical
processes, Clim. Past, 8, 251–264, https://doi.org/10.5194/cp-8-251-2012,
2012. a, b
Burke, A. and Robinson, L. F.: The Southern Ocean's Role in Carbon Exchange
During the Last Deglaciation, Science, 335, 557–562, 2012. a
Ciais, P., Tagliabue, A., Cuntz, M., Bopp, L., Scholze, M., Hoffmann, G.,
Lourantou, A., Harrison, S. P., Prentice, I. C., Kelley, D. I., Koven, C.,
and Piao, S. L.: Large inert carbon pool in the terrestrial biosphere during
the Last Glacial Maximum, Nat. Geosci., 5, 74–79,
https://doi.org/10.1038/ngeo1324, 2012. a, b, c
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra,
A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le
Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon
and Other Biogeochemical Cycles, in: Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F.,
Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A.,
Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge,
United Kingdom and New York, USA, 2013. a, b
Colbourn, G., Ridgwell, A., and Lenton, T. M.: The Rock Geochemical Model
(RokGeM) v0.9, Geosci. Model Dev., 6, 1543–1573,
https://doi.org/10.5194/gmd-6-1543-2013, 2013. a, b, c
Crowley, T. J.: Ice age carbon, Nature, 352, 575–576, 1991. a
Curry, W. B., Duplessy, J. C., Labeyriefi, L. . D., and Shackleton, N. J.:
Changes in the distribution of δ13C of deep water CO2 between the last
glaciation and the Holocene, Paleoceanography, 3, 317–341,
https://doi.org/10.1029/PA003i003p00317, 1988. a, b
Davies-Barnard, T., Ridgwell, A., Singarayer, J., and Valdes, P.: Quantifying
the influence of the terrestrial biosphere on glacial-interglacial climate
dynamics, Clim. Past, 13, 1381–1401,
https://doi.org/10.5194/cp-13-1381-2017, 2017. a
Doney, S. C., Lindsay, K., Fung, I., and John, J.: Natural variability in a
stable, 1000-yr global coupled climate-carbon cycle simulation, J.
Clim., 19, 3033–3054, https://doi.org/10.1175/JCLI3783.1, 2006. a
Dunne, J. P., Hales, B., and Toggweiler, J. R.: Global calcite cycling
constrained by sediment preservation controls, Global Biogeochem. Cy.,
26, 1–14, https://doi.org/10.1029/2010GB003935, 2012. a
Duplessy, J. C., Shackleton, N. J., Matthews, R. K., Prell, W., Ruddimann,
W. F., Caralp, M., and Hendy, C. H.: 13C Record of benthic foraminifera in
the last interglacial ocean: Implications for the carbon cycle and the global
deep water circulation, Quaternary Res., 21, 225–243,
https://doi.org/10.1016/0033-5894(84)90099-1, 1984. a, b
Duplessy, J. C., Shackleton, N. J., Fairbanks, R. G., Labeyriefi, L., Oppo,
D.,
Labeyrie, L., Oppo, D., and Kallel, N.: Deepwater source variations during
the last climatic cycle and their impact on the global deepwater
circulation, Paleoceanography, 3, 343–360, https://doi.org/10.1029/PA003i003p00343,
1988. a
Edwards, N. R., Willmott, A. J., and Killworth, P. D.: On the Role of
Topography and Wind Stress on the Stability of the Thermohaline Circulation,
J. Phys. Oceanogr., 28, 756–778,
https://doi.org/10.1175/1520-0485(1998)028<0756:OTROTA>2.0.CO;2, 1998. a
Eide, M., Olsen, A., Ninnemann, U., and Johannessen, T.: A Global Ocean
Climatology of Preindustrial and Modern Ocean δ13C, Global
Biogeochem. Cy., 31, 1–20, https://doi.org/10.1002/2016GB005473, 2017. a, b
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S. J., McCave, I. N.,
Hodell, D. A., and Piotrowski, A. M.: Evolution of Ocean Temperature and Ice
