Articles | Volume 15, issue 1
https://doi.org/10.5194/cp-15-291-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-291-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contribution of sea ice albedo and insulation effects to Arctic amplification in the EC-Earth Pliocene simulation
Jianqiu Zheng
CORRESPONDING AUTHOR
Department of Physical Geography and Bolin Centre for Climate
Research, Stockholm University, Stockholm, 10691, Sweden
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei, 230026, China
Key Laboratory of Meteorological Disaster of Ministry of Education,
Nanjing University of Information Science and Technology, Nanjing, 210044,
China
Qiong Zhang
Department of Physical Geography and Bolin Centre for Climate
Research, Stockholm University, Stockholm, 10691, Sweden
Department of Physical Geography and Bolin Centre for Climate
Research, Stockholm University, Stockholm, 10691, Sweden
Qiang Zhang
Department of Physical Geography and Bolin Centre for Climate
Research, Stockholm University, Stockholm, 10691, Sweden
Department of Earth, Ocean and Atmospheric Science, Florida State
University, Tallahassee, Florida, 32306, USA
Related authors
Xiaodong Wang, Chun Zhao, Mingyue Xu, Qiuyan Du, Jianqiu Zheng, Yun Bi, Shengfu Lin, and Yali Luo
Geosci. Model Dev., 15, 199–218, https://doi.org/10.5194/gmd-15-199-2022, https://doi.org/10.5194/gmd-15-199-2022, 2022
Short summary
Short summary
Regional models are widely used to investigate aerosol climatic impacts. However, there are few studies examining the sensitivities of modeling results to regional domain size. In this study, the regional model is used to study the aerosol impacts on the East Asian summer monsoon system and focus on the modeling sensitivities to domain size. This study highlights the important impacts of domain size on regional modeling results of aerosol climatic impacts, which may not be limited to East Asia.
Marco Gaetani, Gabriele Messori, Francesco S. R. Pausata, Shivangi Tiwari, M. Carmen Alvarez Castro, and Qiong Zhang
Clim. Past, 20, 1735–1759, https://doi.org/10.5194/cp-20-1735-2024, https://doi.org/10.5194/cp-20-1735-2024, 2024
Short summary
Short summary
Palaeoclimate reconstructions suggest that, around 6000 years ago, a greening of the Sahara took place, accompanied by climate changes in the Northern Hemisphere at middle to high latitudes. In this study, a climate model is used to investigate how this drastic environmental change in the Sahara impacted remote regions. Specifically, climate simulations reveal significant modifications in atmospheric circulation over the North Atlantic, affecting North American and European climates.
Putian Zhou, Zhengyao Lu, Jukka-Pekka Keskinen, Qiong Zhang, Juha Lento, Jianpu Bian, Twan van Noije, Philippe Le Sager, Veli-Matti Kerminen, Markku Kulmala, Michael Boy, and Risto Makkonen
Clim. Past, 19, 2445–2462, https://doi.org/10.5194/cp-19-2445-2023, https://doi.org/10.5194/cp-19-2445-2023, 2023
Short summary
Short summary
A Green Sahara with enhanced rainfall and larger vegetation cover existed in northern Africa about 6000 years ago. Biosphere–atmosphere interactions are found to be critical to explaining this wet period. Based on modeled vegetation reconstruction data, we simulated dust emissions and aerosol formation, which are key factors in biosphere–atmosphere interactions. Our results also provide a benchmark of aerosol climatology for future paleo-climate simulation experiments.
Xin Ren, Daniel J. Lunt, Erica Hendy, Anna von der Heydt, Ayako Abe-Ouchi, Bette Otto-Bliesner, Charles J. R. Williams, Christian Stepanek, Chuncheng Guo, Deepak Chandan, Gerrit Lohmann, Julia C. Tindall, Linda E. Sohl, Mark A. Chandler, Masa Kageyama, Michiel L. J. Baatsen, Ning Tan, Qiong Zhang, Ran Feng, Stephen Hunter, Wing-Le Chan, W. Richard Peltier, Xiangyu Li, Youichi Kamae, Zhongshi Zhang, and Alan M. Haywood
Clim. Past, 19, 2053–2077, https://doi.org/10.5194/cp-19-2053-2023, https://doi.org/10.5194/cp-19-2053-2023, 2023
Short summary
Short summary
We investigate the Maritime Continent climate in the mid-Piacenzian warm period and find it is warmer and wetter and the sea surface salinity is lower compared with preindustrial period. Besides, the fresh and warm water transfer through the Maritime Continent was stronger. In order to avoid undue influence from closely related models in the multimodel results, we introduce a new metric, the multi-cluster mean, which could reveal spatial signals that are not captured by the multimodel mean.
