Articles | Volume 14, issue 5
https://doi.org/10.5194/cp-14-697-2018
https://doi.org/10.5194/cp-14-697-2018
Research article
 | 
31 May 2018
Research article |  | 31 May 2018

The importance of snow albedo for ice sheet evolution over the last glacial cycle

Matteo Willeit and Andrey Ganopolski

Related authors

A transient coupled general circulation model (CGCM) simulation of the past 3 million years
Kyung-Sook Yun, Axel Timmermann, Sun-Seon Lee, Matteo Willeit, Andrey Ganopolski, and Jyoti Jadhav
Clim. Past, 19, 1951–1974, https://doi.org/10.5194/cp-19-1951-2023,https://doi.org/10.5194/cp-19-1951-2023, 2023
Short summary
New estimation of critical insolation – CO2 relationship for triggering glacial inception
Stefanie Talento, Matteo Willeit, and Andrey Ganopolski
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-81,https://doi.org/10.5194/cp-2023-81, 2023
Preprint under review for CP
Short summary
Climate tipping point interactions and cascades: A review
Nico Wunderling, Anna von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Christiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
EGUsphere, https://doi.org/10.5194/egusphere-2023-1576,https://doi.org/10.5194/egusphere-2023-1576, 2023
Short summary
Glacial inception through rapid ice area increase driven by albedo and vegetation feedbacks
Matteo Willeit, Reinhard Calov, Stefanie Talento, Ralf Greve, Jorjo Bernales, Volker Klemann, Meike Bagge, and Andrey Ganopolski
EGUsphere, https://doi.org/10.5194/egusphere-2023-1462,https://doi.org/10.5194/egusphere-2023-1462, 2023
Short summary
The Earth system model CLIMBER-X v1.0 – Part 2: The global carbon cycle
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023,https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Milankovitch
Unraveling the complexities of the Last Glacial Maximum climate: the role of individual boundary conditions and forcings
Xiaoxu Shi, Martin Werner, Hu Yang, Roberta D'Agostino, Jiping Liu, Chaoyuan Yang, and Gerrit Lohmann
Clim. Past, 19, 2157–2175, https://doi.org/10.5194/cp-19-2157-2023,https://doi.org/10.5194/cp-19-2157-2023, 2023
Short summary
Do phenomenological dynamical paleoclimate models have physical similarity with Nature? Seemingly, not all of them do
Mikhail Y. Verbitsky and Michel Crucifix
Clim. Past, 19, 1793–1803, https://doi.org/10.5194/cp-19-1793-2023,https://doi.org/10.5194/cp-19-1793-2023, 2023
Short summary
Toward Generalized Milankovitch Theory (GMT)
Andrey Ganopolski
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-57,https://doi.org/10.5194/cp-2023-57, 2023
Revised manuscript accepted for CP
Short summary
Deglacial climate changes as forced by different ice sheet reconstructions
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023,https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary
The coupled system response to 250 years of freshwater forcing: Last Interglacial CMIP6–PMIP4 HadGEM3 simulations
Maria Vittoria Guarino, Louise C. Sime, Rachel Diamond, Jeff Ridley, and David Schroeder
Clim. Past, 19, 865–881, https://doi.org/10.5194/cp-19-865-2023,https://doi.org/10.5194/cp-19-865-2023, 2023
Short summary

Cited articles

Abe-Ouchi, A., Segawa, T., and Saito, F.: Climatic Conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle, Clim. Past, 3, 423–438, https://doi.org/10.5194/cp-3-423-2007, 2007. 
Aoki, T., Kuchiki, K., Niwano, M., Kodama, Y., Hosaka, M., and Tanaka, T.: Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models, J. Geophys. Res.-Atmos., 116, 1–22, https://doi.org/10.1029/2010JD015507, 2011. 
Bauer, E. and Ganopolski, A.: Aeolian dust modeling over the past four glacial cycles with CLIMBER-2, Glob. Planet. Change, 74, 49–60, https://doi.org/10.1016/j.gloplacha.2010.07.009, 2010. 
Bauer, E. and Ganopolski, A.: Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles, Clim. Past, 10, 1333–1348, https://doi.org/10.5194/cp-10-1333-2014, 2014. 
Bauer, E. and Ganopolski, A.: Comparison of surface mass balance of ice sheets simulated by positive-degree-day method and energy balance approach, Clim. Past, 13, 819–832, https://doi.org/10.5194/cp-13-819-2017, 2017. 
Download
Short summary
The surface energy and mass balance of ice sheets strongly depends on surface albedo. Here, using an Earth system model of intermediate complexity, we explore the role played by surface albedo for the simulation of glacial cycles. We show that the evolution of the Northern Hemisphere ice sheets over the last glacial cycle is very sensitive to the parameterization of snow grain size and the effect of dust deposition on snow albedo.