Volume Through the Mid-Pleistocene Climate Transition, Science, 337,
704–709, https://doi.org/10.1594/PANGAEA.786205, 2012. a
Elsig, J., Schmitt, J., Leuenberger, D., Schneider, R., Eyer, M.,
Leuenberger,
M., Joos, F., Fischer, H., and Stocker, T. F.: Stable isotope constraints on
Holocene carbon cycle changes from an Antarctic ice core, Nature, 461,
507–510, https://doi.org/10.1038/nature08393, 2009. a, b, c
Ferrari, R., Jansen, M. F., Adkins, J. F., Burke, A., Stewart, A. L., and
Thompson, A. F.: Antarctic sea ice control on ocean circulation in present
and glacial climates, P. Natl. Acad. Sci., 111,
8753–8758, https://doi.org/10.1073/pnas.1323922111, 2014. a
Fischer, H., Schmitt, J., Lüthi, D., Stocker, T. F., Tschumi, T.,
Parekh,
P., Joos, F., Köhler, P., Völker, C., Gersonde, R., Barbante, C.,
Le Floch, M., Raynaud, D., and Wolff, E.: The role of Southern Ocean
processes in orbital and millennial CO2 variations – A synthesis, Quaternary
Sci. Rev., 29, 193–205, https://doi.org/10.1016/j.quascirev.2009.06.007, 2010. a, b, c, d
Galbraith, E. D. and Jaccard, S. L.: Deglacial weakening of the oceanic soft
tissue pump: global constraints from sedimentary nitrogen isotopes and
oxygenation proxies, Quaternary Sci. Rev., 109, 38–48,
https://doi.org/10.1016/j.quascirev.2014.11.012, 2015. a, b
Ganopolski, A. and Brovkin, V.: Simulation of climate, ice sheets and
CO2
evolution during the last four glacial cycles with an Earth system model of
intermediate complexity, Clim. Past, 13, 1695–1716,
https://doi.org/10.5194/cp-13-1695-2017, 2017. a, b
Garcia, H. E., Boyer, T. P., Locarnini, R. A., Antonov, J. I., Mishonov,
A. V.,
Baranova, O. K., Zweng, M. M., Reagan, J. R., and Johnson, D. R.: World
Ocean Atlas 2013. Volume 3: dissolved oxygen, apparent oxygen utilization,
and oxygen saturation, NOAA Atlas NESDIS, 75, 27 pp., 2013a. a
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova,
O. K., Zweng, M. M., Reagan, J. R., and Johnson, D. R.: World Ocean Atlas
2013, Vol. 4, Dissolved Inorganic Nutrients (phosphate, nitrate, silicate),
NOAA Atlas NESDIS, 76, 27 pp., https://doi.org/10.1182/blood-2011-06-357442,
2013b. a
Gersonde, R., Crosta, X., Abelmann, A., and Armand, L.: Sea-surface
temperature and sea ice distribution of the Southern Ocean at the EPILOG Last
Glacial Maximum – A circum-Antarctic view based on siliceous microfossil
records, Quaternary Sci. Rev., 24, 869–896,
https://doi.org/10.1016/j.quascirev.2004.07.015, 2005. a, b
Gottschalk, J., Skinner, L. C., Lippold, J., Vogel, H., Frank, N., Jaccard,
S. L., and Waelbroeck, C.: Biological and physical controls in the Southern
Ocean on past millennial-scale atmospheric CO2 changes, Nat.
Commun., 7, 11 pp., https://doi.org/10.1038/ncomms11539, 2016. a
Gottschalk, J., Hodell, D. A., Skinner, L. C., Crowhurst, S. J., Jaccard,
S. L., and Charles, C.: Past Carbonate Preservation Events in the Deep
Southeast Atlantic Ocean (Cape Basin) and Their Implications for Atlantic
Overturning Dynamics and Marine Carbon Cycling, Paleoceanogr.
Paleocl., 33, 643–663, https://doi.org/10.1029/2018PA003353, 2018. a
Griffies, S. M.: The Gent-McWilliams Skew Flux, J. Phys.
Oceanogr., 28, 831–841,
https://doi.org/10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2, 1998. a
Hansell, D. A.: Recalcitrant Dissolved Organic Carbon Fractions, Ann.