Gustav Strandberg, Jie Chen, Ralph Fyfe, Erik Kjellström, Johan Lindström, Anneli Poska, Qiong Zhang, and Marie-José Gaillard
Clim. Past, 19, 1507–1530, https://doi.org/10.5194/cp-19-1507-2023, https://doi.org/10.5194/cp-19-1507-2023, 2023
Short summary
Short summary
The impact of land use and land cover change (LULCC) on the climate around 2500 years ago is studied using reconstructions and models. The results suggest that LULCC impacted the climate in parts of Europe. Reconstructed LULCC shows up to 1.5 °C higher temperature in parts of Europe in some seasons. This relatively strong response implies that anthropogenic LULCC that had occurred by the late prehistoric period may have already affected the European climate by 2500 years ago.
Julia E. Weiffenbach, Michiel L. J. Baatsen, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Zixuan Han, Alan M. Haywood, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Julia C. Tindall, Charles J. R. Williams, Qiong Zhang, and Zhongshi Zhang
Clim. Past, 19, 61–85, https://doi.org/10.5194/cp-19-61-2023, https://doi.org/10.5194/cp-19-61-2023, 2023
Short summary
Short summary
We study the behavior of the Atlantic Meridional Overturning Circulation (AMOC) in the mid-Pliocene. The mid-Pliocene was about 3 million years ago and had a similar CO2 concentration to today. We show that the stronger AMOC during this period relates to changes in geography and that this has a significant influence on ocean temperatures and heat transported northwards by the Atlantic Ocean. Understanding the behavior of the mid-Pliocene AMOC can help us to learn more about our future climate.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Xiaodong Wang, Chun Zhao, Mingyue Xu, Qiuyan Du, Jianqiu Zheng, Yun Bi, Shengfu Lin, and Yali Luo
Geosci. Model Dev., 15, 199–218, https://doi.org/10.5194/gmd-15-199-2022, https://doi.org/10.5194/gmd-15-199-2022, 2022
Short summary
Short summary
Regional models are widely used to investigate aerosol climatic impacts. However, there are few studies examining the sensitivities of modeling results to regional domain size. In this study, the regional model is used to study the aerosol impacts on the East Asian summer monsoon system and focus on the modeling sensitivities to domain size. This study highlights the important impacts of domain size on regional modeling results of aerosol climatic impacts, which may not be limited to East Asia.
Zixuan Han, Qiong Zhang, Qiang Li, Ran Feng, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Bette L. Otto-Bliesner, Esther C. Brady, Nan Rosenbloom, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Charles J. R. Williams, Daniel J. Lunt, Jianbo Cheng, Qin Wen, and Natalie J. Burls
Clim. Past, 17, 2537–2558, https://doi.org/10.5194/cp-17-2537-2021, https://doi.org/10.5194/cp-17-2537-2021, 2021
Short summary
Short summary
Understanding the potential processes responsible for large-scale hydrological cycle changes in a warmer climate is of great importance. Our study implies that an imbalance in interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate cycling. Moreover, a robust westward shift in the Pacific Walker circulation can moisten the northern Indian Ocean.
Arthur M. Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Henk A. Dijkstra, Julia C. Tindall, Ayako Abe-Ouchi, Alice R. Booth, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Alan M. Haywood, Stephen J. Hunter, Youichi Kamae, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gabriel M. Pontes, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Qiong Zhang, Zhongshi Zhang, Ilana Wainer, and Charles J. R. Williams
Clim. Past, 17, 2427–2450, https://doi.org/10.5194/cp-17-2427-2021, https://doi.org/10.5194/cp-17-2427-2021, 2021
Short summary
Short summary
In this work, we have studied the behaviour of El Niño events in the mid-Pliocene, a period of around 3 million years ago, using a collection of 17 climate models. It is an interesting period to study, as it saw similar atmospheric carbon dioxide levels to the present day. We find that the El Niño events were less strong in the mid-Pliocene simulations, when compared to pre-industrial climate. Our results could help to interpret El Niño behaviour in future climate projections.
