Articles | Volume 15, issue 4
https://doi.org/10.5194/cp-15-1463-2019
https://doi.org/10.5194/cp-15-1463-2019
Research article
 | 
05 Aug 2019
Research article |  | 05 Aug 2019

Simulating the climate response to atmospheric oxygen variability in the Phanerozoic: a focus on the Holocene, Cretaceous and Permian

David C. Wade, Nathan Luke Abraham, Alexander Farnsworth, Paul J. Valdes, Fran Bragg, and Alexander T. Archibald

Related authors

Last Millennium Volcanic Forcing and Climate Response using SO2 Emissions
Lauren R. Marshall, Anja Schmidt, Andrew P. Schurer, Nathan Luke Abraham, Lucie J. Lücke, Rob Wilson, Kevin Anchukaitis, Gabriele Hegerl, Ben Johnson, Bette L. Otto-Bliesner, Esther C. Brady, Myriam Khodri, and Kohei Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-1322,https://doi.org/10.5194/egusphere-2024-1322, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Patterns of changing surface climate variability from the Last Glacial Maximum to present in transient model simulations
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1396,https://doi.org/10.5194/egusphere-2024-1396, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
A multi-model assessment of the early last deglaciation (PMIP4 LDv1): a meltwater perspective
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024,https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary
Diagnosing the controls on desert dust emissions through the Phanerozoic
Yixuan Xie, Daniel J. Lunt, and Paul J. Valdes
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-22,https://doi.org/10.5194/cp-2024-22, 2024
Revised manuscript under review for CP
Short summary
Extension, development, and evaluation of the representation of the OH-initiated dimethyl sulfide (DMS) oxidation mechanism in the Master Chemical Mechanism (MCM) v3.3.1 framework
Lorrie Simone Denise Jacob, Chiara Giorio, and Alexander Thomas Archibald
Atmos. Chem. Phys., 24, 3329–3347, https://doi.org/10.5194/acp-24-3329-2024,https://doi.org/10.5194/acp-24-3329-2024, 2024
Short summary

Cited articles

Algeo, T. J. and Ingall, E.: Sedimentary Corg : P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2, Palaeogeogr. Palaeocl., 256, 130–155, https://doi.org/10.1016/J.PALAEO.2007.02.029, 2007. a, b, c
Armour, K. C., Bitz, C. M., and Roe, G. H.: Time-Varying Climate Sensitivity from Regional Feedbacks, J. Clim., 26, 4518–4534, https://doi.org/10.1175/JCLI-D-12-00544.1, 2013. a
Arvidson, R. S., Mackenzie, F. T., and Guidry, M. W.: Geologic history of seawater: A MAGic approach to carbon chemistry and ocean ventilation, Chem. Geol., 362, 287–304, https://doi.org/10.1016/J.CHEMGEO.2013.10.012, 2013. a, b, c, d
Arakawa, A. and Lamb, V. R.: Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model, Methods in Computational Physics: Advances in Research and Applications, 17, 173–265, 1977. a, b
Banerjee, A., Archibald, A. T., Maycock, A. C., Telford, P., Abraham, N. L., Yang, X., Braesicke, P., and Pyle, J. A.: Lightning NOx, a key chemistry-climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity, Atmos. Chem. Phys., 14, 9871–9881, https://doi.org/10.5194/acp-14-9871-2014, 2014. a
Download
Short summary
The amount of O2 in the atmosphere may have varied from as little as 10 % to as much as 35 % during the last 541 Myr. These changes are large enough to have led to changes in atmospheric mass, which may alter the radiative budget of the atmosphere. We present the first fully 3-D numerical model simulations to investigate the climate impacts of changes in O2 during different climate states. We identify a complex new mechanism causing increases in surface temperature when O2 levels were higher.