Rev. Mar. Sci., 5, 421–445,
https://doi.org/10.1146/annurev-marine-120710-100757, 2013. a, b
Heinze, C., Hoogakker, B. A. A., and Winguth, A.: Ocean carbon cycling
during
the past 130000 years – A pilot study on inverse palaeoclimate record
modelling, Clim. Past, 12, 1949–1978,
https://doi.org/10.5194/cp-12-1949-2016, 2016. a, b, c, d
Hoogakker, B. A., Smith, R. S., Singarayer, J. S., Marchant, R., Prentice,
I. C., Allen, J. R., Anderson, R. S., Bhagwat, S. A., Behling, H., Borisova,
O., Bush, M., Correa-Metrio, A., De Vernal, A., Finch, J. M.,
Fréchette, B., Lozano-Garcia, S., Gosling, W. D., Granoszewski, W.,
Grimm, E. C., Grüger, E., Hanselman, J., Harrison, S. P., Hill, T. R.,
Huntley, B., Jiménez-Moreno, G., Kershaw, P., Ledru, M. P., Magri, D.,
McKenzie, M., Müller, U., Nakagawa, T., Novenko, E., Penny, D., Sadori,
L., Scott, L., Stevenson, J., Valdes, P. J., Vandergoes, M., Velichko, A.,
Whitlock, C., and Tzedakis, C.: Terrestrial biosphere changes over the last
120 kyr, Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, 2016. a
Huybers, P. and Langmuir, C.: Feedback between deglaciation, volcanism, and
atmospheric CO2, Earth Planet. Sc. Lett., 286, 479–491,
https://doi.org/10.1016/j.epsl.2009.07.014, 2009. a
Jaccard, S. L. and Galbraith, E. D.: Large climate-driven changes of oceanic
oxygen concentrations during the last deglaciation, Nat. Geosci., 5,
151–156, https://doi.org/10.1038/ngeo1352, 2012. a
Jaccard, S. L., Frölicher, T. L., and Gruber, N.: Ocean
(de)oxygenation
across the last deglaciation: Insights for the future, Oceanography, 27,
26–35, https://doi.org/10.5670/oceanog.2011.65, 2014. a
Jaccard, S. L., Galbraith, E. D., Martínez-garcía, A., and
Anderson, R. F.: Covariation of deep Southern Ocean oxygenation and
atmospheric CO2 through the last ice age, Nature, 530, 207–210,
https://doi.org/10.1038/nature16514, 2016. a, b
Jahnke, R. A.: The global ocean flux of particulate organic carbon: Areal
distribution and magnitude, Global Biogeochem. Cy., 10, 71–88, 1996. a
Jansen, E., Overpeck, J., Briffa, K. R., Duplessy, J.-C., Joos, F.,
Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W. R., Rahmstorf,
S., Ramesh, R., Raynaud, D., Rind, D., Solomina, O., Villalba, R., and Zhang,
D.: Paleoclimate, in: Climate Change 2007: The Physical Science Basis.
Contribution of Working Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D.,
Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller,
H. L., Cambridge University Press, Cambridge United Kingdom and
New York, NY, USA, 433–497, 2007. a
Joos, F. and Bruno, M.: Pulse response functions are cost-efficient tools to
model the link between carbon emissions, atmospheric CO2 and global warming,
Phys. Chem. Earth, 21, 471–476,
https://doi.org/10.1016/S0079-1946(97)81144-5, 1996. a
Joos, F. and Spahni, R.: Rates of change in natural and anthropogenic
radiative forcing over the past 20,000 years, P. Natl.
Acad. Sci. USA, 105, 1425–1430,
https://doi.org/10.1073/pnas.0707386105, 2008. a
Joos, F., Gerber, S., Prentice, I. C., Otto-Bliesner, B. L., and Valdes,
P. J.:
Transient simulations of Holocene atmospheric carbon dioxide and terrestrial
carbon since the Last Glacial Maximum, Global Biogeochem. Cy.,
18, 18 pp.,
https://doi.org/10.1029/2003GB002156, 2004. a, b
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-year reanalysis project, 77, 437–471,
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. a
Kemppinen, K. M. S., Holden, P. B., Edwards, N. R., Ridgwell, A., and Friend,
A. D.: Coupled climate-carbon cycle simulation of the Last Glacial Maximum
atmospheric CO2 decrease using a large ensemble of modern plausible
parameter sets, Clim. Past Discuss., https://doi.org/10.5194/cp-2017-159, in
review, 2018. a, b, c
Kleypas, J. A.: Modeled estimates of global reef habitat and carbonate
production since the last glacial maximum, Paleoceanography, 12, 533–545,
https://doi.org/10.1029/97PA01134, 1997. a, b