Ellen Berntell, Qiong Zhang, Qiang Li, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, William Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, Charles J. R. Williams, Daniel J. Lunt, Ran Feng, Bette L. Otto-Bliesner, and Esther C. Brady
Clim. Past, 17, 1777–1794, https://doi.org/10.5194/cp-17-1777-2021, https://doi.org/10.5194/cp-17-1777-2021, 2021
Short summary
Short summary
The mid-Pliocene Warm Period (~ 3.2 Ma) is often considered an analogue for near-future climate projections, and model results from the PlioMIP2 ensemble show an increase of rainfall over West Africa and the Sahara region compared to pre-industrial conditions. Though previous studies of future projections show a west–east drying–wetting contrast over the Sahel, these results indicate a uniform rainfall increase over the Sahel in warm climates characterized by increased greenhouse gas forcing.
Qiong Zhang, Ellen Berntell, Josefine Axelsson, Jie Chen, Zixuan Han, Wesley de Nooijer, Zhengyao Lu, Qiang Li, Qiang Zhang, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 1147–1169, https://doi.org/10.5194/gmd-14-1147-2021, https://doi.org/10.5194/gmd-14-1147-2021, 2021
Short summary
Short summary
Paleoclimate modelling has long been regarded as a strong out-of-sample test bed of the climate models that are used for the projection of future climate changes. Here, we document the model experimental setups for the three past warm periods with EC-Earth3-LR and present the results on the large-scale features. The simulations demonstrate good performance of the model in capturing the climate response under different climate forcings.
Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Odd Helge Otterå, Kerim H. Nisancioglu, Ning Tan, Camille Contoux, Gilles Ramstein, Ran Feng, Bette L. Otto-Bliesner, Esther Brady, Deepak Chandan, W. Richard Peltier, Michiel L. J. Baatsen, Anna S. von der Heydt, Julia E. Weiffenbach, Christian Stepanek, Gerrit Lohmann, Qiong Zhang, Qiang Li, Mark A. Chandler, Linda E. Sohl, Alan M. Haywood, Stephen J. Hunter, Julia C. Tindall, Charles Williams, Daniel J. Lunt, Wing-Le Chan, and Ayako Abe-Ouchi
Clim. Past, 17, 529–543, https://doi.org/10.5194/cp-17-529-2021, https://doi.org/10.5194/cp-17-529-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important topic in the Pliocene Model Intercomparison Project. Previous studies have suggested a much stronger AMOC during the Pliocene than today. However, our current multi-model intercomparison shows large model spreads and model–data discrepancies, which can not support the previous hypothesis. Our study shows good consistency with future projections of the AMOC.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
Alan M. Haywood, Julia C. Tindall, Harry J. Dowsett, Aisling M. Dolan, Kevin M. Foley, Stephen J. Hunter, Daniel J. Hill, Wing-Le Chan, Ayako Abe-Ouchi, Christian Stepanek, Gerrit Lohmann, Deepak Chandan, W. Richard Peltier, Ning Tan, Camille Contoux, Gilles Ramstein, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Qiong Zhang, Qiang Li, Youichi Kamae, Mark A. Chandler, Linda E. Sohl, Bette L. Otto-Bliesner, Ran Feng, Esther C. Brady, Anna S. von der Heydt, Michiel L. J. Baatsen, and Daniel J. Lunt
Clim. Past, 16, 2095–2123, https://doi.org/10.5194/cp-16-2095-2020, https://doi.org/10.5194/cp-16-2095-2020, 2020
Short summary
Short summary
The large-scale features of middle Pliocene climate from the 16 models of PlioMIP Phase 2 are presented. The PlioMIP2 ensemble average was ~ 3.2 °C warmer and experienced ~ 7 % more precipitation than the pre-industrial era, although there are large regional variations. PlioMIP2 broadly agrees with a new proxy dataset of Pliocene sea surface temperatures. Combining PlioMIP2 and proxy data suggests that a doubling of atmospheric CO2 would increase globally averaged temperature by 2.6–4.8 °C.
