Articles | Volume 15, issue 4
https://doi.org/10.5194/cp-15-1463-2019
https://doi.org/10.5194/cp-15-1463-2019
Research article
 | 
05 Aug 2019
Research article |  | 05 Aug 2019

Simulating the climate response to atmospheric oxygen variability in the Phanerozoic: a focus on the Holocene, Cretaceous and Permian

David C. Wade, Nathan Luke Abraham, Alexander Farnsworth, Paul J. Valdes, Fran Bragg, and Alexander T. Archibald

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (10 May 2019) by Yannick Donnadieu
AR by Alexander Archibald on behalf of the Authors (13 May 2019)  Manuscript 
ED: Referee Nomination & Report Request started (14 Jun 2019) by Yannick Donnadieu
RR by Anonymous Referee #2 (17 Jun 2019)
ED: Publish as is (01 Jul 2019) by Yannick Donnadieu
AR by Alexander Archibald on behalf of the Authors (08 Jul 2019)  Manuscript 
Download
Short summary
The amount of O2 in the atmosphere may have varied from as little as 10 % to as much as 35 % during the last 541 Myr. These changes are large enough to have led to changes in atmospheric mass, which may alter the radiative budget of the atmosphere. We present the first fully 3-D numerical model simulations to investigate the climate impacts of changes in O2 during different climate states. We identify a complex new mechanism causing increases in surface temperature when O2 levels were higher.