Kohfeld, K. E., Le Quéré, C., Harrison, S. P., and Anderson,
R. F.: Role of Marine Biology in Glacial-Interglacial CO2 Cycles, Science,
308, 74–79, https://doi.org/10.1126/science.1105375, 2005. a
Kohfeld, K. E., Graham, R. M., de Boer, A. M., Sime, L. C., Wolff, E. W., Le
Quéré, C., and Bopp, L.: Southern Hemisphere westerly wind
changes during the Last Glacial Maximum: Paleo-data synthesis, Quaternary
Sci. Rev., 68, 76–95, https://doi.org/10.1016/j.quascirev.2013.01.017, 2013. a
Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F., and
Fischer,
H.: A 156 kyr smoothed history of the atmospheric greenhouse gases CO2,
CH4, and N2O and their radiative forcing, Earth Syst. Sci. Data, 9,
363–387, https://doi.org/10.5194/essd-9-363-2017, 2017. a, b
Krakauer, N. Y., Randerson, J. T., Primeau, F. W., Gruber, N., and
Menemenlis,
D.: Carbon isotope evidence for the latitudinal distribution and wind speed
dependence of the air-sea gas transfer velocity, Tellus B, 58, 390–417,
https://doi.org/10.1111/j.1600-0889.2006.00223.x, 2006. a
Lambert, F., Tagliabue, A., Schaffer, G., Lamy, F., Winckler, G., Farias, L.,
Gallardo, L., and De Pol-Holz, R.: Dust fluxes and iron fertilisation in
Holocene and Last Glacial Maximum climates, Geophys. Res. Lett.,
42, 6014–6023, https://doi.org/10.1002/2015GL064250.Received, 2015. a
Lauvset, S. K., Key, R. M., Olsen, A., Van Heuven, S., Velo, A., Lin, X.,
Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S.,
Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., Suzuki, T., and
Watelet, S.: A new global interior ocean mapped climatology: The
GLODAP version 2, Earth Syst. Sci. Data, 8, 325–340,
https://doi.org/10.5194/essd-8-325-2016, 2016. a, b
Lindgren, A., Hugelius, G., and Kuhry, P.: Extensive loss of past permafrost
carbon but a net accumulation into present-day soils, Nature, 560, 219–222,
https://doi.org/10.1038/s41586-018-0371-0, 2018. a, b, c
Lippold, J., Gutjahr, M., Blaser, P., Christner, E., de Carvalho Ferreira,
M. L., Mulitza, S., Christl, M., Wombacher, F., Böhm, E., Antz, B.,
Cartapanis, O., Vogel, H., and Jaccard, S. L.: Deep water provenance and
dynamics of the (de)glacial Atlantic meridional overturning circulation,
Earth Planet. Sci. Lett., 445, 68–78,
https://doi.org/10.1016/j.epsl.2016.04.013, 2016. a
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally
distributed benthic d18O records, Paleoceanography, 20, 1–17,
https://doi.org/10.1029/2004PA001071, 2005. a
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia,
H. E.,
Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R.,
Hamilton, M., and Seidov, D.: World Ocean Atlas 2013. Vol. 1: Temperature,
S. Levitus, Ed.; A. Mishonov, Technical Ed., NOAA Atlas NESDIS, 73,
40 pp.,
https://doi.org/10.1182/blood-2011-06-357442, 2013. a
Luo, Y., Kienast, M., and Boudreau, B. P.: Invariance of the carbonate
chemistry of the South China Sea from the glacial period to the Holocene and
its implications to the Pacific Ocean carbonate system, Earth Planet.
Sc. Lett., 492, 112–120, https://doi.org/10.1016/j.epsl.2018.04.005, 2018. a, b, c
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J. M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and
Stocker, T. F.: High-resolution carbon dioxide concentration record
650,000–800,000 years before present, Nature, 453, 379–382,
https://doi.org/10.1038/nature06949, 2008. a, b, c
Lynch-Stieglitz, J., Stocker, T. F., Broecker, W. S., and Fairbanks, R. G.:
The influence of air-sea exchange on the isotopic composition of oceanic
carbon: Observations and modeling, Global Biogeochem. Cy., 9,
653–665, 1995. a
Maier-Reimer, E. and Hasselmann, K.: Transport and storage of CO2 in
the ocean
– an inorganic ocean-circulation carbon cycle model, Clim. Dynam.,
2, 63–90, https://doi.org/10.1007/BF01054491, 1987. a
Marcott, S. a., Bauska, T. K., Buizert, C., Steig, E. J., Rosen, J. L.,
Cuffey,
K. M., Fudge, T. J., Severinghaus, J. P., Ahn, J., Kalk, M. L., McConnell,