Maartje Sanne Kuilman, Qiong Zhang, Ming Cai, and Qin Wen
Atmos. Chem. Phys., 20, 12409–12430, https://doi.org/10.5194/acp-20-12409-2020, https://doi.org/10.5194/acp-20-12409-2020, 2020
Short summary
Short summary
In this study, we quantify the temperature changes in the middle atmosphere due to different feedback processes using the climate feedback response analysis method. We have found that the change due to the increase in CO2 alone cools the middle atmosphere. The combined effect of the different feedbacks causes the atmosphere to cool less. The ozone feedback is the most important feedback process, while the cloud, water vapour and albedo feedback play only a minor role.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Martin Renoult, James Douglas Annan, Julia Catherine Hargreaves, Navjit Sagoo, Clare Flynn, Marie-Luise Kapsch, Qiang Li, Gerrit Lohmann, Uwe Mikolajewicz, Rumi Ohgaito, Xiaoxu Shi, Qiong Zhang, and Thorsten Mauritsen
Clim. Past, 16, 1715–1735, https://doi.org/10.5194/cp-16-1715-2020, https://doi.org/10.5194/cp-16-1715-2020, 2020
Short summary
Short summary
Interest in past climates as sources of information for the climate system has grown in recent years. In particular, studies of the warm mid-Pliocene and cold Last Glacial Maximum showed relationships between the tropical surface temperature of the Earth and its sensitivity to an abrupt doubling of atmospheric CO2. In this study, we develop a new and promising statistical method and obtain similar results as previously observed, wherein the sensitivity does not seem to exceed extreme values.
Charlotta Högberg, Stefan Lossow, Farahnaz Khosrawi, Ralf Bauer, Kaley A. Walker, Patrick Eriksson, Donal P. Murtagh, Gabriele P. Stiller, Jörg Steinwagner, and Qiong Zhang
Atmos. Chem. Phys., 19, 2497–2526, https://doi.org/10.5194/acp-19-2497-2019, https://doi.org/10.5194/acp-19-2497-2019, 2019
Short summary
Short summary
Five δD (H2O) data sets obtained from satellite observations have been evaluated using profile-to-profile and climatological comparisons. The focus is on stratospheric altitudes, but results from the upper troposphere to the lower mesosphere are also provided. There are clear quantitative differences in the δD ratio in key areas of scientific interest, resulting in difficulties drawing robust conclusions on atmospheric processes affecting the water vapour budget and distribution.
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Masa Kageyama, Samuel Albani, Pascale Braconnot, Sandy P. Harrison, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Olivier Marti, W. Richard Peltier, Jean-Yves Peterschmitt, Didier M. Roche, Lev Tarasov, Xu Zhang, Esther C. Brady, Alan M. Haywood, Allegra N. LeGrande, Daniel J. Lunt, Natalie M. Mahowald, Uwe Mikolajewicz, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Hans Renssen, Robert A. Tomas, Qiong Zhang, Ayako Abe-Ouchi, Patrick J. Bartlein, Jian Cao, Qiang Li, Gerrit Lohmann, Rumi Ohgaito, Xiaoxu Shi, Evgeny Volodin, Kohei Yoshida, Xiao Zhang, and Weipeng Zheng
Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, https://doi.org/10.5194/gmd-10-4035-2017, 2017
Short summary
Short summary
The Last Glacial Maximum (LGM, 21000 years ago) is an interval when global ice volume was at a maximum, eustatic sea level close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. This paper describes the implementation of the LGM numerical experiment for the PMIP4-CMIP6 modelling intercomparison projects and the associated sensitivity experiments.
Michiel M. Helsen, Roderik S. W. van de Wal, Thomas J. Reerink, Richard Bintanja, Marianne S. Madsen, Shuting Yang, Qiang Li, and Qiong Zhang
The Cryosphere, 11, 1949–1965, https://doi.org/10.5194/tc-11-1949-2017, https://doi.org/10.5194/tc-11-1949-2017, 2017
Short summary
Short summary
Ice sheets reflect most incoming solar radiation back into space due to their high reflectivity (albedo). The albedo of ice sheets changes as a function of, for example, liquid water content and ageing of snow. In this study we have improved the description of albedo over the Greenland ice sheet in a global climate model. This is an important step, which also improves estimates of the annual ice mass gain or loss over the ice sheet using this global climate model.
M. Ballarotta, F. Roquet, S. Falahat, Q. Zhang, and G. Madec
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-3597-2015, https://doi.org/10.5194/cpd-11-3597-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We investigate the impact of the ocean geothermal heating (OGH) on a glacial ocean state using numerical simulations. We found that the OGH is a significant forcing of the abyssal ocean and thermohaline circulation. Applying the OGH warms the Antarctic Bottom Water by ~0.4°C and strengthens the deep circulation by 15% to 30%. The geothermally heated waters are advected from the Indo-Pacific to the North Atlantic basin, indirectly favouring the deep convection in the North Atlantic.
J. Seguinot, C. Khroulev, I. Rogozhina, A. P. Stroeven, and Q. Zhang
The Cryosphere, 8, 1087–1103, https://doi.org/10.5194/tc-8-1087-2014, https://doi.org/10.5194/tc-8-1087-2014, 2014
Related subject area
Subject: Feedback and Forcing | Archive: Modelling only | Timescale: Cenozoic
Role of the stratospheric chemistry–climate interactions in the hot climate conditions of the Eocene
Sophie Szopa, Rémi Thiéblemont, Slimane Bekki, Svetlana Botsyun, and Pierre Sepulchre
Clim. Past, 15, 1187–1203, https://doi.org/10.5194/cp-15-1187-2019, https://doi.org/10.5194/cp-15-1187-2019, 2019
Short summary
Short summary
The stratospheric ozone layer plays a key role in atmospheric thermal structure and circulation. Here, with a chemistry–climate model, we evaluate the potential role of stratospheric ozone chemistry in the case of Eocene hot conditions. Our results suggest that using stratospheric ozone calculated by the modeled Eocene conditions instead of the commonly specified preindustrial ozone distribution could change the simulated global surface air temperature by as much as 14 %.
Cited articles
Alexander, M. A., Bhatt, U. S., Walsh, J. E., Timlin, M. S., Miller, J. S., and
Scott, J. D.: The atmospheric response to realistic Arctic sea ice anomalies
in an AGCM during winter, J. Climate, 17, 890–905,
https://doi.org/10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2,
2004.
Alexeev, V. A., Ivanov, V. V., Kwok, R., and Smedsrud, L. H.: North Atlantic
warming and declining volume of arctic sea ice, The Cryosphere Discuss., 7,
245–265, https://doi.org/10.5194/tcd-7-245-2013, 2013.
Ballantyne, A. P., Axford, Y., Miller, G. H., Otto-Bliesner, B. L.,
Rosenbloom, N., and White, J. W.: The amplification of Arctic terrestrial
surface temperatures by reduced sea-ice extent during the Pliocene,
Palaeogeogr. Palaeocl., 386, 59–67, https://doi.org/10.1016/j.palaeo.2013.05.002, 2013.
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B.,
Hirschi, M., and Betts, A. K.: A revised hydrology for the ECMWF model:
Verification from field site to terrestrial water storage and impact in the
Integrated Forecast System, J. Hydrometeorol., 10, 623–643,
https://doi.org/10.1175/2008JHM1068.1, 2009.
Bintanja, R. and Selten, F. M.: Future increases in Arctic precipitation
linked to local evaporation and sea-ice retreat, Nature, 509, 479–482,
https://doi.org/10.1038/nature13259, 2014.
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and
Bladé, I.: The effective number of spatial degrees of freedom of a
time-varying field, J. Climate, 12, 1990–2009,
https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2, 1999.
Brierley, C. M. and Fedorov, A. V.: Comparing the impacts of
Miocene–Pliocene changes in inter-ocean gateways on climate: Central
American Seaway, Bering Strait, and Indonesia, Earth Planet. Sc. Lett., 444,
116–130, https://doi.org/10.1016/j.epsl.2016.03.010, 2016.
Brigham-Grette, J., Melles, M., Minyuk, P., Andreev, A., Tarasov, P.,
DeConto, R., and Haltia, E.: Pliocene warmth, polar amplification, and
stepped Pleistocene cooling recorded in NE Arctic Russia, Science, 340, 1421,
https://doi.org/10.1126/science.1233137, 2013.
Burt, M. A., Randall, D. A., and Branson, M. D.: Dark warming, J. Climate,
29, 705–719, https://doi.org/10.1175/JCLI-D-15-0147.1, 2016.
Dowsett, H. J., Robinson, M. M., Haywood, A. M., Hill, D. J., Dolan, A. M.,
Stoll, D. K., Abe-Ouchi, A., Chandler, M. A., Rosenbloom, N. A.,
Otto-Bliesner, B. L., and Bragg, F. J.: Assessing confidence in Pliocene sea
surface temperatures to evaluate predictive models, Nat. Clim. Change, 2,
365–371, https://doi.org/10.1038/nclimate1455, 2012.
Dowsett, H., Dolan, A., Rowley, D., Moucha, R., Forte, A. M., Mitrovica, J.
X., Pound, M., Salzmann, U., Robinson, M., Chandler, M., Foley, K., and
Haywood, A.: The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction,
Clim. Past, 12, 1519–1538, https://doi.org/10.5194/cp-12-1519-2016, 2016.