J. R., Sowers, T., Taylor, K. C., White, J. W. C., and Brook, E. J.:
Centennial-scale changes in the global carbon cycle during the last
deglaciation, Nature, 514, 616–9, https://doi.org/10.1038/nature13799, 2014. a
Martin, J. H.: Glacial-interglacial CO2 change: The Iron
Hypothesis,
Paleoceanography, 5, 1–13, https://doi.org/10.1029/PA005i001p00001, 1990. a
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: VERTEX:
carbon
cycling in the northeast Pacific, Deep-Sea Res. Pt. A, 34, 267–285, https://doi.org/10.1016/0198-0149(87)90086-0, 1987. a
Martinez-Garcia, A., Sigman, D., Ren, H., Anderson, R., Straub, M., Hodell,
D.,
Jaccard, S., Eglington, T., and Haug, G.: Iron fertilizatin of the
subantarctic ocean during the last ice age, Science, 343, 1347,
https://doi.org/10.1126/science.1246848, 2014. a, b
Matsumoto, K.: Biology-mediated temperature control on atmospheric
pCO2 and
ocean biogeochemistry, Geophys. Res. Lett., 34, 1–5,
https://doi.org/10.1029/2007GL031301, 2007. a, b, c, d
Matsumoto, K., Sarmiento, J. L., and Brzezinski, M. A.: Silicic acid leakage
from the Southern Ocean: A possible explanation for glacial atmospheric
pCO2, Global Biogeochem. Cy., 16, 5-1–5-23,
https://doi.org/10.1029/2001GB001442, 2002. a
Matsumoto, K., Chase, Z., and Kohfeld, K.: Different mechanisms of silicic
acid leakage and their biogeochemical consequences, Paleoceanography, 29,
238–254, https://doi.org/10.1002/2013PA002588, 2014. a
McKay, M., Beckman, R., and Canover, W.: A Comparison of Three Methods for
Selecting Values of Input Variables in the Analysis of Output From a A
Comparison of Three Methods for Selecting Values of Input Variables in the
Analysis of Output From a Computer Code, Technometrics, 21, 239–245, 1979. a
Menviel, L. and Joos, F.: Toward explaining the Holocene carbon dioxide and
carbon isotope records: Results from transient ocean carbon cycle-climate
simulations, Paleoceanography, 27, 1–17, https://doi.org/10.1029/2011PA002224, 2012. a, b, c
Menviel, L., Joos, F., and Ritz, S. P.: Simulating atmospheric CO2,
13C and
the marine carbon cycle during the Last Glacial-Interglacial cycle: Possible
role for a deepening of the mean remineralization depth and an increase in
the oceanic nutrient inventory, Quaternary Sci. Rev., 56, 46–68,
https://doi.org/10.1016/j.quascirev.2012.09.012, 2012. a, b, c, d, e, f, g, h, i, j, k, l
Menviel, L., Mouchet, A., Meissner, K. J., Joos, F., and England, M. H.:
Impact of oceanic circulation changes on atmospheric δ13CO2, Global
Biogeochem. Cy., 29, 1944–1961, https://doi.org/10.1002/2015GB005207, 2015. a, b
Menviel, L., Yu, J., Joos, F., Mouchet, A., Meissner, K. J., and England,
M. H.: Poorly ventilated deep ocean at the Last Glacial Maximum inferred
from carbon isotopes: A data-model comparison study, Paleoceanography, 32,
2–17, https://doi.org/10.1002/2016PA003024.Atmospheric, 2017. a, b, c, d
Milliman, J. D.: Production and accumulation of calcium carbonate in the
ocean: budget of a nonsteady state, Global Biogeochem. Cy., 7,
927–957, 1993. a
Milliman, J. D. and Droxler, A. W.: Neritic and pelagic carbonate
sedimentation in the marine environment: Ignorance is not bliss, Geol.
Rundsch., 85, 496–504, https://doi.org/10.1007/BF02369004, 1996. a, b, c
Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J.,
Stauffer, B., Stocker, T. F., Raynaud, D., and Barnola, J.-M.: Atmospheric
CO2 concentrations over the last glacial maximum, Science, 291, 112–114,
https://doi.org/10.1126/science.291.5501.112, 2001. a, b
Müller, S. A., Joos, F., Edwards, N. R., and Stocker, T. F.: Water
Mass
Distribution and Ventilation Time Scales in a Cost-Efficient,
Three-Dimensional Ocean Model, J. Clim., 19, 5479–5499,
https://doi.org/10.1175/JCLI3911.1, 2006. a
Müller, S. A., Joos, F., Plattner, G. K., Edwards, N. R., and Stocker,
T. F.: Modeled natural and excess radiocarbon: Sensitivities to the gas
exchange formulation and ocean transport strength, Global Biogeochem.