Feng, R., Otto-Bliesner, B. L., Fletcher, T. L., Tabor, C. R., Ballantyne, A.
P., and Brady, E. C.: Amplified Late Pliocene terrestrial warmth in northern
high latitudes from greater radiative forcing and closed Arctic Ocean
gateways, Earth Planet. Sc. Lett., 466, 129–138,
https://doi.org/10.1016/j.epsl.2017.03.006, 2017.
Frankignoul, C. and Kestenare, E.: The surface heat flux feedback. Part I:
estimates from observations in the Atlantic and the North Pacific, Clim.
Dynam., 19, 633–647, https://doi.org/10.1007/s00382-002-0252-x, 2002.
Fu, Q. and Liou, K. N.: Parameterization of the radiative properties of
cirrus clouds, J. Atmos. Sci., 50, 2008–2025,
https://doi.org/10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2, 1993.
Gaetani, M., Messori G., Zhang Q., Flamant C., and Pausata F. S.:
Understanding the mechanisms behind the northward extension of the West
African Monsoon during the Mid-Holocene, J. Climate, 30, 7621–7642,
https://doi.org/10.1175/JCLI-D-16-0299.1, 2017.
Gildor, H., Ashkenazy, Y., Tziperman, E., and Lev, I.: The role of sea ice in
the temperature-precipitation feedback of glacial cycles, Clim. Dynam., 43,
1001–1010, https://doi.org/10.1007/s00382-013-1990-7, 2014.
Graversen, R. G. and Burtu, M.: Arctic amplification enhanced by latent
energy transport of atmospheric planetary waves, Q. J. Roy. Meteor. Soc.,
142, 2046–2054, https://doi.org/10.1002/qj.2802, 2016.
Haywood, A. M., Dowsett, H. J., and Dolan, A. M.: Integrating geological
archives and climate models for the mid-Pliocene warm period, Nat. Commun.,
7, 1–14, https://doi.org/10.1038/ncomms10646, 2016a.
Haywood, A. M., Dowsett, H. J., Dolan, A. M., Rowley, D., Abe-Ouchi, A.,
Otto-Bliesner, B., Chandler, M. A., Hunter, S. J., Lunt, D. J., Pound, M.,
and Salzmann, U.: The Pliocene Model Intercomparison Project (PlioMIP) Phase
2: scientific objectives and experimental design, Clim. Past, 12, 663–675,
https://doi.org/10.5194/cp-12-663-2016, 2016b.
Hazeleger, W., Wang, X., Severijns, C., Ştefănescu, S., Bintanja, R.,
Sterl, A., Wyser, K., Semmler, T., Yang, S., Van den Hurk, B., and Van Noije,
T.: EC-Earth V2. 2: description and validation of a new seamless earth system
prediction model, Clim. Dynam., 39, 2611–2629,
https://doi.org/10.1007/s00382-011-1228-5, 2012.
Hill, D. J., Haywood, A. M., Lunt, D. J., Hunter, S. J., Bragg, F. J.,
Contoux, C., Stepanek, C., Sohl, L., Rosenbloom, N. A., Chan, W.-L., Kamae,
Y., Zhang, Z., Abe-Ouchi, A., Chandler, M. A., Jost, A., Lohmann, G.,
Otto-Bliesner, B. L., Ramstein, G., and Ueda, H.: Evaluating the dominant
components of warming in Pliocene climate simulations, Clim. Past, 10,
79–90, https://doi.org/10.5194/cp-10-79-2014, 2014.
Hu, X., Li, Y., Yang, S., Deng, Y., and Cai, M.: Process-based Decomposition
of the Decadal Climate Difference between 2002–13 and 1984–95, J. Climate,
30, 4373–4393, https://doi.org/10.1175/JCLI-D-15-0742.1, 2017.
Kageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus, J.
H., Otto-Bliesner, B. L., Peterschmitt, J.-Y., Abe-Ouchi, A., Albani, S.,
Bartlein, P. J., Brierley, C., Crucifix, M., Dolan, A., Fernandez-Donado, L.,
Fischer, H., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Lunt, D. J.,
Mahowald, N. M., Peltier, W. R., Phipps, S. J., Roche, D. M., Schmidt, G. A.,
Tarasov, L., Valdes, P. J., Zhang, Q., and Zhou, T.: The PMIP4 contribution
to CMIP6 – Part 1: Overview and over-arching analysis plan, Geosci. Model
Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, 2018.
Kim, K.-Y., Hamlington, B. D., Na, H., and Kim, J.: Mechanism of seasonal
Arctic sea ice evolution and Arctic amplification, The Cryosphere, 10,
2191–2202, https://doi.org/10.5194/tc-10-2191-2016, 2016.
Koenigk, T., Brodeau, L., Graversen, R. G., Karlsson, J., Svensson, G.,
Tjernström, M., and Wyser, K.: Arctic climate change in 21st century
CMIP5 simulations with EC-Earth, Clim. Dynam., 40, 2719–2743,
https://doi.org/10.1007/s00382-012-1505-y, 2013.
Krumpen, T., Gerdes, R., Haas, C., Hendricks, S., Herber, A., Selyuzhenok,
V., Smedsrud, L., and Spreen, G.: Recent summer sea ice thickness surveys in
Fram Strait and associated ice volume fluxes, The Cryosphere, 10, 523–534,
https://doi.org/10.5194/tc-10-523-2016, 2016.
Lang, A., Yang, S., and Kaas, E.: Sea-ice thickness and recent Arctic warming,
Geophys. Res. Lett., 44, 409–418, https://doi.org/10.1002/2016GL071274, 2017.
Li, C., Notz, D., Tietsche, S., and Marotzke, J.: The transient versus the
equilibrium response of sea ice to global warming, J. Climate, 26,
5624–5636, https://doi.org/10.1175/JCLI-D-12-00492.1, 2013.
Li, G., Ren, B., Zheng, J., and Yang, C.: Net air–sea surface heat flux
during 1984–2004 over the North Pacific and North Atlantic oceans
(10∘ N–50∘ N): annual mean climatology and trend, Theor.
Appl. Climatol., 104, 387–401, https://doi.org/10.1007/s00704-010-0351-2, 2011.
Liu, Y., Key, J. R., Liu, Z., Wang, X., and Vavrus, S. J.: A cloudier Arctic
expected with diminishing sea ice, Geophys. Res. Lett., 39, L05705,
https://doi.org/10.1029/2012GL051251, 2012.
Lu, J. and Cai, M.: A new framework for isolating individual feedback
processes in coupled general circulation climate models, Part I: Formulation,
Clim. Dynam., 32, 873–885, https://doi.org/10.1007/s00382-008-0425-3, 2009.
Madec, G.: “NEMO ocean engine”, Note du Pole de modélisation, Institut
Pierre-Simon Laplace (IPSL), France, No 27 ISSN no 1288-1619, 2008.
Matthiessen, J., Knies, J., Vogt, C., and Stein, R.: Pliocene
palaeoceanography of the Arctic Ocean and subarctic seas, Philos. T. Roy.
Soc., 367, 21–48, https://doi.org/10.1098/rsta.2008.0203, 2009.
Muschitiello, F., Zhang, Q., Sundqvist, H. S., Davies, F. J., and Renssen,
H.: Arctic climate response to the termination of the African Humid Period,
Quat. Sci. Rev., 125, 91–97, https://doi.org/10.1016/j.quascirev.2015.08.012, 2015.
Nghiem, S. V., Rigor, I. G., Perovich, D. K., Clemente-Colón, P.,
Weatherly, J. W., and Neumann, G.: Rapid reduction of Arctic perennial sea
ice, Geophys. Res. Lett., 34, L19504, https://doi.org/10.1029/2007GL031138, 2007.
Otto-Bliesner, B. L., Jahn, A., Feng, R., Brady, E. C., Hu, A., and
Löfverström, M.: Amplified North Atlantic warming in the late
Pliocene by changes in Arctic gateways, Geophys. Res. Lett., 44, 957–964,
https://doi.org/10.1002/2016GL071805, 2017.
Overland, J. E., Wang, M., Walsh, J. E., Christensen, J. H., Kattsov, V. M.,
and Champan, W. L.: Climate model projections for the Arctic, in: AMAP (2011)
Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the
Cryosphere, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway,
538 pp., 2011.
Pausata, F. S., Messori, G., and Zhang, Q.: Impacts of dust reduction on the
northward expansion of the African monsoon during the Green Sahara period,
Earth Planet. Sc. Lett., 434, 298–307, https://doi.org/10.1016/j.epsl.2015.11.049, 2016.
Pausata, F. S., Emanuel, K. A., Chiacchio, M., Diro, G. T., Zhang, Q.,
Sushama, L., Stager, J. C., and Donnelly, J. P.: Tropical cyclone activity
enhanced by Sahara greening and reduced dust emissions during the African
Humid Period, P. Natl. Acad. Sci. USA, 114, 6221–6226,
https://doi.org/10.1073/pnas.1619111114, 2017a.