Cy., 22, 1–14, https://doi.org/10.1029/2007GB003065, 2008. a
Najjar, R. G. and Orr, J. C.: Biotic-HOWTO, Internal OCMIP, Tech. rep.,
LSCE/CEA, Saclay, Gif-sur-Yvette, France, 1999. a
Neftel, A., Oeschger, H., Schwander, J., Stauffer, B., and R, Z.: Ice core
sample measurements give atmospheric CO2 content during the past 40,000 yr,
Nature, 295, 220–223, 1982. a
O'Ishi, R. and Abe-Ouchi, A.: Influence of dynamic vegetation on climate
change and terrestrial carbon storage in the Last Glacial Maximum, Clim. Past, 9, 1571–1587, https://doi.org/10.5194/cp-9-1571-2013, 2013. a
Oliver, K. I. C., Hoogakker, B. A. A., Crowhurst, S., Henderson, G. M.,
Rickaby, R. E. M., Edwards, N. R., and Elderfield, H.: A synthesis of marine
sediment core d13C data over the last 150 000 years, Clim. Past, 6,
645–673, https://doi.org/10.5194/cp-6-645-2010, 2010. a
Orr, J. C. and Epitalon, J. M.: Improved routines to model the ocean
carbonate
system: Mocsy 2.0, Geosci. Model Dev., 8, 485–499,
https://doi.org/10.5194/gmd-8-485-2015, 2015. a, b
Orr, J. C., Najjar, R., Sabine, C. L., and Joos, F.: Abiotic-HOWTO. Internal
OCMIP, Tech. rep., LSCE/CEA, Saclay, Gif-sur-Yvette, France, 1999. a
Orr, J. C., Najjar, R. G., Aumont, O., Bopp, L., Bullister, J. L.,
Danabasoglu,
G., Doney, S. C., Dunne, J. P., Dutay, J. C., Graven, H., Griffies, S. M.,
John, J. G., Joos, F., Levin, I., Lindsay, K., Matear, R. J., McKinley,
G. A., Mouchet, A., Oschlies, A., Romanou, A., Schlitzer, R., Tagliabue, A.,
Tanhua, T., and Yool, A.: Biogeochemical protocols and diagnostics for the
CMIP6 Ocean Model Intercomparison Project (OMIP), Geosci. Model
Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, 2017. a
Parekh, P., Joos, F., and Müller, S. A.: A modeling assessment of the
interplay between aeolian iron fluxes and iron-binding ligands in controlling
carbon dioxide fluctuations during Antarctic warm events, Paleoceanography,
23, 1–14, https://doi.org/10.1029/2007PA001531, 2008. a, b
Peltier, W. R.: Ice Age Paleotopography, Science, 265, 195–201, 1994. a
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile,
I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M.,
Kotiyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L.,
Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history
of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399,
429–436, https://doi.org/10.1038/20859, 1999. a, b, c
Prentice, I., Harrison, S., and Bartlein, P.: Global vegetation and
terrestrial carbon cycle changes after the last ice age, New
Phytol., 189, 988–998, https://doi.org/10.1111/j.1469-8137.2010.03620.x, 2011. a
Qin, B., Li, T., Xiong, Z., Algeo, T. J., and Chang, F.: Deepwater carbonate
ion concentrations in the western tropical Pacific since 250 ka: Evidence for
oceanic carbon storage and global climate influence, Paleoceanography, 32,
351–370, https://doi.org/10.1002/2016PA003039, 2017. a, b, c
Revelle, R. and Suess, H. E.: Carbon Dioxide Exchange Between Atmosphere and
Ocean and the Question of an Increase of Atmospheric CO2 during the Past
Decades, Tellus, 9, 18–27, https://doi.org/10.1111/j.2153-3490.1957.tb01849.x, 1957. a
Ridgwell, A. J., Watson, A. J., Maslin, M. A., and Kaplan, J. O.:
Implications
of coral reef buildup for the controls on atmospheric CO2 since the Last
Glacial Maximum, Paleoceanography, 18, 7 pp., https://doi.org/10.1029/2003PA000893, 2003. a, b
Ritz, S., Stocker, T., and Joos, F.: A Coupled Dynamical Ocean-Energy
Balance Atmosphere Model for Paleoclimate Studies, J. Clim., 24,
349–375, https://doi.org/10.1175/2010JCLI3351.1, 2011. a
Roberts, J., Gottschalk, J., Skinner, L. C., Peck, V. L., Kender, S.,
Elderfield, H., Waelbroeck, C., Riveirose, N. V., Hodell, D. A., and AGodwin:
Evolution of South Atlantic density and chemical stratification across the
last deglaciation, P. Natl. Acad. Sci. USA, 113,
514–519, https://doi.org/10.1073/pnas.1621231114, 2016. a
Roth, R. and Joos, F.: Model limits on the role of volcanic carbon emissions
in regulating glacial-interglacial CO2variations, Earth Planet.
Sc. Lett., 329/330, 141–149, https://doi.org/10.1016/j.epsl.2012.02.019, 2012. a, b
Sarnthein, M., Schneider, B., and Grootes, P. M.: Peak glacial 14C
ventilation
ages suggest major draw-down of carbon into the abyssal ocean, Clim. Past, 9, 2595–2614, https://doi.org/10.5194/cp-9-2595-2013, 2013. a
Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, a.,
Chappellaz, J., Kohler, P., Joos, F., Stocker, T. F., Leuenberger, M., and
Fischer, H.: Carbon Isotope Constraints on the Deglacial CO2 Rise from Ice
Cores, Science, 336, 711–714, https://doi.org/10.1126/science.1217161, 2012. a, b, c, d
Siegenthaler, U. and Joos, F.: Use of a simple model for studying oceanic
tracer distributions and the global carbon cycle, Tellus B, 44, 186–207,
https://doi.org/10.1034/j.1600-0889.1992.t01-2-00003.x, 1992. a
Siegenthaler, U. and Oeschger, H.: Biospheric CO2 emissions during
the past
200 years reconstructed by deconvolution of ice core data, Tellus B, 39, 140–154,
https://doi.org/10.3402/tellusb.v39i1-2.15331, 1987. a, b, c
Sigman, D. M., McCorkle, D. C., and Martin, W. R.: The calcite lysocline as
a
constraint on glacial/interglacial low-latitude production changes, Global
Biogeochem. Cy., 12, 409–427, https://doi.org/10.1029/98GB01184, 1998. a
Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E., Barker, S., Klug, A.,
Stark, A., Peters, K., Schnering, H. G., Umemoto, K., Yamaguchi, K., Fujita,
M., Powers, R. E., Parac, T. N., Raymond, K. N., Olenyuk, B., Muddiman,
D. C., Smith, R. D., Whiteford, J. A., Stang, P. J., Levin, M. D., Shield,
J. E., Egan, S. J., Robson, R., Dress, A. W. M., Roy, S., Ni, Z., Yaghi,
O. M., Lu, J., Mondal, A., Zaworotko, M. J., Atwood, J. L., Tominaga, M.,
Kawano, M., Tang, C., Wiesenfeld, K., Gustafson, S., Pelta, D. A., Verdegay,
J. L., Systems, B., Pelzing, M., Skinner, L. C., Fallon, S., Waelbroeck, C.,
Michel, E., and Barker, S.: Ventilation of the Deep Southern Ocean and
Deglacial CO2 Rise, Science, 328, 1147–1151, https://doi.org/10.1126/science.1183627,
2010. a
Skinner, L. C., Primeau, F., Freeman, E., De La Fuente, M., Goodwin, P. A.,
Gottschalk, J., Huang, E., McCave, I. N., Noble, T. L., and Scrivner, A. E.:
Radiocarbon constraints on the glacial ocean circulation and its impact on
atmospheric CO2, Nat. Commun., 8, 1–10, https://doi.org/10.1038/ncomms16010,
2017. a
Steinacher, M., Joos, F., and Stocker, T. F.: Allowable carbon emissions
lowered by multiple climate targets, Nature, 499, 197–201,
https://doi.org/10.1038/nature12269, 2013. a
Stephens, B. B. and Keeling, R. F.: The influence of Antarctic sea ice on
glacial-interglacial CO2 variations, Nature, 404, 171–174,
https://doi.org/10.1038/35004556, 2000. a
Sun, X. and Matsumoto, K.: Effects of sea ice on atmospheric
pCO2: A revised
view and implications for glacial and future climates, J.
Geophys. Res.-Biogeo., 115, 1–8, https://doi.org/10.1029/2009JG001023,
2010. a
Taucher, J., Bach, L. T., Riebesell, U., and Oschlies, A.: The viscosity
effect on marine particle flux: A climate relevant feedback mechanism,
Global Biogeochem. Cy., 28, 415–422,
https://doi.org/10.1002/2013GB004778.Received, 2014. a
Tréguer, P. J. and De La Rocha, C. L.: The world ocean silica
cycle,
Annu. Rev. Mar. Sci., 5, 477–501,
https://doi.org/10.1146/annurev-marine-121211-172346, 2013. a, b, c, d
Tschumi, T., Joos, F., and Parekh, P.: How important are Southern Hemisphere
wind changes for low glacial carbon dioxide? A model study,
Paleoceanography, 23, 20 pp., https://doi.org/10.1029/2008PA001592, 2008. a, b
Ushie, H. and Matsumoto, K.: The role of shelf nutrients on
glacial-interglacial CO2: A negative feedback, Global Biogeochem. Cy.,
26, 1–10, https://doi.org/10.1029/2011GB004147, 2012. a, b, c
Van Campo, E., Guiot, J., and Peng, C.: A data-based re-appraisal of the
terrestrial carbon budget at the last glacial maximum, Glob. Planet.