Pausata, F. S., Zhang, Q., Muschitiello, F., Lu, Z., Chafik, L., Niedermeyer,
E. M., Stager, J. C., Cobb, K. M., and Liu, Z.: Greening of the Sahara
suppressed ENSO activity during the mid-Holocene, Nat. Commun., 8, 1–12,
https://doi.org/10.1038/ncomms16020, 2017b.
Pithan, F. and Mauritsen, T.: Arctic amplification dominated by temperature
feedbacks in contemporary climate models, Nat. Geosci., 7, 181–184,
https://doi.org/10.1038/ngeo2071, 2014.
Robinson, M. M., Dowsett, H. J., and Chandler, M. A.: Pliocene role in
assessing future climate impacts, EOS Trans. Am. Geophys. Union, 89,
501–502, https://doi.org/10.1029/2008EO490001, 2008.
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., and Holland,
M. M.: The emergence of surface-based Arctic amplification, The Cryosphere,
3, 11–19, https://doi.org/10.5194/tc-3-11-2009, 2009.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Global Planet. Change, 77, 85–96,
https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Sévellec, F., Fedorov, A. V., and Liu, W.: Arctic sea-ice decline weakens
the Atlantic Meridional Overturning Circulation, Nat. Clim. Change, 7,
604–610, https://doi.org/10.1038/nclimate3353, 2017.
Shine, K. P. and Henderson-Sellers, A.: The sensitivity of a thermodynamic
sea ice model to changes in surface albedo parameterization, J. Geophys.
Res., 90, 2243–2250, 1985.
Soden, B. J. and Held, I. M.: An assessment of climate feedbacks in coupled
ocean–atmosphere models, J. Climate, 19, 3354–3360,
https://doi.org/10.1175/JCLI3799.1, 2006.
Song, X. and Zhang, G. J.: Role of climate feedback in El Niño-like SST
response to global warming, J. Climate, 27, 7301–7318,
https://doi.org/10.1175/JCLI-D-14-00072.1, 2014.
Taylor, P. C., Cai, M., Hu, A., Meehl, J., Washington, W., and Zhang, G. J.:
A decomposition of feedback contributions to polar warming amplification, J.
Climate, 26, 7023–7043, https://doi.org/10.1175/JCLI-D-12-00696.1, 2013.
Valcke, S.: OASIS3 user guide (prism_2-5), PRISM report series, no 2, 6
edn., 2006.
Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., and
Maqueda, M. A.: Simulating the mass balance and salinity of Arctic and
Antarctic sea ice, 1. Model description and validation, Ocean Modell., 27,
33–53, https://doi.org/10.1016/j.oceamod.2008.10.005, 2009.
Venegas, S. A., Mysak, L. A., and Straub, D. N.: Atmosphere–ocean coupled
variability in the South Atlantic, J. Climate, 10, 2904–2920,
https://doi.org/10.1175/1520-0442(1997)010<2904:AOCVIT>2.0.CO;2, 1997.
Vihma, T.: Effects of Arctic sea ice decline on weather and climate: a
review, Surv. Geophys., 35, 1175–1214, https://doi.org/10.1007/s10712-014-9284-0, 2014.
Wetherald, R. T. and Manabe S.: Cloud feedback processes in a general
circulation model, J. Atmos. Sci., 45, 1397–1416,
https://doi.org/10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2, 1988.
Winton, M.: Sea ice-albedo feedback and nonlinear Arctic climate change,
Arctic sea ice decline: Observations, projections, mechanisms, and
implications, Geophys. Monogr., 180, 111–131, https://doi.org/10.1029/180GM09, 2008.
Zheng, J., Ren, B., Li, G., and Yang, C.: Seasonal dependence of local
air-sea interaction over the tropical Western Pacific warm pool, J. Trop.
Meteorol., 20, 360–367, https://doi.org/10.16555/j.1006-8775.2014.04.009, 2014.
Short summary
This paper addresses two important issues with the EC-Earth Pliocene simulation, including the following: (1) quantification of albedo and insulation effects of Arctic sea ice on interface heat exchange and (2) an explanation as to why Arctic amplification in surface air temperature (SST) peaks in winter while there is maximum SST warming in summer. These issues provide potential implications for researching Arctic amplification and climate change.
This paper addresses two important issues with the EC-Earth Pliocene simulation, including the...