Change, 8, 189–201, https://doi.org/10.1016/0921-8181(93)90008-C, 1993. a
Vecsei, A. and Berger, W. H.: Increase of atmospheric CO2 during
deglaciation:
Constraints on the coral reef hypothesis from patterns of deposition, Global
Biogeochem. Cy., 18, 1–7, https://doi.org/10.1029/2003GB002147, 2004.
a, b, c, d
Waelbroeck, C., Paul, A., Kucera, M., Rosell-Melé, A., Weinelt, M.,
Schneider, R., Mix, A. C., Abelmann, A., Armand, L., Bard, E., Barker, S.,
Barrows, T. T., Benway, H., Cacho, I., Chen, M. T., Cortijo, E., Crosta, X.,
De Vernal, A., Dokken, T., Duprat, J., Elderfield, H., Eynaud, F.,
Gersonde, R., Hayes, A., Henry, M., Hillaire-Marcel, C., Huang, C. C.,
Jansen, E., Juggins, S., Kallel, N., Kiefer, T., Kienast, M., Labeyrie, L.,
Leclaire, H., Londeix, L., Mangin, S., Matthiessen, J., Marret, F., Meland,
M., Morey, A. E., Mulitza, S., Pflaumann, U., Pisias, N. G., Radi, T.,
Rochon, A., Rohling, E. J., Sbaffi, L., Schäfer-Neth, C., Solignac, S.,
Spero, H., Tachikawa, K., and Turon, J. L.: Constraints on the magnitude and
patterns of ocean cooling at the Last Glacial Maximum, Nat. Geosci., 2,
127–132, https://doi.org/10.1038/ngeo411, 2009. a, b, c
Wallmann, K., Schneider, B., and Sarnthein, M.: Effects of eustatic sea-level
change, ocean dynamics, and nutrient utilization on atmospheric
pCO2 and seawater composition over the last 130 000 years:
a model study, Clim. Past, 12, 339–375,
https://doi.org/10.5194/cp-12-339-2016, 2016. a, b, c
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr., 12, 351–362,
https://doi.org/10.1029/92JC00188, 2014. a
Watson, A. J., Vallis, G. K., and Nikurashin, M.: Southern Ocean buoyancy
forcing of ocean ventilation and glacial atmospheric CO2, Nat. Geosci.,
8, 861–864, https://doi.org/10.1038/ngeo2538, 2015. a
Yu, J., Anderson, R. F., Jin, Z., Rae, J. W. B., Opdyke, B. N., and Eggins,
S. M.: Responses of the deep ocean carbonate system to carbon reorganization
during the Last Glacial-interglacial cycle, Quaternary Sci. Rev., 76,
39–52, https://doi.org/10.1016/j.quascirev.2013.06.020, 2013. a, b, c
Yu, J., Anderson, F., and Rohling, E. J.: Deep Ocean Carbonate Chemistry and
Glacial-Interglacial Atmospheric CO2 Changes, Oceanography, 27, 16–25,
https://doi.org/10.5670/oceanog.2011.65, 2014. a
Zech, R., Huang, Y., Zech, M., Tarozo, R., and Zech, W.: High carbon
sequestration in Siberian permafrost loess-paleosols during glacials,
Clim. Past, 7, 501–509, https://doi.org/10.5194/cp-7-501-2011, 2011. a, b, c, d
Zweng, M. M., Reagan, J., Antonov, J., Mishonov, A., Boyer, T., Garcia, H.,
Baranova, O., Johnson, D., Seidov, D., and Bidlle, M.: World Ocean Atlas
2013, Volume 2: Salinity, NOAA Atlas NESDIS, 2, 39,
https://doi.org/10.1182/blood-2011-06-357442, 2013. a
Short summary
A long-standing question in climate science is concerned with what processes contributed to the increase in atmospheric CO2 after the last ice age. From the range of possible processes we try to constrain the change in carbon storage in the land biosphere. By combining ice core and marine sediment data in a modeling framework we show that the carbon storage in the land biosphere increased largely after the last ice age. This will help to further understand processes at work in the Earth system.
A long-standing question in climate science is concerned with what processes contributed to the...